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Abstract

3D point clouds used in geospatial applications typically contain billions of points. Processing 3D point clouds of this size as a whole
with deep learning models requires computational resources (e.g., GPU memory) that are usually not available. To obtain 3D point
clouds that can be processed by deep learning models, sampling methods that produce local subsets of large-scale 3D point clouds
with a smaller extent or lower density are essential. Nonetheless, the impact of different input sampling methods on the semantic
segmentation performance of deep learning models has received little attention so far. In this paper, we compare three widely used
input sampling techniques (random sampling, farthest point sampling, and grid sampling) concerning the semantic segmentation
performance of different deep learning architectures, using inputs of different spatial extents. We consider both indoor and outdoor
scenarios, using the Stanford Large-Scale 3D Indoor Spaces and Paris-CARLA-3D datasets as reference datasets. We find that
random and grid sampling outperform farthest point sampling in terms of segmentation performance, with mean intersection-over-
union scores of approximately 0.6, while random sampling displays the fastest execution time. For indoor scenarios, using input
3D point clouds with a small spatial extent (i.e., 1 m) yields the best results. For outdoor scenarios, similar performance is obtained
for all tested input extents. In an additional experiment, we evaluate a curvature-weighted sampling approach to test whether
geometric features derived from 3D point clouds can guide the selection of more informative input points for deep learning models.
However, we find that using curvature as a sampling criterion decreases the segmentation performance, indicating a mismatch
between the expected relevance of high-curvature points (e.g., points representing object borders) and the internally learned features
of the deep learning models.

1. Introduction hundreds of thousands of points. Processing samples of this

size with DL models requires computational resources that are

In geospatial applications, 3D point clouds are widely used as
point-based 3D models or as base data for 3D model reconstruc-
tion. Semantic segmentation, which aims to assign each point in
a 3D point cloud to an object category (Xie et al., 2020), plays a
fundamental role in applications such as infrastructure manage-
ment. Over the past decade, deep learning (DL) has achieved
outstanding performance in computer vision tasks such as im-
age segmentation; given this success, there is a growing in-
terest in DL approaches for 3D point cloud analysis (Bello et
al., 2020; Guo et al., 2021). Furthermore, 3D point clouds
captured for geospatial applications typically contain billions
of points (D6llner, 2020). Due to computational resource con-
straints, current DL segmentation approaches rely on dividing
the large-scale 3D point clouds into smaller subsets (neighbor-
hood sampling), reducing the density of the 3D point clouds
(neighborhood thinning), or a combination of both. We pro-
pose the terms neighborhood sampling and neighborhood thin-
ning in the context of a DL semantic segmentation pipeline, as
the terms subsampling and downsampling are often used inter-
changeably and inconsistently in the literature.

The size of the objects of interest in geospatial applications
can range from the centimeter range (e.g., objects in indoor en-
vironments (Armeni et al., 2016)) to several dozens of meters
(e.g., assets in outdoor environments (Roynard et al., 2018)).
Ideally, the neighborhoods used as input for DL models should
be large enough to include any object of interest, and the thin-
ning rate should be low enough to preserve any relevant detail.
However, this would result in samples that may still contain

typically unavailable, especially in embedded systems or real-
time applications. Furthermore, even current high-end GPUs
may not have the memory required to process such volumes of
data. Therefore, input sampling for DL models often involves
implicit trade-offs between the loss of either contextual or de-
tail information, depending on which approaches are used for
neighborhood sampling and thinning. Common approaches for
neighborhood thinning are random sampling (RS) (Hu et al.,
2020), farthest point sampling (FPS) (Qi et al., 2017b), and grid
sampling (GS) (Thomas, 2019). Although these approaches are
widely used (Qi et al., 2017a; Yao et al., 2019; Zhang et al.,
2019; Wang et al., 2019; Wu et al., 2022), the impact of input
sampling techniques on DL-based 3D point cloud semantic seg-
mentation pipelines in terms of the segmentation performance
has received little attention so far. In order to contribute to this
knowledge gap, this work presents the following contributions:

1. We compare RS, FPS, and GS as neighborhood thin-
ning techniques for DL-based semantic segmentation of
3D point clouds. Our results show that RS and GS have
equivalent performance for the downstream segmentation
task, while RS displays the faster execution times. In con-
trast, FPS shows lower segmentation performance and the
highest execution time.

