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Abstract

Urban digital twins are becoming essential for transportation applications, demanding precise geometric, semantic, and topological
data. However, existing transportation infrastructure information is typically available in 2D formats, while many applications
require accurate 3D representations. Existing 3D representations, such as point cloud data, often lack integrated semantic informa-
tion. This paper addresses this gap by presenting a novel method for the automatic transformation of semantic 2D lane models into
3D CityGML representations. The transformation process comprises three main phases: (1) Point cloud data processing: Noise
and irrelevant structures are removed, retaining essential 3D lane features, and elevation information is derived by converting the
point cloud data into digital elevation models (DEMs); (2) Segmentation and smoothing: Extracted DEMs undergo segmentation,
noise removal, and refinement to ensure geometric continuity; and (3) Transformation and postprocessing: The semantic 2D lane
models are integrated with the processed DEMs through elevation interpolation, followed by refinement and transformation into 3D
CityGML representations. Compared to existing methods, the proposed method delivers more realistic and comprehensive 3D lane
models while maintaining efficiency. A case study in Munich, Germany, demonstrates the algorithm’s effectiveness in addressing
challenges in complex scenarios including tunnels and bridges. The paper concludes by discussing encountered challenges and

proposing future research directions to advance the integration of 2D and 3D transportation infrastructure information.

1. Introduction

Semantic 3D streetspace models have become essential com-
ponents in the transportation sector. They ensure consistency
and completeness within semantic 3D city models. Geomet-
rically, these models enhance the continuity and coherence of
urban representations, facilitating more efficient infrastructure
planning, management, and maintenance processes (Williams
et al., 2013). From a semantic perspective, they extend beyond
traditional visualization applications, providing actionable in-
sights that support advanced technologies such as autonomous
driving and traffic simulation (Ma et al., 2018). By integrating
detailed geometric, topological, semantic, and temporal data,
semantic 3D streetspace models are reshaping how transporta-
tion infrastructure is analyzed and managed (Beil and Kolbe,
2024). Moreover, as urban areas expand and grow increasingly
complex, there is a notable shift from focusing solely on hori-
zontal space utilization to the incorporation of vertical spaces.
This evolution highlights the need for detailed modeling of
streetspaces in complex scenarios, such as tunnels and bridges,
which are now critical topics in semantic 3D streetspace mod-
eling. These developments reflect the growing demand for
comprehensive urban representations capable of capturing the
intricacies of modern urban infrastructure. Consequently, se-
mantic 3D streetspace models are advancing to meet these de-
mands, playing a pivotal role in addressing the complexities
of urban environments and supporting the sustainable develop-
ment of cities.

Geometrically, 3D streetspace is frequently reconstructed
within virtual environments to ensure detailed and reliable
urban representations. There are two primary methods for rep-
resenting 3D information: direct and indirect (Chen et al.,
2022). The direct method utilizes technologies such as laser
scanners to capture intricate 3D geometric data, providing an

accurate representation of real-world environments. Among
these, LiDAR stands out for its ability to measure distances
using laser pulses, generating highly precise spatial data (Gil
et al., 2013). Moreover, advanced mapping systems like the
Trimble MX9 (Trimble, 2024) and NavVis VLX (NavVis,
2024) further enhance precision by delivering detailed point
cloud data. These advancements in technology now play a
crucial role in various applications, such as enhancing pedes-
trian accessibility mapping, which contributes to safer and more
accessible urban mobility solutions (Gonzélez-Collazo et al.,
2024). In contrast, the indirect method represents 3D inform-
ation through models such as digital elevation models (DEMs)
(Hirt, 2015). DEMs are often used as a generic term encom-
passing both digital terrain models (DTMs) and digital sur-
face models (DSMs). DTMs, typically derived from LiDAR,
satellite, or aerial data, represent the bare earth terrain by ex-
cluding above-ground features like buildings (Li et al., 2005),
while DSMs include all natural and man-made objects above
the ground. Both DTMs and DSMs are often stored as 2.5D
raster data, with elevation information encoded in each grid
cell, offering an efficient yet distinct method of representing
3D urban environments.

