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Abstract

Semantic segmentation of 3D point clouds is pivotal for urban modeling and autonomous systems, yet challenges like irregular
data structure and complex geometry hinder accurate segmentation. This study explores integrating the 3D Medial Axis Transform
(MAT)—a topological skeleton encoding shape geometry via maximally inscribed balls—into deep learning frameworks to enhance
semantic reasoning. We propose a feature fusion approach embedding MAT-derived attributes (radii, separation angles, medial
bisectors) into point-based (PointNet++) and graph-based (Superpoint Graph) networks, enabling explicit geometric context for
local points and superpoint relationships. Experiments on diverse datasets (3DOM, SynthCity, SHREC) demonstrate that MAT-
enhanced features, particularly radii and separation angles, improve mean intersection over union (mIoU) by 5.8–12.4% compared
to baseline RGB-only models, especially for classes like grass and shrubs where appearance features are ambiguous. However,
MAT-guided geometric partitioning requires careful regularization to avoid over-segmentation, and graph convolutions benefit most
from mean MAT attributes for global structure modeling. This work establishes MAT as a valuable geometric prior for point cloud
segmentation, highlighting its potential to bridge topological structure and data-driven learning.

1. Introduction

Semantic segmentation of 3D point clouds, which aims to
assign each point to a predefined class, has emerged as a critical
task in various fields, including urban planning, autonomous
driving, and cultural heritage preservation (Qi et al., 2016;
Landrieu and Simonovsky, 2017). As point clouds are un-
ordered, irregular, and invariant under geometric transforma-
tions, deep learning methods for this task must address chal-
lenges such as permutation invariance, local structure capture,
and scale adaptivity. Early approaches like PointNet (Qi et al.,
2016) leverage on symmetric functions (e.g., max-pooling) to
handle unordered points, while hierarchical architectures like
PointNet++ (Qi et al., 2017) recursively aggregate features from
nested local neighborhoods. Graph-based methods, such as
Superpoint Graph (Landrieu and Simonovsky, 2017), partition
point clouds into semantically homogeneous superpoints and
model adjacency relationships via graph convolutions. Despite
these advancements, they often overlook explicit structural
representations that could enhance semantic reasoning, par-
ticularly in complex urban environments with occlusions and
density variations.

The 3D Medial Axis Transform (MAT), a skeleton representa-
tion encoding a shape’s topological and geometric properties
via maximally inscribed balls, has shown promise in shape
analysis and organization (Peters, 2018). Each medial atom
in the MAT captures local geometry through properties like
radius and separation angle, offering a compact descriptor for
spatial context. Despite its proven value as a shape descriptor
in computational geometry and applications in urban mesh
analysis (Gao et al., 2021, 2025) as well as structural modeling
of airborne LiDAR point clouds (Peters, 2018), its role in point
cloud semantic segmentation—particularly for mobile-based
point clouds with varying densities and occlusions—remains
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unclear. Specifically, it is unclear whether MAT’s inherent
structural information (e.g., medial radii) can effectively reg-
ularize learning in irregular point distributions or complement
appearance features like RGB and intensity.

This work presents the first systematic study integrating 3D
MAT with deep learning for point cloud semantic segmentation.
Our key innovations include: (1) A feature fusion framework
embedding MAT-derived attributes (radii, separation angles,
medial bisectors) into point-based and graph-based networks;
(2) Quantitative analysis of MAT’s complementary benefits
across different sensor modalities (MLS, dense image match-
ing); (3) Empirical validation showing MAT-enhanced models
achieve 5.8-12.4% IoU improvements on real-world mobile
LiDAR datasets. The methodology preserves MAT’s theoretical
advantages while maintaining computational efficiency through
parameterized feature extraction, demonstrating generalizabil-
ity across synthetic and real-world urban scenes.