2. Inspired by the use of curvature and other surface features
derived from 3D point clouds in different sampling and
segmentation approaches (Yu et al., 2023; Kumar et al.,
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Figure 1. Output of the neighborhood thinning approaches used in this work for a neighborhood from the Stanford Large-Scale 3D
Indoor Spaces Dataset with 3 m radius and 4096 sampled points.

2019), we investigate if the use of surface features such as
curvature as sampling criteria can help retain more inform-
ative points for the semantic segmentation task through
a custom curvature-weighted sampling (CWS) approach
(see Fig. 1). We find that such an approach decreases
the performance of the models, pointing to a mismatch
between the expected relevance of high-curvature points
and the features learned internally by the DL models.

3. We compare the semantic segmentation performance for
different spatial extents of the input neighborhoods ob-
tained during neighborhood sampling to gain insight into
the trade-off between preserving detail and including
scene context information. Our experiments show that, for
indoor scenarios, inputs with a smaller spatial extent (1 m)
yield the best results, while similar results are obtained for
all tested input extents for outdoor scenarios.

2. Related Work

2.1 Deep Learning-Based Semantic Segmentation of 3D
Point Clouds

The goal of semantic segmentation of 3D point clouds is to
assign a label to each point, thus separating the point cloud
into subsets based on the semantic meanings of its points. Ex-
isting DL-based approaches can be divided into projection-,
discretization-, and point-based methods (Guo et al., 2021).

2.1.1 Projection-Based Methods These methods generate
2D images from 3D point clouds, thus being able to apply es-
tablished 2D convolutional neural network (CNN) architectures
to them (Bello et al., 2020). Common approaches rely on pro-
jecting 3D point clouds into multi-view (Alnaggar et al., 2021;
Yang et al., 2020) or spherical images (Cen et al., 2023; Xu
et al., 2020). Projection-based methods benefit from using ar-
chitectures from the mature field of DL-based image segment-
ation (Bello et al., 2020). However, their performance is sens-
itive to viewpoint selection and occlusions, and the projection
step inevitably introduces information loss (Guo et al., 2021).

2.1.2 Discretization-Based Methods Their goal is to con-
vert 3D point clouds into discrete 3D representations such as
voxels and process them with 3D convolutions (Guo et al.,
2021). There are approaches based on dense representations
that leverage standard 3D convolutions (Zhou and Tuzel, 2018;
Rethage et al., 2018) and approaches based on sparse represent-
ations that seek to reduce the computation and memory costs
of dense CNNs given the spatially-sparse nature of 3D point
clouds (Zhao et al., 2022; Yang et al.,, 2023). Similar to
projection-based methods, discretization-based methods build
on mature and well-performing CNN architectures. However,

the discretization step inherently introduces artifacts and in-
formation loss. Furthermore, particularly in dense represent-
ations, high resolution translates to high memory and compu-
tational costs, while low resolution implies detail loss, making
the grid size selection a non-trivial task (Guo et al., 2021; Bello
et al., 2020).

2.1.3 Point-Based Methods These methods use 3D point
clouds directly as input. However, given the unstructured and
unordered nature of 3D point clouds, it is unfeasible to ap-
ply standard 3D convolutions. Thus, different approaches to
process point clouds directly have been proposed (Guo et al.,
2021), including point-wise multi-layer perceptron (MLP)- (Qi
et al., 2017b; Hu et al., 2020), convolution- (Thomas et al.,
2019; Zhu et al., 2021), graph- (Wang et al., 2019; Lin et
al., 2020), transformer- (Wu et al., 2022; Zhang et al., 2022),
and hierarchical data structure-based methods (Chen and Wang,
2022; Robert et al., 2023). By using 3D point clouds directly
as input, they avoid computational costs associated with con-
verting the point clouds into intermediate representations, as
well as conversion artifacts and information loss. However,
point clouds do not contain explicit neighboring information.
Thus, most point-based methods require computationally ex-
pensive neighbor searching strategies, which limit their overall
efficiency (Guo et al., 2021).