While the geometric representation of 3D streetspace is a cru-
cial aspect, it is only one part of a broader entity. Semantic
information is essential for enriching contextual data, enabling
a comprehensive understanding of the environment. With ad-
vancements in deep learning, semantic segmentation of point
cloud data has been applied to streetspace modeling. How-
ever, the results are limited to predefined categories. Addi-
tional details, such as material composition or speed limits
within the streetspace, cannot be identified using these meth-
ods. Streetspace semantic information is often available from
government agencies or through paid services, such as Google
Maps (Google Earth Engine Team, 2024). Additionally, many
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governments offer online mapping platforms with detailed se-
mantic information about 3D streetspace. In Germany, Bay-
ernAtlas (BayernAtlas Team, 2020) offers comprehensive in-
formation about Bavaria, including street networks and classi-
fications. Meanwhile, the City of Munich is working to stand-
ardize and collect uniform data to create more detailed repres-
entations of semantic lane models in streetspace.

Despite the increasing availability of detailed semantic inform-
ation, most government-provided data remains confined to 2D
geometries, such as 2D polygons and 2D networks. However,
many applications of semantic streetspace models require 3D
representations for accurate analysis and simulation. Thus, it
is imperative to transform rich semantic 2D streetspace mod-
els into semantic 3D streetspace models. A comprehensive se-
mantic framework further improves the representation of di-
verse transportation types. To achieve this, transformed mod-
els must comply with established standards, such as the OGC
international standard CityGML, ensuring consistency and in-
teroperability in semantic 3D city modeling. The latest version,
CityGML 3.0, introduces an enhanced transportation module
to reduce redundant geometric representations and ensure the
continuity and completeness of semantic 3D streetspace mod-
els (Beil, 2025).

This paper proposes a novel method to transform semantic 2D
lane models developed by City of Munich into realistic se-
mantic 3D lane models. The method effectively manages com-
plex scales while preserving all semantic information, ensur-
ing compliance with the standardized CityGML data model.
The method provides a robust foundation for essential down-
stream applications within urban digital twin systems, enhan-
cing functionality and integration across diverse urban planning
and transportation use cases (Beil and Kolbe, 2024).

The remainder of this paper is organized as follows: Section 2
presents a review of the research background. Section 3 details
the proposed method. Section 4 describes the experiments con-
ducted and their implementation. Finally, Section 5 presents the
study’s conclusions and outlines potential directions for future
research.

2. Related work

Current research in semantic 3D streetspace modeling can be
broadly categorized into two approaches. The first approach
relies on existing 3D geometric representations to derive cor-
responding semantic information, which this paper defines as
the Bottom-Up approach. Conversely, the second approach is
based on GIS data and employs rule-based modeling algorithms
to generate semantic 3D streetspace models, which this paper
defines as the Top-Down approach.

2.1 Bottom-Up approach

Numerous methods have been developed to generate semantic
3D models by segmenting point cloud data into distinct com-
ponents to derive semantic information (Borisov et al., 2022).
In the transportation sector, Manandhar and Shibasaki de-
veloped an algorithm for extracting road surfaces based on fea-
tures such as point density, elevation, and slope from point
cloud data (Manandhar and Shibasaki, 2002). This approach
was further extended to achieve high-accuracy extraction of
road markings by leveraging their retro-reflective properties
(Kumar et al., 2014). Additionally, methods for extracting curbs

have been proposed to support transportation applications (Zai
et al., 2017). The integration of imagery data has also proven
highly effective. Gao et al. combined LiDAR point clouds with
high-resolution remote sensing imagery to extract 3D roads in
Hong Kong (Gao et al., 2021). Moreover, machine learning
and deep learning techniques are increasingly being applied. In
built environments, Robert et al. introduced a superpoint-based
transformer architecture that achieved high accuracy in detect-
ing ground, vehicles, vegetation, and other features (Robert et
al., 2023). Additionally, Pan et al. segmented road pavements
into finer components, such as road shoulders, and represented
them hierarchically using graph structures (Pan et al., 2024).
However, the Bottom-Up approach faces several challenges in
semantic 3D streetspace modeling. While point cloud data
can effectively capture real-world conditions, existing methods
still struggle with accurately segmenting fine-grained and small
features. Additionally, handling complex scenarios, such as
bridges and tunnels, remains difficult, as these structures may
contain overlapping 3D points or occluded areas that hinder
precise segmentation. Furthermore, semantic segmentation is
often restricted to predefined categories, making it challenging
to derive the detailed and application-specific information re-
quired for downstream applications in urban digital twins.