2. Related work

2.1 Deep Learning for Point Cloud Understanding

Deep learning in point clouds faces challenges due to their
unordered, irregular, and transformation-invariant nature. Point
clouds represent complex urban scenes with issues like oc-
clusion and irregular point distribution, making semantic seg-
mentation—classifying each point into K classes—critical yet
demanding. Early methods like PointNet (Qi et al., 2016) use
symmetric functions (e.g., max-pooling) to handle unordered
points, while hierarchical architectures such as PointNet++ (Qi
et al., 2017) recursively aggregate features from local neigh-
borhoods. Graph-based approaches like Superpoint Graph
(Landrieu and Simonovsky, 2017) partition point clouds into
semantically homogeneous superpoints and model adjacency
via graph convolutions. Projection networks and point con-
volution networks Thomas et al. (2019) also contribute to
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the field. Despite these advancements, exploiting geometric
and topological descriptors to enhance segmentation accuracy
remains underexplored. This study aims to address this by
integrating the 3D MAT into existing frameworks.

2.2 3D MAT and Its Applications

The 3D MAT is a skeletal representation that is dual to an
object’s boundary and encodes both topological and geometric
properties. It is defined via maximally inscribed medial balls,
on both sides of the object boundary, as illustrated in Fig. 1(b).
The skeletal structure of the MAT is defined by the centers of

(a) (b) (c)

Figure 1. Visualizations of MAT in 2D and 3D. (a) depicts the
2D boundary of an object, (b) illustrates the 2D MAT, and (c)

shows the medial sheets of the 3D MAT.

the medial balls. For 2D objects, this skeleton consists of points
and curves, while for 3D objects, it can also contain sheets.
Each medial atom, defined by the center of a medial ball and
the points where the medial ball touches the object boundary,
captures local geometry (e.g., thickness, curvature) through
properties like the medial radii, medial bisectors, and separation
angles (see also Fig. 4). The MAT of a point cloud can be ap-
proximated using the improved ball-shrinking algorithm from
Peters (2018). This yields a point cloud approximation called
the unstructured MAT, consisting of medial atoms without
explicit skeletal topology. The structured MAT segments the
atoms into medial clusters or sheets and describes the topology
of the sheets through an adjacency graph. The MAT has been
applied in shape analysis and modeling (Broersen et al., 2017;
Gao et al., 2021, 2025), but its role in point cloud semantic seg-
mentation—especially for mobile-based point clouds—remains
unclear. This research explores integrating MAT properties into
deep learning frameworks to improve segmentation accuracy,
addressing the gap in leveraging topological descriptors for
semantic understanding.

3. Methodology

To address the limitations of existing methods in handling
complex urban point clouds with occlusions and density vari-
ations, this study proposes a three-pronged approach integrating
Medial Axis Transform (MAT) geometric priors with deep
learning architectures. The framework systematically combines
MAT-derived features at multiple representation levels through:
1) Point-wise feature augmentation in PointNet++, 2) MAT-
guided geometric partitioning in Superpoint Graph, and 3)
MAT-attribute enhanced graph convolutions. This methodology
bridges the gap between explicit structural modeling and data-
driven learning through parametric MAT feature extraction and
adaptive fusion mechanisms.

3.1 Pre-processing

The preprocessing stage focuses on preparing point clouds to
enable accurate and efficient 3D MAT computation, which is
critical for subsequent feature integration. Key steps include
normal vector computation and orientation, subsampling and
outlier removal, and data partitioning.

(a) Input (b) Default settings (c) Custom settings

Figure 2. MAT customized preprocessing

• Normal vector’s computation and orientation is a crucial
pre-processing step as it enables the accurate construc-
tion of the 3D MAT and the correct separation between
interior and exterior sheets. This step was carried out in
CloudCompare (CC, 2016), using the program’s default
parameters: plane local surface model, automatic radius
of the neighbors, and orientation with minimum spanning
tree (knn=6). Then, for each dataset, the computed
normal vectors were oriented heuristically to obtain the
best possible fit.

• Subsampling is the process of reducing the number of
points in a point cloud. This step was carried out in
CloudCompare (CC, 2016) with the purpose of reducing
the weight of the datasets while preserving fine structures.
The spatial subsampling method was used; this involves
selecting the minimum distance between points in the
output point cloud.