Most point-based approaches rely on using 3D point cloud
thinning strategies such as the ones studied in this work.
While this stage introduces information loss similar to that of
discretization-based methods, point-based methods are more
flexible in terms of the sampling and thinning strategies used in
the data processing pipeline (e.g., different geometries, criteria,
and resolutions can be used for the selection of input points).
Therefore, our work focuses on studying the impact of neigh-
borhood sampling and thinning techniques (Section 2.2) on the
semantic segmentation performance of point-based methods.

2.2 Input Sampling Approaches

Since current DL models cannot consume large-scale 3D point
clouds directly, there is a need to sample local neighborhoods
from them and to thin these neighborhoods into inputs small
enough for the DL models to process (Fig. 2). Given a large-
scale input 3D point cloud P = {p, € R? | 1 < n < N},
where D denotes the number of per-point feature dimensions,
and N is the total number of points in P, the neighborhood
sampling stage samples a set of local neighborhoods {Q, C P |
1 < s < S} from P, where S denotes the number of sampled
local neighborhoods. In the neighborhood thinning stage, the
number of points in a local neighborhood Q; is reduced, often
by sampling a fixed number of points (Wang et al., 2019; Zhang
et al., 2019) (typically, a few thousand points). Approaches
for the neighborhood sampling step include the use of different
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neighborhood geometries such as spheres (Thomas, 2019), cyl-
inders (Xiang et al., 2023), and cubes (Wang et al., 2019). For
the neighborhood thinning step, heuristic approaches such as
RS, FPS, and GS are commonly used. RS randomly selects
K points from each element in Qs. FPS samples K points
from each element in Q, through a re-ordering of the metric
space {p1---pk - pxr} such that each py is the point that is
the farthest from the first £k — 1 points. Compared to RS, FPS
provides a better coverage of the entire point set (Yao et al.,
2019). The GS strategy selects K points from each element
in Q; by partitioning the 3D space into 3D voxels of a given
size and selecting one point in each occupied one (Dinesh et
al., 2020). In contrast with RS and FPS, GS does not return
a fixed number of points. Among the works that use RS for
thinning DL input data are PointNet (Qi et al., 2017a), Point-
Net++ (Qi et al., 2017b), ShellNet (Zhang et al., 2019) and
Dynamic Graph CNN (DGCNN) (Wang et al., 2019). GS is
used for input thinning in KP-FCNN (Thomas et al., 2019),
Point Transformer (Zhao et al., 2021) and Point Transformer
V2 (PTv2) (Wu et al., 2022).

In addition to thinning the input data, most DL architectures
for 3D point cloud semantic segmentation follow an encoder-
decoder scheme, where the input 3D point clouds are further
thinned in the encoder layers (i.e., pooling operations). Point-
Net++ (Yao et al., 2019) uses FPS, KP-FCNN (Thomas et al.,
2019) uses GS, and RandLLA-Net (Hu et al., 2020) uses RS to
gradually thin 3D point clouds in the encoder layers. Currently,
there is more attention in the literature on studying and com-
paring these internal thinning approaches of the models. For
instance, Hu et al. (2020) find that RS provides an advant-
age when compared to other heuristic and learning-based ap-
proaches in terms of execution time and memory consumption.
In contrast, few works analyze the impact of input sampling ap-
proaches on the segmentation performance. For example, Ma
et al. (2020) look at the input 3D point clouds and analyze the
impact of the neighborhood thinning step on the downstream
segmentation task. However, they focus on a specific indoor
application and only evaluate the impact of different numbers
of K input points through the use of RS, and do not consider
other sampling techniques. Pierdicca et al. (2020) evaluate the
use of RS, GS, and octree-based sampling for the semantic seg-
mentation of cultural heritage sites. However, the evaluation
criteria for the sampling techniques refer to their practicality of
use and not to their impact on the segmentation performance.
Grandio et al. (2022) evaluate the use of GS as a neighborhood
thinning strategy for the DL-based segmentation of railway en-
vironments. Although the authors study the impact of the grid
size on the segmentation performance, they focus on a specific
task, and do not compare it against other thinning strategies.
Deschaud et al. (2021) evaluate the impact of different neigh-
borhood sampling radius sizes on the semantic segmentation
task; however, they focus on outdoor scenarios and do not eval-
uate the use of different neighborhood thinning approaches.

