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Abstract

In recent years, semantic 3D city models have been increasingly used for large scale urban analysis in urban digital twins and

smart cities. As a crucial component, semantic 3D streetspace models have gained attention due to the growing availability of

road and transportation infrastructure data. However, these models exist in various data formats, such as point cloud data and

BIM models, each designed for different use cases, making integration and management challenging when diverse models need

to be utilized together for further applications. To address this, we develop a workflow to transform heterogeneous streetspace

component representations into an integrated semantic 3D model based on the international standard CityGML 3.0, which serves

as a hub for integrating different geometric and semantic features. A case study in Munich, Germany was conducted by integrating

BIM, GIS, and point cloud data. The case study area features complex streetspace components, including roads, bridges, and

tunnels. This study demonstrates the feasibility of harmonizing complex urban environments with multiple types of models for

streetspace components. Challenges encountered in the transformation process are discussed, along with future research directions

to further enhance the integration of semantic 3D streetspace models.

1. Introduction and Related work

Semantic 3D city models have recently gained significant at-

tention from both researchers and the public due to their wide

range of applications in urban digital twins (Biljecki et al.,

2015). However, most existing semantic 3D city models

primarily emphasize buildings. Semantic 3D streetspace mod-

els are essential for maintaining consistency and connectivity

across different components of the urban environment. With the

advancement of technologies such as autonomous driving, there

is a growing shift in focus toward the development of semantic

3D streetspace models (Beil et al., 2020). Streetspace models

represent transportation systems, including not only roads but

also other essential components that interact, share functions,

and occupy space (Beil and Kolbe, 2020). Therefore, modeling

semantic 3D streetspace models should extend beyond roads to

include other complex components relevant to 3D streetspace

representation. In complex scenarios, elements such as bridges

and tunnels must be integrated into semantic 3D streetspace

models, as many use cases require a comprehensive represent-

ation of all interconnected components. Figure 1 illustrates ex-

amples of semantic 3D streetspaces (Beil and Kolbe, 2024).

Nowadays, there are multiple ways to model streetspace com-

ponents, driven by advancements in data acquisition technolo-

gies. For instance, mobile mapping provides detailed geomet-

ric information in the form of point cloud data (Xu and Stilla,

2021). Additionally, government agencies offer 2D and 3D GIS

data, some of which are available through paid services such as

Google Maps (Google Earth Engine Team, 2024). Designers

can also use BIM authoring tools to model existing streetspace

components, providing the flexibility to create models of com-

ponents that do not yet exist in the real world. These differ-

ent methods offer flexibility in modeling semantic 3D street-

space, each excelling in specific domains and providing unique

advantages tailored to particular applications.

Figure 1. The upper image illustrates the components of a

semantic 3D streetspace, including not only the road but also

relevant components that share functional interactions. The

lower image depicts a semantic 3D streetspace in a complex

interchange, incorporating both a bridge and an underpass as

part of the overall semantic 3D streetspace.

However, these variations present challenges in managing a

geometrically, topologically and semantically integrated model,

particularly in semantic 3D streetspace, where all components

play a crucial role in downstream applications such as traffic

simulation and road safety analysis. There are mainly three

key research questions. First, given the existence of multiple

standards for streetspace modeling, it is essential to identify the
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most suitable representation for the integration of these models.

Second, in complex scenarios involving multiple components

such as roads, bridges, and tunnels, redundancies often exist

across different models stored in various data formats. These

redundancies increase the overall file size, consume unneces-

sary computing time, and negatively impact the performance

of downstream applications. Finally, achieving an automatic

and precise transformation of various models remains a critical

challenge in developing an integrated and efficient semantic 3D

streetspace model.