• Outliers removal is a way to clean the input dataset by
eliminating those elements of the point cloud that do not
respect a given condition. An example are points that lie
at abnormal distances from the others.

• Cropping the input point cloud into smaller input files
was performed to enable a better comparison between the
training and test sets and the validation set. This step is
important as the files used in the deep learning algorithm
and those used for evaluation should have similar charac-
teristics, as the number of points or represented objects.

• Classes’ imbalance weighting consists of assigning a
weight to each class of a data-set based on the number of
times it is present in the data-set. This can be done through
a bin count of the points in each class, followed by an
inverse weighting method. This makes sure that classes
that appear less are not penalized in the deep learning
phase.

• Class reduction was needed for strongly imbalanced data-
sets. This phase consisted of the identification of the
classes most present in the dataset, together with the
classes that could be merged and those that could be
eliminated.
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These steps facilitate robust MAT computation by ensuring
point clouds have homogeneous density, minimal noise, and
correctly oriented normals, which are essential for defining
medial atoms (interior/exterior radii, separation angles) and
structured medial sheets. Custom parameters for MAT com-
putation (e.g., the initial radius is 40 m, and the denoising
planar and preservation thresholds are 0.6 and 0.5, respectively)
were optimized to avoid spurious connections between distant
objects, as validated visually using Geoflow Peters et al. (2022)
(see Fig. 2).

3.2 Point-wise feature augmentation

To integrate MAT into the point-based deep learning framework
PointNet++ (Qi et al., 2017), we leverage its hierarchical
structure to incorporate MAT attributes as extra features. First,
the algorithm’s set abstraction layers—sampling, grouping, and
feature extraction—were analyzed to identify optimal points
for feature enrichment. MAT properties (interior/exterior co-
ordinates, radii, separation angles) were mapped to the input
points and appended to default point features (XYZ, RGB) to
encode long-range geometric relationships (see Fig. 3). Three
core experiments were conducted:

• Coordinate integration: interior and exterior MAT co-
ordinates were added to represent spatial relationships
between surface points and their medial atoms.

• Radius/Separation angle integration: numeric attributes
(radii, separation angles) were normalized and combined
with default features to describe surface curvature and
local geometry.

• Hybrid features: a combination of coordinates, radii,
and angles was tested to evaluate cumulative effects on
segmentation accuracy.

The Pytorch implementation of PointNet++ was modified to
include these features, with hyperparameters (batch size ranges
from 1 to 32) tuned to balance computational efficiency and
model performance. By treating MAT features as additional
dimensions in the input tensor, the algorithm learned enhanced
geometric representations.

(a) Interior coord. (b) Interior rad. (c) Interior sep.

(d) Exterior coord. (e) Exterior rad. (f) Exterior sep.

Figure 3. 3D medial axis transform (MAT) as a point feature.
Here, ‘coord.’ represents coordinates (a 3D feature vector),

“rad.” denotes radius (a scalar feature value), and ‘sep.’ stands
for separation angle (also a scalar feature value). Colors

in (b), (c), (e), (f) indicate scalar feature values from low to high,
and the interior and exterior shrinking balls are represented by

gray dashed lines.

3.3 MAT-guided geometric partitioning

For the graph-based algorithm Superpoint Graph (SPG)
(Landrieu and Simonovsky, 2017), the 3D MAT was used to re-
fine the cut-pursuit (Landrieu and Obozinski, 2017) partitioning
algorithm, which decomposes point clouds into homogeneous
superpoints by minimizing a cost function balancing geometric
feature consistency and adjacency weights:

arg min
g∈Rdg

∑
i∈C

∥gi − fi∥2 + µ
∑

(i,j)∈Enn

wi,j [gi − gj ̸= 0]

Here, fi denotes geometric features (linearity, planarity, etc.),
wi,j are edge weights inversely proportional to point distances,
and µ controls partition coarseness. To enhance this process,
MAT properties (interior/exterior radii, separation angles, me-
dial bisectors) were integrated into the geometric feature set
(linearity, planarity, scattering, verticality) to better capture
structural relationships (see Fig. 4).