In our work, we focus on heuristic techniques, as they are
widely used in the neighborhood thinning stage of DL-based

Neighborhood
thinning

DL model

Large-scale 3D point cloud
with semantic labels

Figure 2. Data processing pipeline for DL-based semantic segmentation of large-scale 3D point clouds as used in this work.

3D point cloud semantic segmentation pipelines (Qi et al.,
2017a; Yao et al., 2019; Zhang et al., 2019; Wang et al., 2019;
Zhao et al., 2021; Wu et al., 2022), are model- and task-
agnostic, and are easily adapted to different semantic segment-
ation pipelines. In contrast, learning-based approaches require
further training, present a higher implementation complexity,
and are oriented for a specific task (Liu et al., 2022; Wang and
Zhao, 2023). Furthermore, learning-based approaches are of-
ten structured as internal model layers or modules (Wu et al.,
2023; Chen et al., 2023) and cannot be directly adapted as a
stage of the data processing pipeline. Some approaches require
pre-trained models (Dovrat et al., 2019), for which heuristic
sampling techniques would still be needed. Thus, we evaluate
four heuristic neighborhood thinning strategies, i.e., RS, FPS,
GS, and CWS (Section 3.2) for input neighborhoods of varying
spatial extents and three widely used DL architectures, consid-
ering outdoor and indoor application scenarios.

Surface Features for 3D Point Cloud Thinning The extrac-
tion of feature lines, i.e., ordered connections of feature points,
is a vital operation for the processing and understanding of 3D
models (Nie, 2016). These feature points represent surface vari-
ations such as creases, borders, and corners (Gumhold et al.,
2001) and can be used to abstract complex 3D shapes, thus fa-
cilitating tasks such as surface reconstruction and shape clas-
sification (Zhu et al., 2023). Hence, feature points have the
potential to provide relevant information for DL models used in
3D point cloud analysis tasks such as semantic segmentation,
as the preservation of these feature points during the neigh-
borhood thinning stage could be of considerable value for the
downstream segmentation task. Although there is work related
to feature-based 3D point cloud thinning using heuristic (Yu
et al., 2023) or learning-based techniques (Ye et al., 2022),
approaches such as RS and GS remain as some of the most
widely used in DL-based 3D point cloud semantic segmentation
pipelines. To our knowledge, the use of feature-based sampling
techniques for the neighborhood thinning stage and its impact
on the segmentation performance has not yet been studied in
detail.

3. Data and Methods

We use the Paris-CARLA-3D dataset (Deschaud et al., 2021)
for the segmentation of outdoor scenes and the Stanford Large-
Scale 3D Indoor Spaces Dataset (S3DIS) dataset (Armeni et al.,
2016) for indoor scene segmentation. Appendix A introduces
both datasets in more detail, and shows the training, validation,
and testing partitions that we use for the present study.

3.1 Data Preprocessing

Following a similar approach as Thomas et al. (2019), we ini-
tially reduce the point density of the S3DIS and PARIS datasets
through grid sampling. We set the grid sizes to 2 cm and 6 cm,
respectively, to speed up subsequent processing steps while pre-
serving sufficient detail for the segmentation tasks. These val-
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ues are selected taking those in (Thomas et al., 2019) as ref-
erence. We use point coordinates and RGB values as model
input for both datasets. Similar to the work by Kumar et al.
(2019), in which the authors find that using surface informa-
tion as additional per-point features improves the segmentation
performance, we calculate normal vectors and curvature values
for each point and add them to the input features. The normal
vector of a point is estimated by calculating the eigenvectors of
the 3D covariance matrix of a point’s k,, nearest neighbors. The
eigenvector with the smallest eigenvalue is taken as the normal
vector (Hoppe et al., 1992). To calculate the curvature value of
a point, a tangent plane is spanned by the point and its normal
vector. The curvature value is defined as the average distance
of the point’s k. nearest neighbors to this tangent plane (Pauly
et al., 2002). In this work, we use empirically selected val-
ues of k, = 78 and k. = 16. The 3D point clouds in the
PARIS dataset contain some outliers that produce undesirably
high curvature values. We manually remove these outliers using
the CloudCompare software. !