2.2 Top-Down approach

GIS data is highly valuable for semantic 3D streetspace mod-
eling, with open-source DEM datasets such as the Shuttle
Radar Topography Mission (SRTM) providing global cover-
age (Tachikawa et al., 2011). Additionally, many regions, such
as Bavaria in Germany, have made official GIS data publicly
available (BayernAtlas Team, 2020). Building on such data-
sets, Wang et al. developed a method to extract road informa-
tion using remote sensing images integrated with terrain mod-
els to render 3D road networks (Wang et al., 2018). How-
ever, this method struggled with modeling accuracy. To address
this, Zhang et al. proposed a scalable, template-based approach
for 3D road modeling that enhances precision, making it suit-
able for larger areas (Zhang et al., 2019). For more detailed
data and the ability to handle complex terrains, Wang et al. in-
troduced a method for automatically generating large-scale 3D
road networks by integrating GIS data with road semantic in-
formation (Wang et al., 2021). However, their approach did not
adequately model streetspaces in tunnels or bridges. To over-
come this, Chen et al. introduced a rule-based method for gen-
erating 3D road networks that accurately represent these com-
plex areas using open-source data (Chen et al., 2022). The
Top-Down approach benefits from greater data accessibility by
leveraging GIS data, making it suitable for large-scale model-
ing. However, such models often do not accurately capture real-
world road characteristics, such as width and surface texture.
Additionally, they do not preserve or extract valuable semantic
information that is sufficiently detailed or applicable for down-
stream applications.

2.3 Summary and identified research gaps

Numerous studies have explored semantic 3D streetspace mod-
eling, yet several challenges remain. First, many studies
struggle to define and derive a sufficient number of useful se-
mantic information for urban planning and applications such as
traffic simulation, including attributes like speed limits. Ad-
ditionally, segmentation accuracy remains a significant issue
in real-world modeling. Moreover, existing methods have
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Figure 1. Workflow for 3D lane model transformation.

not managed semantic 3D streetspace models using a univer-
sally accepted standard for different use cases. While Open-
DRIVE (Schwab and Kolbe, 2022) and IfcRoad (buildingS-
MART, 2024) provide standards for streetspace models man-
agement, they are not fully compatible with GIS systems, lim-
iting their integration and usability for city mapping agencies
and other downstream applications. The City of Munich has
developed structured semantic 2D lane models by integrating
various types of semantic information into 2D polygons, such
as speed limits and lane types. At the same time, these 2D
polygons precisely represent the geometric shape of the lane
model. This approach effectively addresses challenges related
to semantic classification and segmentation accuracy. How-
ever, since the model is limited to 2D, mapping it to real-world
3D conditions remains a significant challenge. We introduce
a novel method to overcome these limitations by transforming
developed semantic 2D lane models into 3D representations.
The method can effectively handle noise and outliers while pre-
serving detailed semantic information. This method ensures
a realistic representation by accurately capturing the shape,
boundaries, and spatial extent of semantic 3D lane model. Fur-
thermore, by integrating the CityGML 3.0 data model, it en-
hances efficiency, accuracy, and completeness, providing a ro-
bust and scalable solution for urban digital twin applications.

3. Methodology

In Munich, semantic 2D lane models have been developed and
visualized to provide a comprehensive and precise representa-
tion of streetspace. These models are based on extensive survey
data and existing geospatial information. The models consist
of multiple 2D polygons, each accurately depicting its corres-
ponding position of the lane. Additionally, each polygon con-
tains rich semantic information, including lane type, material,
elevation level, and other relevant attributes. The semantic 2D
lane models already provide information at multiple elevation
levels. For instance, elevation level 1 represents elevated struc-
tures such as bridges, level 0 corresponds to ground level lanes
where height information aligns with the terrain, and level -1
denotes underground structures. Figure 2 shows an example of
a section of the semantic 2D lane models.

The objective of this research is to transform semantic 2D lane
models into a 3D CityGML representation using existing 3D
data sources (e.g., point cloud data and digital elevation mod-
els) and semantic information stored in 2D lane models (e.g.,

Semantic information of the highlighted polygon

LaneID 104

Lane Type Driving Lane

Lane Material Asphalt

Speed Limit 50 km/h

Elevation Level |1

Figure 2. A section of the semantic 2D lane model with an
illustration of the semantic information stored within the
highlighted polygon.

elevation levels and lane types). As illustrated in Figure 1, the
method consists of the following key steps:

1. Point Cloud Data Processing: The point cloud data is
classified using a deep learning point cloud classification
model. The relevant points are extracted from the point
cloud, and the data are then converted into a digital eleva-
tion model (DEM).