Figure 4. Comparison of MAT properties (left) and
eigenvalue-based geometric descriptors (right).

Key modifications included:

• Feature enrichment: radii and angles were normalized and
appended to default features, providing quantitative meas-
ures of surface curvature and medial sheet orientation.

• Edge weight adjustment: points belonging to the same
medial sheet (derived from structured MAT segmentation)
had their adjacency weights strengthened, promoting co-
herent superpoint formation.

• Segmentation refinement: medial bisectors (unit vectors
along medial sheets) were used to enforce geometric
consistency during partitioning, aligning superpoints with
underlying MAT structures.

These adjustments aimed to make the partition more consistent
with the hierarchical organization of the MAT, thereby improv-
ing the semantic coherence of superpoints of the algorithm.

3.4 MAT-enhanced graph convolutions

In the final integration step, MAT properties were used to
enhance node and edge features in the Superpoint Graph,
enabling more informative graph convolutions. For each super-
point (node), mean/max/min values of interior/exterior radii and
separation angles were computed to characterize its geometric
structure. For superedges (edges between nodes), differences in
these values between adjacent superpoints were used to encode
relational geometry (see Fig. 5). The workflow involved:

• Node feature embedings: radii and angles were aggregated
(mean, max, min) for each superpoint, supplementing
default attributes (centroid, volume, point count).
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• Edge feature embeddings: delta values of MAT properties
between connected superpoints were added to edge fea-
tures, enhancing the graph’s ability to model inter-object
relationships.

This approach capitalized on the MAT’s hierarchical structure
to improve both local (node) and global (edge) feature repres-
entations, particularly for complex urban scenes with diverse
geometric patterns.

(a) Original embedings

(b) MAT embedings

Figure 5. Feature embeddings for superpoint graph

4. Evaluation

4.1 Datasets

This research utilizes three primary datasets to validate the
proposed methodology, including one internal and two open-
source datasets, summarized in Table 1.

Platforms Tiles Points Classes
SHREC MLS 80 3M 5
3DOM DIM 1 28M 6
SynthCity MLS 9 15M to 50M 9

Table 1. Datasets specification

The SHREC dataset, a subset of CycloMedia’s internal dataset,
was utilized in the 3D Object Retrieval 2020 competition1.
Comprising 80 point clouds, it is divided into a training set of
60 point clouds and a test set of 20 point clouds. These point
clouds are manually labeled into five semantic classes (building,
car, ground, pole, vegetation).

The 3DOM dataset, generated through dense image matching
over a controlled urban artifact (Özdemir et al., 2019), features
a reference point cloud of 28 million points, with training/test

1 https://workshop.cgv.tugraz.at/3dor2020/

subsets ( 2 million points each) labeled into six classes (ground,
grass, shrub, tree, facade, roof). Notable for its homogeneous
point density and complete object representation, it was used to
test MAT integration under ideal geometric conditions, with a
manually labeled validation set derived from the full cloud.

SynthCity, a synthetic MLS dataset simulating a Velodyne scan-
ner, includes nine areas (8 training, 1 test) with 15–52 million
points total, segmented into nine semantic classes (building,
car, ground, pole, road, street furniture, tree, pavement). Its
stable point density and complete object geometry, regardless
of material, make it suitable for evaluating MAT completeness.
The dataset was subsampled to 0.01m point spacing in Cloud-
Compare, reducing size by 80% while preserving fine structural
details.

4.2 Results of point-wise feature

Table 2 presents the point-wise feature performance compar-
ison in mean intersection over union (mIoU) across three
datasets—3DOM, SynthCity, and SHREC—using different
configurations. The default configuration employs XYZ and
RGB, while additional configurations integrate Medial Axis
Transform (MAT) attributes: MAT-C (interior and exterior
MAT coordinates), MAT-I (interior MAT coordinates), MAT-
RS (interior and exterior radii with separation angles), MAT-SP
(interior spoke vectors), and MAT-BIS (bisector angles). Not-
ably, MAT-C and MAT-I are tailored for 3DOM and SynthCity,
whereas MAT-SP and MAT-BIS are exclusive to SHREC.