3.2 Sampling of Model Inputs

As shown in Fig. 2, we consider a two-stage sampling proced-
ure: In the first stage (neighborhood sampling), a set of local
neighborhoods O, with a fixed spatial extent is sampled from
the large-scale 3D point cloud. In the second stage (neighbor-
hood thinning), a fixed number of K points is sampled from
each neighborhood (Section 2.2). We set the requirement that
each neighborhood should contain a fixed number of points,
as this simplifies the batch processing of the data and ensures
that the DL model can process a batch of samples with a given
GPU memory budget. Following the approach of Thomas et al.
(2019), we use spherical neighborhoods with a fixed radius r
for the neighborhood sampling stage. These neighborhoods
are obtained by sampling S center points cy, ..., cs from P and
searching all points within radius r around these center points:

Q={pePllp-cl <r} €]

where ||...|| denotes the 3D Euclidean distance between two
points. We experiment with different values for r, namely 1, 3,
and 6 m for the S3DIS dataset and 3, 6, and 9 m for the PARIS
dataset. To mitigate imbalances in the class distribution, we
weight the sampling of center points ¢, by their semantic class
label during training. The sampling probability of a point p,
is set proportional to the inverse class frequency Nic, where N.
denotes the number of points with the same semantic class la-
bel as p,, across all training 3D point clouds. During validation
and inference, we uniformly sample the center points without
considering their semantic class labels.

In the neighborhood thinning stage, a fixed number of points
is sampled from each neighborhood Q. For this purpose, we
consider RS, GS, and FPS. In line with (Wang et al., 2019), we
set the number of points sampled from each neighborhood to
4096. If a neighborhood Q contains less than 4096 points, we
randomly duplicate points from Q. For GS, the grid size is set
to 0.03 m for the S3DIS dataset and to 0.08 m for the PARIS
dataset ensuring to have larger grid sizes than in the prepro-
cessing stage and thus avoid having too many empty voxels. We
randomly sample additional points when GS retains less than
the desired 4096 and randomly discard points when GS retains
too many points. In addition to the aforementioned sampling

! https://cloudcompare.org/

algorithms, we evaluate a CWS algorithm to evaluate the feas-
ibility of using surface features derived from 3D point clouds as
a criterion for neighborhood thinning. Our sampling algorithm
works as follows: To sample K points from a 3D point cloud
Q,, we select the | 0.7- K | points with the highest curvature val-
ues from Q, and augment them with [0.3 - K| points randomly
sampled from Q. In this way, we aim to preserve more details
for areas with strong surface variation, which are characterized
by high curvature values. By randomly sampling 30 % of the
points, we aim to cover smooth surfaces with low curvature val-
ues, albeit with a lower point density.

3.3 Experimental Setup

We compare the execution times of the four analyzed thinning
techniques (RS, FPS, GS, and CWS) for the different neigh-
borhood radius sizes specified in Section 3.2. We randomly
sample ten neighborhoods of each radius size from each data-
set and perform the execution time benchmarking ten times per
neighborhood, thinning the neighborhoods to 4096 points for
all sampling methods. To evaluate the sampling and thinning
techniques in terms of downstream semantic segmentation per-
formance, we use the DGCNN (Wang et al., 2019), RandLA-
Net (Hu et al., 2020), and PTv2 (Wu et al., 2022) architec-
tures, as they represent graph-, MLP-, and transformer-based
approaches, respectively. Given the considerably high execu-
tion times of the FPS approach (Fig. 3), we limit the evalu-
ation of FPS to the 1 m and 3 m radii of the S3DIS and PARIS
datasets, respectively, as evaluating larger neighborhoods that
contain a higher amount of points was not feasible. To assess
the segmentation performance, we use the mean intersection-
over-union (mloU) metric. In Appendix B of the supplementary
material we provide details concerning the used architectures,
hyperparameters, the mloU calculation during training, valida-
tion, and testing, and additional implementation details.