2. Segmentation and Smoothing: The boundary is determ-
ined using the semantic 2D lane models, enabling the ex-
traction of the relevant area from the DEM. Once extrac-
ted, a smoothing algorithm is applied to the DEM.

3. Transformation and Postprocessing: The semantic 2D
lane models are fused with the processed DEM to create
a semantic 3D lane model. The final output is then trans-
formed into the CityGML data model.

3.1 Point cloud data processing

In the first step, we extract the 3D ground from the point
cloud data. During this process, the point cloud data is clas-
sified into different classes using a pre-trained model that as-
signs each point cluster to predefined classes. To streamline the
pipeline within a unified environment, we used a pre-trained
model based on the PointCNN architecture available in the GIS
software. These classes include ground, buildings, and others.
In our study, the ground class represents the lane. All other
classes are considered noise and are removed. The remaining
points representing the ground are then converted into a 2.5D
raster format with embedded elevation information. Since the
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3D points include elevation values, the 3D to 2.5D conversion
extracts and embeds this information into the 2.5D representa-
tion, with each grid cell storing the elevation data for its corres-
ponding location. The process is illustrated in Figure 3.

However, for semantic 3D lane modeling, basic category-level
classification is insufficient to meet the requirements of high-
quality 3D modeling. Despite advancements in deep learning
model accuracy, challenges persist, including noise, misclassi-
fications, and empty spots in the point cloud data. Additionally,
the 2D lane model boundaries often do not align perfectly with
the point cloud data, resulting in boundary noise. Thus, after re-
moving irrelevant points, the resulting raster may contain voids
and errors due to the mislabeled points. Using such DEMs dir-
ectly for 3D modeling poses significant issues, as the process
is highly sensitive to elevation model quality. Given that many
downstream applications of semantic 3D lane models demand
fine-grained details, we further process the raster to enhance its
accuracy, ensuring it meets the precision standards necessary
for semantic 3D modeling.

3.2 Segmentation and smoothing

This step aims to address the errors present in the DEM gen-
erated from the point cloud data. The first phase is DEM seg-
mentation. Since point cloud data encompass extensive urban
areas, as shown in Figure 3c, the resulting 2.5D elevation model
may include not only the lane but also surrounding areas that
are irrelevant for the transformation. To resolve this, we lever-
age the semantic 2D lane models. We delineate the boundary
of the target area automatically using polygon data from the 2D
lane model provided by the City of Munich for conversion and
extract the relevant portion of the DEM within the semantic 2D
lane model boundary. This ensures that only the intended street-
space is included in the transformation process.

Next, the extracted DEM undergoes a smoothing process. This
step addresses three key challenges: 1. It fills the voids in
the DEM caused by the removal of structures from the point
cloud data. 2. It removes errors and noise, particularly along
the boundaries where the 2D lane model may not fully align
with the point cloud data, resulting in boundary inaccuracies. 3.
It ensures compliance with road design standards, such as the
maximum allowable gradient for roads. For example, in Ger-
many, the maximum gradient for main roads in built-up areas is
typically 6% (Baier, 2024)(Hartkopf, 2024).

The algorithm begins by checking the slope of the raster. For
each grid cell in the raster, the slope is calculated based on the
elevation values of its neighboring grid cells, generating a slope
raster that represents the slope for each location. If the slope
raster cell exceeds the predefined threshold (e.g., 6%), the el-
evation raster cell is treated as erroneous in terms of elevation
accuracy and is marked as void. After removing these erro-
neous cells, the resulting raster adheres to the standard but con-
tains many voids due to slope removal and point cloud classi-
fication. To address this issue, we use an interpolation func-
tion, Spline (Cao et al., 2009), to estimate missing values based
on the spatial distribution of known values. Next, map algebra
(Jeremy Mennis and Tomlin, 2005) further smooths the surface.
By computing the mean values of eight neighboring cells with
equal weighting, map algebra helps generate a more accurate
surface. After iterating this process twice, the raster shows sig-
nificant improvement compared to the initial version, as shown
in Figure 4a and 4b. However, even with these improvements,

the result may still fall short of the required standards. The in-
terpolation and map algebra processes cannot perfectly predict
or fill boundary grid cells, as they often lack sufficient neigh-
bors for reference. Therefore, we perform another slope check
to ensure that all grid cells in the raster comply with road con-
struction standards, as shown in Figure 4c.