RGB MAT-C(SP) MAT-I(BIS) MAT-RS
3DOM 64.4% 44.2% 48.1% 77.9%
SynthCity 73.0% 42.5% 49.1% 78.7%
SHREC 34.8% 42.7% 38.7% 43.6%

Table 2. Comparison of point - wise feature performance in
mIoU(%) among datasets. Default configurations utilize XYZ
and RGB. Additional configurations include MAT - C (Interior

and Exterior MAT Coordinates), MAT - I (Interior MAT
Coordinates), MAT - RS (Interior and Exterior Radii with

Separation Angles), MAT - SP (Interior Spoke Vectors), and
MAT - BIS (Bisector Angles). MAT - C and MAT - I are

applicable to 3DOM and SynthCity, whereas MAT - SP and
MAT - BIS are specific to SHREC.

For 3DOM and SynthCity, the MAT-RS configuration outper-
forms others, achieving the highest mIoU values of 77.9%
and 78.7%, respectively. This suggests that explicit geometric
information from radii and separation angles enhances fea-
ture discriminability. In contrast, MAT-C and MAT-I yield
lower mIoU (44.2%–49.1%) for these datasets, likely due
to ambiguous coordinate relations that hinder deep learning
generalization. For SHREC, MAT-RS again leads with 43.6%
mIoU, slightly surpassing MAT-SP (42.7%) and outperforming
the default RGB (34.8%), indicating that even with class im-
balance and density variation, structural MAT features improve
segmentation.

Figure 6 visualizes point-wise classification results and scalar
features, where colors in subfigure (b) denote semantic classes
(e.g., ground, roof, facade), and subfigures (c)–(f) show scalar
feature values from low to high via a shared legend. Similarly,
Figure 7 depicts scalar features, highlighting how MAT-derived
attributes capture geometric details critical for distinguishing
classes like vegetation and man-made structures.
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(a) RGB (b) Pred. (c) Inrad. (d) Exrad. (e) Insep. (f) Exsep.

Figure 6. 3DOM point-wise classification results and scalar feature visualization. ‘Pred.’ is predicted classes; ‘Inrad.’, ‘Exrad.’ are
interior and exterior radii; ‘Insep.’, ‘Exsep.’ are interior and exterior separation angles. In (b), colors represent ground, roof,

facade, grass, tree, and shrub. From (c) to (f), colors indicate scalar feature values from low to high.

(a) RGB (b) Interior radii (c) Exterior radii (d) Interior separation angle (e) Exterior separation angle

Figure 7. SHREC scalar feature visualization. From (b) to (e), colors indicate scalar feature values from low to high.

4.3 Results of geometric partitioning

Table 3 compares geometric partitioning outcomes in terms
of segment count (Noseg.) and semantic segmentation per-
formance (mIoU) for 3DOM and SynthCity datasets using
default, MAT, bisector, and edge weight configurations. In
3DOM, the MAT configuration increases segments by over
double (10221 vs. default 4433) but reduces mIoU to 32.1%,
indicating excessive over-segmentation that disrupts homogen-
eous structures. The bisector configuration (5375 segments,
42.0% mIoU) balances segment count and performance, while
adjusting edge weights (3517 segments, 37.7% mIoU) reduces
over-segmentation and improves structural integrity.

Dataset Default MAT Bisector Edge weight

Noseg. 3DOM 4433 10221 5375 3517
SynthCity 6578 7707 15577 7294

mIoU 3DOM 46.1% 32.1% 42.0% 37.7%
SynthCity 42.6% 46.3% 23.9% 35.3%

Table 3. Comparison of geometric partition by number of
segments (Noseg.) and semantic segmentation (mIoU)

For SynthCity, the MAT configuration moderately increases
segments (7707 vs. default 6578) and boosts mIoU to 46.3%,
suggesting better adaptation to synthetic scenes with uniform

density. Conversely, the bisector configuration (15577 seg-
ments, 23.9% mIoU) leads to severe over-segmentation, high-
lighting sensitivity to noise-free synthetic data. Edge weight
adjustment (7294 segments, 35.3% mIoU) balances segmenta-
tion but underperforms the MAT configuration.