4. Results

Although FPS provides visually pleasing results (Fig. 1¢), it has
the slowest execution time compared to the other approaches
(Fig. 3). Meanwhile, RS provides the fastest sampling speed,
thus making it desirable as a neighborhood thinning strategy.
However, from a visual perspective, objects and shapes are of-
ten more difficult to recognize in the thinned neighborhoods
(Fig. 1b). CWS and GS have higher execution times than RS
but are still considerably faster than FPS. As shapes and objects
are visually more recognizable in the FPS, GS, and curvature-
weighted results than with RS, this makes them worth consid-
ering as neighborhood thinning strategies. Thus, we compare
the semantic segmentation performance when using these ap-
proaches to provide a basis for selecting a thinning strategy.

Fig. 4 shows the results on the test set of the PARIS dataset.
Overall, GS and RS produce similar IoU scores for most se-
mantic classes and radius sizes, of approximately 0.6. The
curvature-weighted approach is outperformed for most classes
by RS and GS. For the 3 m radius, FPS displays a lower per-
formance than RS and GS. Similar mIoU values are obtained
for all radii, with the best values being achieved for 6 m by a
small margin.

Fig. 5 shows the results for the test set of the S3DIS dataset.
Overall, RS and GS display similar results, with RS showing
a slight advantage on bigger radius sizes. In this case, a de-
crease in the segmentation performance can be observed for
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Figure 4. IoU scores for the test set of the PARIS dataset.

most objects as the radius size increases. Furthermore, with
the only exception of the sofa class on the radius size of 1m,
the curvature-weighted approach is outperformed by both RS
and GS. For the 1 m radius (Fig. 5a), FPS displays an overall
performance similar to the curvature-weighted approach.

Table 1 shows the condensed per-architecture results for both
datasets. The PTv2 architecture shows the best overall segment-
ation results. For PTv2 and RandLA-Net, RS yields slightly
better mloU scores than GS for most radius sizes on the PARIS
dataset. For DGCNN, the GS strategy shows a slight advant-
age for the PARIS dataset for all radii. In contrast, for the
S3DIS dataset, the RS approach produces slightly better mloU
scores than GS in most cases. For the radius size of 1 m and
the PTv2 architecture, FPS shows performance on par with
GS. Additionally, RandLA-Net shows the lowest results for the
curvature-weighted approach. Appendix C of the supplement-
ary material provides visualizations of the training and valida-
tion results, the per-architecture test results, and the full exper-
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Figure 5. IoU scores for the test set of the S3DIS dataset.

imental results.

) PARIS S3DIS
Architecture ~ Strategy 3m 6m 9m 1m 3m 6m
RS 0.55 0.60 0.61 059 0.55 0.50
FPS 057 - - 053 - .
DGENN GS 0.58 0.63 0.62 058 053 0.38
CWS 0.56 0.45 0.45 0.55 0.42 0.33
RS 0.53 058 055 0.42 053 045
FPS 0.56 - - 041 - .
RandLA-Net g 0.56 0.53 0.54 048 0.49 0.40
CWS 0.46 0.40 0.26 0.42 0.41 0.31
RS 0.65 0.65 0.62 0.67 0.67 0.55
. FPS 053 - - 070 - .
GS 0.61 0.64 0.65 070 0.57 0.52

CWS 0.53 0.53 0.50 0.66 0.33 0.20

Table 1. Per-architecture semantic segmentation mloU scores
for the test set of the PARIS and S3DIS datasets.