To address these challenges, researchers are actively explor-

ing efficient methods for achieving data integration. Kolbe and

Donaubauer discussed semantic 3D city modeling and Build-

ing Information Modeling, explaining their relationship, mod-

eling methods, and key differences (Kolbe and Donaubauer,

2021). Significant efforts have been made in this field. For

instance, Stouffs et al. proposed a Triple Graph Grammar for

the automatic semantic and geometric conversion of IFC mod-

els to CityGML (Stouffs et al., 2018). However, most research

in this domain still focuses on buildings. In the context of in-

frastructure, buildingSMART has expanded its scope to include

various infrastructure domains. It currently defines IfcFacility

as the parent class for IfcBridge, IfcRailway, and IfcRoad, with

future developments planned, including IfcTunnel and other ex-

tensions (buildingSMART, 2024). In this context, Cepa et al.

examined a use case in the infrastructure domain, specifically

an experiment conducted in Spain on the integration of BIM and

GIS for the operation and maintenance of large scale existing

infrastructure (Cepa et al., 2024). Modern streetspace modeling

encompasses a broader range of models at a larger scale. For in-

stance, GIS data is widely used for 3D road network modeling.

Wang et al. introduced a method for automatically generating

3D road networks by integrating GIS data with road semantic

information (Wang et al., 2021). To address the limitations of

complex 3D road network modeling, Chen et al. proposed a

rule-based approach that accurately represents intricate areas

using open-source data (Chen et al., 2022). Point cloud data

can serve as an augmentation of 3D geometric information in

the data integration process. For instance, Brea et al. proposed

an effective method using indoor mobile laser scanners for geo-

metric quality control in construction, enabling the rapid de-

tection of structural deviations based on LiDAR data (Brea et

al., 2024). Existing BIM and GIS integration methods have

been well developed and extensively researched. Other models,

such as point cloud data, are increasingly being incorporated

into data integration efforts. Although extensive research has

been conducted, most existing approaches primarily focus on

transforming individual models, without addressing complex

scenarios that demand the geometric and semantic integration

of multiple components.

Beil et al. provided a detailed discussion of standards relev-

ant to semantic 3D streetspace modeling, specifically examin-

ing the capabilities of the CityGML 3.0 Transportation mod-

ule (Beil et al., 2020). CityGML 3.0 also includes additional

streetspace related modules, such as Bridge and Tunnel, provid-

ing an ideal standard for integrating various streetspace mod-

els (Kolbe et al., 2024). Thus, the objective of this study is

to treat CityGML 3.0 as a hub for semantic 3D streetspace

modeling. By integrating various models related to streetspace

components, this research ensures the generation of a fully

georeferenced, geometrically and semantically consistent 3D

streetspace model. Bridge BIM models in IFC, GIS data (e.g.,

shapefiles and digital elevation models), and point cloud data

in LAS are processed, semi-automatically transformed, and in-

tegrated into a CityGML 3.0 representation. Simultaneously,

different representations can complement each other during the

transformation process, which helps to remove redundancies

and noise across these representations. The key contributions

of this research include:

1. Insights into CityGML 3.0’s role in harmonizing various

components within streetspace.

2. A workflow for the semi-automatic transformation of

heterogeneous streetspace models into a detailed 3D

CityGML 3.0 representation.

3. Remove redundancies and noise in heterogeneous street-

space models to enhance efficiency in downstream 3D

streetspace applications.

A case study was conducted in a complex transportation area

in Munich, Germany, involving the transformation of diverse

models representing roads, bridges, and tunnels. Recent study

categorizes urban data fusion into three integration levels: Level

1 extends the conceptual data model; Level 2 ingests data into

a shared repository; and Level 3 postpones integration until the

visualization or client layer (Jeddoub et al., 2024). Our work

aligns with Level 2, where heterogeneous sources are harmon-

ized through transformation into a common target schema.

2. Case Study Approach

2.1 Study Area

The case study was conducted in Munich, Germany. As a

large city in the Germany, Munich has a large-scale and highly

developed road network. Consequently, its streetspace has

become increasingly complex, featuring numerous multilevel

structures, such as bridges and tunnels. This complexity ne-

cessitates the use of various models for streetspace modeling.

For instance, numerous bridge designs exist, and with advance-

ments in mobile mapping technologies, point cloud data has

become more prevalent due to its ease of acquisition and cost-

effectiveness. Additionally, the City of Munich is actively de-

veloping a standardized and unified representation of the se-

mantic 2D lane model, providing a comprehensive and pre-

cise depiction of streets while incorporating official semantic

information. These factors make Munich an ideal study area

for evaluating the proposed workflow. The case study focuses

on the streetspace surrounding Donnersberger Bridge and Trap-

pentreu Tunnel in central Munich.