(a) Default (b) MAT

(c) Medial bisector (d) Edge weight

Figure 8. SynthCity geometric partition comparison.

Figure 8 visually contrasts partitions, showing that the de-
fault configuration preserves large homogeneous regions, while
MAT introduces finer segmentation suitable for structured
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scenes. Excessive segments from bisector or unoptimized con-
figurations lead to fragmented partitions, degrading semantic
accuracy. These results emphasize the trade-off between seg-
ment granularity and segmentation quality, with MAT attributes
improving performance when appropriately regularized.

4.4 Results of graph convolutions

Table 4 evaluates 3DOM semantic segmentation using graph
convolutions with different MAT-derived graph attributes:
mean radii and separation angles (MeRS), min-max radii and
separation angles (MiaRS), and their combinations with de-
fault attributes (DeMeRS, DeMiaRS). The default configuration
achieves the highest mIoU (46.1%), while MeRS yields the
best overall accuracy (OA, 74.04%), indicating that mean
geometric attributes enhance global structure recognition. Mi-
aRS performs poorly (26.2% mIoU), likely due to noise from
extreme values, and DeMeRS/DeMiaRS show intermediate
results, suggesting that direct integration of MAT attributes
without optimization introduces redundancy or ambiguity. The
overall accuracy of approximately 75% is reasonable for the
3DOM dataset, as the ground class (which is large and relatively
easy to segment) dominates the scene. However, the mean
IoU of 46.1% indicates that performance on minority classes
(e.g., shrub, grass) remains challenging due to their geometric
complexity and similarity.

Default MeRS. MiaRS. DeMeRS. DeMiaxRS.
OA 72.64% 74.04% 72.77% 70.12% 73.64%
mIoU 46.1% 38.1% 26.2% 40.1% 36.8%

Table 4. 3DOM semantic segmentation performance measured
by OA and mIoU for different graph attributes. ‘MeRS.’: mean

radii and separation angles; ‘MiaRS.’: min-max radii and
separation angles; ‘DeMeRS.’: default + mean radii and

separation angles; ‘DeMiaRS.’: default + min-max radii and
separation angles.

Figure 10 visualizes graph attributes with MAT embedding,
illustrating how mean radii and separation angles (MeRS)
highlight consistent structural features, while min-max values
(MiaRS) emphasize local variations. The default configuration
(subfigure (b)) shows balanced class discrimination, whereas
MeRS (subfigure (c)) sharpens boundaries between classes like
ground and vegetation. Poor performance of MiaRS (subfigure
(d)) aligns with table results, as extreme values disrupt the
smoothness of geometric representations critical for graph-
based learning.

4.5 Results summary

In summary, MAT-derived point-wise features (especially
radii and separation angles) consistently improve segmentation
across datasets, while geometric partitioning requires careful
regularization to avoid over-segmentation. Graph convolutions
benefit from mean MAT attributes for global structure model-
ing, but extreme values or unoptimized combinations hinder
performance. These findings underscore the value of explicit
geometric information in 3D point cloud analysis, contingent
on proper integration and regularization for different tasks.

4.6 Limitations of MAT

While the integration of MAT-derived features enhances se-
mantic segmentation in controlled environments, our experi-

ments reveal inherent limitations in noisy, occluded, or geomet-
rically irregular settings. These limitations stem from MAT’s
sensitivity to point cloud quality and structural complexity:

Noise Sensitivity: MAT computation relies on stable normal
vectors and continuous surfaces. In noisy environments (e.g.,
mobile LiDAR with irregular sampling), noise severely de-
grades MAT’s utility, causing medial balls to overshrink and
collapse radii and separation angles into near-identical values.
This eliminates the geometric discriminability of MAT-RS fea-
tures, reducing their performance to baseline RGB levels. Such
sensitivity arises because MAT atoms depend on maximally
inscribed balls, which are unstable under point perturbations.