5. Discussion

Execution Times and Semantic Segmentation Performance
Our results show no clear difference in terms of the downstream
semantic segmentation performance between the RS and GS
approaches. However, RS shows faster execution times (Fig. 3)
and is therefore preferable. FPS presented no substantial be-
nefit for the downstream segmentation task, only displaying a
performance on par with RS for PTv2 on the S3DIS dataset
and RandLA-Net on the PARIS dataset while requiring signi-
ficantly higher execution times (Fig. 3 and Table 1). Therefore,
it was unfeasible for sampling larger neighborhoods in the con-
text of the present work. These results corroborate the findings
by Hu (2024) on the efficiency of RS. The curvature-weighted
approach did not provide an increase in the semantic segmenta-
tion performance. Nevertheless, given its lower execution time
when compared to GS and FPS (Fig. 3) and the overall low seg-
mentation scores (rarely surpassing 0.6), the investigation of
feature-based approaches able to extract more informative fea-
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tures stands as a potential avenue for further research. How-
ever, the time required to compute per-point features should
also be taken into account when designing DL-based segment-
ation pipelines. In our work, the curvature-weighted approach
relies on pre-computed curvature values generated during data
preprocessing (see Section 3.1). As these values only need to
be calculated once, this execution time was not considered for
the benchmarking shown in Fig. 3.

Semantic Segmentation Performance Across Neighborhood
Thinning Approaches Across most classes in both datasets,
FPS and the curvature-weighted approach are consistently out-
performed by both GS and RS (Section 4 and Appendix C).
These results are counterintuitive in that it would be reasonable
to assume that, for FPS, having a better coverage of the en-
tire point set would benefit the DL model for the correct iden-
tification of objects. For CWS, feature points, i.e., points that
delineate surface elements such as creases and borders, would
be expected to be more informative than points from flat, uni-
form surfaces. This behavior could be due to several factors:
First, in our pipeline, the random seed is increased by 1 after
each training epoch. This means that RS outputs a different
subset of points from those neighborhoods each epoch, creat-
ing a data augmentation effect that potentially helps the models
learn to generalize over a wider array of inputs. Since our im-
plementation of GS randomly adds and discards points from
the output to achieve the required input size (Section 3.2 and
Appendix B.5.1), it is likely that a similar data augmentation
effect is present. In contrast, this effect is not present in FPS,
whereas it is considerably diminished in the curvature-weighted
approach, since the curvature values are pre-computed for the
whole large-scale point cloud. Second, the use of FPS as a
neighborhood thinning strategy is based on the underlying as-
sumption that DL semantic segmentation models benefit from
the uniform coverage of the point set it provides; i.e., that all
regions within the neighborhood are equally important to the
models. In contrast, RS has the inherent bias of sampling
more points from high-density areas, which potentially contain
more meaningful geometric relationships than those in sparse
areas. These results suggest that not all regions and points in a
3D point cloud are of equal relevance for the evaluated models.
Third, following this hypothesis, the curvature-weighted ap-
proach assumes that points with high curvature values provide
more valuable information to the DL models than points loc-
ated in relatively flat surfaces. However, our results suggest
that this is not the case, pointing to a mismatch between the
expected relevance of high curvature points and the internally
learned features of the deep learning models. Further research
on ablation studies on hyperparameters such as k., k. for nor-
mal and curvature computation, as well as the split percentages
in CWS, and the exploration of different feature combinations
(e.g., normals and geometric complexity), could shed light on
the apparent failure of geometric priors in the context of the
present work. It is possible that non-geometric features such
as color or intensity contrast could provide more information.
However, due to the black-box nature of DL models, it is dif-
ficult to ascertain which features are internally learned by the
models and, thus, which points would be the most relevant to
prioritize during the neighborhood thinning step. The devel-
opment of explainable AI (XAI) techniques for semantic seg-
mentation DL models could improve the current understanding
of the informative value of different input points.

Per-Architecture Results When considering the per-
architecture results, no clear difference between the perform-

ance of RS, FPS, and GS can be identified, as shown in Table 1
and Appendix C. These results suggest that neighborhood
thinning approaches are agnostic to the DL architecture of
the downstream segmentation task. A larger study covering a
wider range of architectures would further help ascertain the
generalizability of these results.

Neighborhood Extent Regarding the spatial extent of the
neighborhoods, we find that, for outdoor environments, larger
neighborhoods tend to produce better results, while the oppos-
ite tendency can be observed for indoor environments (Table 1,
Figs. 4 and 5, and Appendix C). On the S3DIS dataset, we ob-
serve a decrease in performance as the neighborhood radius in-
creases (Section 4, Table 1, and Appendix C). This behavior is
likely due to the size of the objects to be analyzed: Since in-
door objects are typically no larger than a few meters in size,
the loss of detail information introduced by larger sampling
radii presumably does not outweigh the benefit of including
more context information. In contrast, larger radius sizes pro-
duce slightly better results for the PARIS dataset. Given that
outdoor structures are typically larger, context information cap-
tured by using larger radii seems to be more relevant than the
fine-grained details for outdoor scenarios.