To address the remaining voids in the DEM, we employ
Thiessen polygons to further fill missing cell values based on
their nearest points. Each polygon is assigned the attribute of
its corresponding point, ensuring that all areas within the poly-
gon share the same attribute. As illustrated in Figure 5, the
process begins by converting the processed raster into points,
where each point holds the elevation value of its corresponding
grid cell. Next, Thiessen polygons are generated, constrained
by the 2D lane models boundary to ensure polygons are created
only within the defined region. These polygons are then con-
verted back into points, which are positioned at the vertices of
the polygons and assigned the elevation information of their re-
spective polygons. Using these points, a new elevation surface
is generated as a Triangulated Irregular Network (TIN).

Algorithm 1 Semantic 2D Lane Model to Semantic 3D
Multi-Polygon Transformation

: Input: P’mobile, Paerial, DTM, LMZD

. Parameters: n < 2, Opaz < 6%

: Output: LMsp

: for each lane [ € LMsp do

if l.level = 1then > Above-ground: use aerial data
DEM; <+ process(Paerial, DT M)

else if [.level = 0 then > Ground-level: use DTM
DEM; < DTM

else > Level -1: tunnels, use mobile data

10: DEM; + process(Pmobile)

11: end if

12: RG; < segment(DEM;)

13: fori =1tondo

R AR A ol

14: RG/ + removeCells(RG, Omaz)
15: RG) « interpolate(RG))
16: RG) < smooth(RG))

17: end for

18: RG, + removeCells(RG, 0max)

19: ThieP < convertToT hiessenPolygons(RGI,
LMsp .boundary)

20: ThiePoints < extractVertices(ThieP)

21: TIN; < createT'IN(ThiePoints)

22: TIN; < postProcess(TIN;, LM2p.boundary)

23 LMY « adapt3D(TIN, 1)

24: end for

25: LM3p alignTopologically({LMég )

26: return LM3p

3.3 Transformation and Postprocessing

Postprocessing of the generated TIN is necessary to better align
elevation information with the semantic 2D lane models and to
mitigate distortions on the lane surface. Since the TIN is gen-
erated from a large number of points, the elevation values on
the lane surface may be unevenly distributed, leading to visible
distortions that affect the model’s appearance and accuracy. To
address this, it is more effective to use only the elevation data
from the polygon boundaries, ensuring a smoother and more
visually consistent lane surface. In this process, the semantic
2D lane models are converted into points along the polygons’
boundaries, with each point assigned an elevation value based
on its corresponding position in the generated TIN. A new TIN
is then generated with those points, containing only the eleva-
tion surface information from the polygon boundaries, resulting
in a visually refined lane model.
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(a) Original point cloud data

(b) Classified and cleaned point cloud data

(¢) Converted DEM

Figure 3. Illustration of Point Cloud Data Processing: Image (a) presents the original point cloud data, color-coded by elevation,
including structures such as bridges and buildings. Image (b) displays the classified and cleaned point cloud color-coded by classes,
where non-ground structures have been removed. Image (c) illustrates the converted Digital Elevation Model, representing the ground
elevation, where darker grid cells indicate lower elevations and lighter grid cells represent higher elevations.

(a) Lane DEM (b) Processed DEM (c) Slope checked
Figure 4. Visualization of the DEM smoothing process, where
darker colors represent lower height values and vice versa.
Image (a) depicts the segmented lane DEM with voids and
noise. After applying the smoothing procedure, image (b) shows
arefined DEM with voids and noise removed. However, after
the slope check, some areas still did not meet standards and were

removed, as seen in image (c).

Finally, 3D multi-polygons are created by interpolating eleva-
tion information from the newly generated TIN surface to se-
mantic 2D polygon features. To handle complex scenarios such
as bridges and tunnels, the semantic information particularly the
elevation levels provided in the semantic 2D lane models helps
address this challenge. Different elevation levels correspond to
different 3D representations during the transformation process.
For example, for level 1 polygons, elevation information can be
derived from aerial point cloud data; for level O polygons, di-
gital terrain models can be used directly; and for level -1 poly-
gons, elevation values are matched with mobile mapping point
cloud data from tunnels. Once the corresponding semantic 2D
lane models and their respective 3D representations are estab-
lished, each level’s elevation information can be automatically
interpolated into the corresponding semantic 2D lane models to
facilitate the transformation.