Occlusion and Sparsity: Thin or sparsely sampled structures
(e.g., poles, wires) yields unstable MAT representations. In the
SHREC dataset, the ”pole” class consistently achieved 0% IoU
across all MAT-enhanced experiments due to insufficient point
density for reliable medial ball computation. Similarly, facade
decorations in the 3DOM dataset generated fragmented medial
sheets, exacerbating over-segmentation during geometric parti-
tioning. This fragmentation is intrinsic to MAT’s requirement
of closed surfaces; partial scans break medial continuity.

Geometric Irregularities: Exterior MAT properties (radii
and separation angles) introduced ambiguity in complex urban
scenes. When used in Superpoint Graph partitioning, exterior
features incorrectly linked distant objects, reducing perform-
ance compared to interior-only features. This occurs since
exterior MAT captures inter-object relationships rather than
intrinsic geometry, making it unsuitable for defining homogen-
eous superpoints.

Future Mitigations: To address these limitations, we propose:
1) Adaptive MAT Filtering: Developing noise-robust MAT ex-
traction that adjusts denoising thresholds (planar/preservation)
based on local point density and curvature to stabilize medial
atoms in sparse regions. 2) Learning-Based MAT Extraction:
Replacing heuristic MAT computation with neural estimators
(e.g., graph networks) trained on noisy-clean point cloud pairs
to recover stable skeletons under occlusion. 3) Topology-Aware
Partitioning: Aligning superpoint graphs with MAT sheet
adjacency (rather than spatial proximity) to leverage inherent
structural hierarchies in irregular data.

5. Conclusion

This research presents the first systematic integration of 3D
Medial Axis Transform (MAT) properties into deep learn-
ing for point cloud semantic segmentation, demonstrating
that explicit geometric attributes like radii and separation
angles can significantly enhance segmentation performance.
By embedding MAT features into PointNet++ and Super-
point Graph frameworks, we show consistent improvements
in mIoU across synthetic and real-world datasets, particularly
for classes challenging to distinguish using RGB alone (e.g.,
grass, shrubs). MAT-derived point-wise features enrich local
geometric context, while graph-based integrations highlight the
importance of mean structural attributes for global scene under-
standing. These findings underscore the value of topological
descriptors in complementing appearance features, offering a
new paradigm for leveraging shape semantics in deep learning.

However, the study also reveals limitations: MAT-guided geo-
metric partitioning often leads to excessive over-segmentation
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(a) Linearity (b) Planrity (c) Verticality (d) Scattering

(e) Interior radius (f) Exterior radius (g) Exterior angle (h) Medial bisector

Figure 9. 3DOM scalar feature visualization. The top row shows the eigenvalue-based features, and the bottom row shows the
MAT-based features. Colors indicate scalar feature values from low to high.

(a) Ground truth (b) Default

(c) Mean RS. (d) Minmax RS.

(e) Default Mean RS. (f) Default Minmax RS.

Figure 10. 3DOM graph attributes with MAT embedding. ‘Mean
RS.’: mean radii and separation angles; ‘Minmax RS.’: min-max
radii and separation angles; ‘Default Mean RS.’: default + mean

radii and separation angles; ‘Default Minmax RS.’: default +
min-max radii and separation angles.

in complex scenes, necessitating adaptive regularization
strategies. Additionally, direct integration of extreme MAT
values (e.g., min/max radii) into graph convolutions intro-
duces noise, emphasizing the need for feature optimization.
The discrepancy between MAT’s theoretical structure and the
practical adjacency of Superpoint Graph nodes also limits the
effectiveness of edge feature enrichment, highlighting structural
mismatches between topological skeletons and graph-based
representations.

Future work should focus on developing automated MAT
parameter selection tailored to dataset characteristics, exploring
MAT’s utility in aerial LiDAR datasets, and using feature attri-
bution to dissect how MAT properties influence deep learning

layers. Additionally, aligning Superpoint Graph topology with
MAT’s medial sheet adjacency could unlock full potential in
graph-based segmentation, bridging structural modeling and
semantic reasoning for more robust urban scene analysis.
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