Statistical Significance We use a linear mixed-effects model
to study the individual effect of the sampling approaches, archi-
tectures, and sampling radii on the segmentation performance.
We set these three variables as fixed effects and included the
semantic class as a random effect to account for the variability
in IoU scores across classes. For both datasets, the null hypo-
thesis is that a given parameter (i.e., an architecture, sampling
strategy, or sampling radius) has no effect on the mloU. Table 2
and Table 3 in Appendix C.1 show the full model results for
the PARIS and S3DIS datasets, respectively. For both datasets,
taking CWS as a baseline, we observe a slight increase in the
mloU for FPS, and a larger one for GS and RS, in line with
our observations. Furthermore, we observe p-values lower than
0.01, allowing us to reject the null hypothesis for the sampling
strategies. Regarding the architecture, taking DGCNN as a
baseline, we observe a decrease in the mloU for RandLLA-Net
and an increase for PTv2 - in line with our observations. How-
ever, for the PARIS dataset, we observe a p-value > 0.01 for
PTv2, indicating that we cannot reject the null hypothesis for
this architecture and suggesting that further experiments are
needed to fully ascertain the benefit of PTv2 for outdoor en-
vironments. Regarding the sampling radius, the results for the
S3DIS dataset show a decrease in the mloU when the radius
size increases, supporting our conclusions and showing a p-
value < 0.01. For the PARIS dataset, the change in mloU is
very small (showing a coefficient of -0.004) when increasing
the radius size; however, we observe a p-value > 0.01, indic-
ating the need for further experimentation to fully ascertain the
effect of the radius size on outdoor environments.

Known Limitations Additional factors could impact the seg-
mentation results. For instance, neighborhoods with a higher
number of points, although more memory expensive, could
provide better segmentation results across different sampling
approaches. Furthermore, the use of different geometries for
neighborhood sampling might affect the results as well, as dif-
ferent geometries (e.g., cubes and cylinders) might be better
suited to capture different objects in their entirety (e.g., trees
and buildings), potentially increasing the segmentation per-
formance as well. Another potential limitation is that the PARIS
dataset covers a relatively small area when compared with other
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outdoor datasets (e.g., SemanticKITTI (Behley et al., 2019)).
DL models might benefit from training on such datasets, as
they contain more instances and variations of the object classes
to be segmented. An additional factor that may influence the
segmentation results is the internal receptive fields of the dif-
ferent DL architectures. Depending on the internal sampling
resolution and approach of a DL model, the preservation of
a higher resolution or specific points of interest might have a
diminished effect on the segmentation performance. The im-
pact and interaction of these factors and additional ones, such
as class imbalance, on the segmentation task requires further in-
vestigation. Finally, benchmarking a wider array of point-based
architectures and including discretization- and projection-based
techniques is a potential avenue for future work.

6. Conclusions

Through this study, we show that the selection of sampling
technique for neighborhood thinning in DL-based semantic seg-
mentation pipelines can have a noticeable impact in the down-
stream segmentation task, in terms of both the segmentation
performance and the overall execution time. Our results indic-
ate that RS provides more benefits than other, more special-
ized heuristics in terms of both segmentation performance and
scalability to larger 3D point clouds - both vital factors in geo-
spatial applications. Furthermore, the selection of an appro-
priate spatial extent for the sampling of local neighborhoods is
shown to be of particular relevance for indoor environments,
where too big a sampling area might cause the loss of relevant
detail information. These results provide practicable guidelines
for the development of faster and better-performing DL-based
semantic segmentation pipelines. Furthermore, our results un-
derline the importance of the development of XAl techniques
that can improve our understanding of the point features that
are informative for the DL models, allowing for the develop-
ment of better heuristic approaches.
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