After the transformation, the 3D multi-polygons for differ-
ent levels are connected to ensure a continuous representation.
Theoretically, 3D intersection lines between different eleva-
tion levels should maintain consistent elevation values to ensure
geometric continuity across the entire model. To enforce this,
3D intersection lines are identified based on the 2D lane model.
They are decomposed into points, each associated with its re-
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(a) Generation of Thiessen
Polygons

(b) Generation of Vertices
Points

Figure 5. Visualization of Thiessen Polygons. Image (a)
illustrates the generation of Thiessen polygons from points
derived from the DEM. The green points represent the
DEM-derived points, which contain elevation information. The
Thiessen polygons are constructed based on the spatial
distribution of these points, with each polygon sharing the
elevation information of its corresponding point. In image (b),
the red points represent the vertices of each polygon, which
inherit the elevation information from their respective polygons.

spective elevation. To enforce consistency, the elevation values
of these points are adjusted to a common reference elevation
that represents the shared boundary between adjacent levels.

Each step of the method can be integrated into a single func-
tion, enabling the entire process to be executed as an automated
transformation. The required inputs include the different el-
evation levels of 3D representations and the corresponding se-
mantic 2D lane models. All these steps can be combined into
a unified workflow within a Python script, allowing for seam-
less integration of previously implemented methods. Alternat-
ively, the process can be visualized and executed using model-
building tools within a GIS software environment. The com-
plete workflow is summarized in Algorithm 1.

The result of the transformation process is in the form of 3D
multi-polygons. These 3D multi-polygons support conversion
to the CityGML representation, which aids in managing both
geometric and semantic information. The 3D representation
contains various semantic attributes inherited from the semantic
2D lane models, such as lane ID, usage, and other relevant in-
formation. CityGML, specifically the CityGML transportation
module, has already defined the usage and classification for dif-
ferent types of lane models (Beil and Kolbe, 2020). By as-
sociating the semantic information embedded within the lane
model polygons, the 3D multi-polygons can be further refined
into various feature classes and transformed into the CityGML
data model.
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a) Input semantic 2D lane models

b) Transformed with raw DEM

¢) Transformed with our method

Figure 6. Transformation results for the Donnersberger Bridge and Trappentreu Tunnel case studies. Column a) shows the semantic
2D lane models, column b) shows the results using raw DEM, and column c) shows the results of our method. Distortions in the raw
DEM are highlighted in red for comparison.

4. Experiment
4.1 Implementation details

The test was conducted on a computer equipped with an RTX
3070 GPU (6GB VRAM), an Intel i7 CPU with 16 cores, a base
frequency of 3.2GHz, and 16GB RAM. Our algorithm was de-
veloped in Python, utilizing the ArcPy library, a comprehensive
Python package for geographic data analysis within the ArcGIS
environment. Besides, by leveraging the ModelBuilder tool in
ArcGIS Pro, we visualized the process and interconnected its
components to create a complete pipeline. For the classifica-
tion of point cloud data, we used Esri’s pretrained deep learn-
ing models based on the PointCNN architecture, implemented
within the ArcGIS API for Python (Esri, 2024). The final trans-
formation to CityGML LoD?2 transportation module features
was carried out using FME software. For web-based visualiz-
ation, we employed the 3DCityDB web client. The model was
transformed into Cesium 3DTiles using FME and then impor-
ted into the 3DCityDB web client, enabling efficient visualiza-
tion and interaction within a 3D web environment. We focused
on two commercial tools, ArcGIS Pro and FME, due to their
tightly integrated workflows. ArcGIS Pro combines key func-
tions like point cloud classification and DEM processing in one
environment, streamlining development. FME’s robust support
for CityGML LoD2 and 3DTiles generation greatly accelerated
exports and reduced development time.

The case study was conducted for the Donnersberger Bridge
and Trappentreu Tunnel area in Munich, Germany. This is a

highly complex traffic hub, featuring bridges, tunnels, viaducts,
and multiple intersections, connecting the northern and south-
ern parts of Munich. The input data includes a semantic 2D lane
models that accurately represents lane shapes while providing
essential semantic information. We also utilized aerial point
cloud data in LAS format with a density of 6 points per square
meter, covering the area from Donnersberger Bridge to Trap-
pentreu Tunnel. It includes highly detailed mobile mapping
point cloud data with a density of 2000 points per square meter
specifically collected for the Trappentreu Tunnel. Additionally,
a Digital Terrain Model data with a 1-meter resolution was em-
ployed for the case study area. For the transformation of Level
0, which represents the ground level, the DTM was used dir-
ectly as it already provides pure ground elevation.

The results of the automatic transformation are presented in
Figure 6. The left column of figures shows the semantic 2D lane
models. To assess performance, we compare two transforma-
tion approaches: direct transformation from the raw DEM (gen-
erated using point cloud data) and our proposed transformation
method. As shown in the middle column of figures, direct trans-
formation from the raw DEM results in significant distortions
due to misalignment between the semantic 2D lane models and
the 3D point cloud data. In addition, it is not equipped to handle
multi elevation level modeling for complex area. The signific-
ant distortions are highlighted in red. In contrast, our method,
shown in the right column of figures, produces a smoother
surface with no visible distortions and seamless connections
between different levels, demonstrating the effectiveness of our
processing step in improving transformation quality.
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(d) Viaduct Section

(e) Tunnel Entrance

(f) Tunnel Exit

Figure 7. Visualization of the semantic 3D lane model in the 3DCityDB web client. Images (a) to (f) show different parts of the
Donnersberger Bridge and Trappentreu Tunnel.

Table 1. Error rate comparison based on slope accuracy

Metric Raw DEM Transformation | Our Transformation
Total slope points 104,437 91,979

Error slope points 10,098 213

Error rate 9.67% 0.23%

To evaluate the accuracy of the transformation, we defined an
algorithm based on the slope of the 3D multi-polygon lane mod-
els. As mentioned earlier, in Germany, the maximum allow-
able gradient for main roads is 6%. Using this standard, we
assessed how much of the transformed lane surface exceeds
the threshold. First, the 3D multi-polygon models are conver-
ted into a 2.5D raster format, where each grid cell represents
the corresponding elevation. Next, the slope is calculated from
this elevation raster, resulting in a new raster where each cell
contains the slope value derived from its surrounding neighbor-
hood. This slope raster is then converted into a set of points,
with each point inheriting the slope value of its correspond-
ing grid cell. We compared the slope information of the res-
ults obtained from two methods. As shown in Table 1, the
raw DEM transformation resulted in an error rate of 9.67%.
In contrast, the proposed method significantly reduced the er-
ror to just 0.23%, demonstrating a substantial improvement in
accuracy. Finally, the transformation result was converted into
CityGML and subsequently transformed into 3DTiles format
for web visualization using the 3DCityDB Web Client. Inter-
action with the components confirms that semantic information
was successfully preserved, as shown in Figure 7.

5. Conclusions

In conclusion, our research presents a novel algorithm and
workflow for semantic 3D lane model generation by transform-
ing semantic 2D lane models using 3D representations (e.g.,
point cloud data and digital terrain models) to create a semantic
3D lane model. Throughout the process, point cloud data is
classified and converted into a 2.5D elevation model. After
segmentation and smoothing, it is fused with the semantic 2D
lane models to generate a semantic 3D CityGML representa-
tion. The key contributions of our research are as follows:

Firstly, compared to earlier methods, our approach addresses
the challenges of modeling complex scenarios. Secondly, our

approach fully preserves both the geometric details and the se-
mantic information of the lane model. This is particularly valu-
able for downstream applications. Lastly, the automated al-
gorithm holds significant potential for large-scale 3D city mod-
eling by improving both the efficiency and speed of the mod-
eling process. Despite these contributions, our approach has
some limitations. Firstly, when lane models are too narrow,
there are insufficient neighboring cells for smoothing, leading
to distortions in the final result. Besides, it should be noted
that most of the steps in our workflow depend on commercial
software tools, which may limit full reproducibility for users
without access to these products. Furthermore, matching point
cloud data to lane levels still relies on manual visualization and
identification, leading to increased effort in complex multi-level
scenarios. Finally, due to limited data and evaluation methods,
the assessment is not yet sufficiently comprehensive.

In the future, we plan to test the pipeline on a larger-scale
area and develop an algorithm for automatically assigning point
cloud data to lane levels. We also aim to explore and integrate
more open-source tools to build a more scalable and reprodu-
cible workflow. Additionally, with results from broader case
studies, we will conduct a more comprehensive performance
assessment. Our method works well for ‘lane’ and ‘area’ levels
but faces challenges with ‘way’ models. Future work will im-
prove neighbor-weighting to better handle ‘way’ granularity.
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