2.2 Data Sources and Existing Models

Different digital models are available in the test area: semantic

2D lane models of the study area, a BIM model of a conceptual

(non-existing) bridge in IFC, and mobile mapping point cloud

data of the tunnel. The semantic 2D lane model, developed by

the City of Munich, contains rich semantic information, includ-

ing lane type, material, level, and other relevant attributes. It

is composed of multiple polygons, with semantic information

stored within each polygon. These models are based on extens-

ive survey data and existing geospatial information. Geometric-

ally, these polygons define the 2D shape of the lane, as shown

in Figure 2. The bridge BIM model, created as part of a student

project, serves solely as a redesign of an existing bridge and
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does not represent a real world structure. The mobile mapping

point cloud data was captured at a resolution of 2000 points per

square meter, providing detailed spatial information for tunnel

modeling. Additionally, aerial point cloud data is available at

the resolution of 6 points per square meter, covering the entire

case study area and capturing surface features from an overhead

perspective. Existing models are illustrated in Figure 4.

Semantic information of the highlighted polygon

Lane ID 372

Lane Type Driving Lane

Lane Material Asphalt

Speed Limit 50 km/h

Elevation Level 1

Figure 2. A section of the semantic 2D lane model with an

illustration of the semantic information stored within the

highlighted red polygon.

As different models currently exist in silos, streetspace data

in this area is highly unorganized. The BIM model primarily

represents detailed structural components and provides precise

geometric and semantic information for infrastructure design

and management (Bradley et al., 2016). The semantic 2D lane

models serve as a standardized representation of road networks

and are crucial applications for such as transportation plan-

ning. Mobile mapping point cloud data captures high resol-

ution spatial information. In contrast, aerial point cloud data

provides large scale spatial coverage (Javanmardi et al., 2017).

Thus, from a semantic perspective, missing semantic inform-

ation (e.g., in point cloud data) or inconsistent semantic map-

pings due to different naming conventions pose challenges in

achieving seamless semantic integration. From a geometric per-

spective, different models are represented using various geo-

metries, such as points, surfaces, or volumetric forms. Man-

aging these models separately often leads to conflicting inform-

ation and errors. Another issue we identified is geometric re-

dundancy. Geometries may be unnecessarily duplicated across

models or may not contribute meaningful information. For in-

stance, the mobile mapping point cloud data capturing the tun-

nel contains many redundant points that either exceed the ex-

tent of the tunnel or do not accurately represent its structure.

Finally, downstream applications, such as traffic simulation,

increasingly require semantically and geometrically integrated

3D streetspace models to accurately reflect real-world condi-

tions. These demands highlight the growing need for an integ-

ration workflow capable of geometrically and semantically in-

tegrating different models across various data formats in street-

space.

3. The Semantic CityGML 3.0 Data Model

Different models offer a range of capabilities across geomet-

ric, semantic, topological, and visual aspects, and are typically

developed to support specific use cases (Beil and Kolbe, 2024).

Therefore, it is necessary to identify a suitable standard that can

bridge the gaps between these 2D and 3D models when geomet-

ric and semantic integration is required. Such a standard should,

on the one hand, support various streetspace modeling mod-

ules, including bridges, tunnels, and roads. On the other hand,

it should enable the integration of these components within a

consistent semantic 3D model.

Beil et al. have already conducted a thorough comparison of

standards and data formats for representing streetspace across

various model types (Beil et al., 2020). Based on their ana-

lysis, CityGML emerged as a suitable choice. The interna-

tional OGC standard CityGML 3.0 is thematically organized

into a core module, which defines the fundamental concepts

and structures of CityGML, and eleven extension modules that

support various thematic aspects of 3D city modeling. As illus-

trated in Figure 3, this modular structure allows for a standard-

ized representation of diverse urban elements. Among these,

the Bridge Module, Tunnel Module, and Transportation Mod-

ule are particularly relevant to the modeling and integration of

streetspace components in the case study. The Bridge Module

in CityGML 3.0 consists of AbstractBridge, a superclass that

defines shared attributes. The Bridge class represents the en-

tire bridge structure, while BridgePart defines its subdivisions.

These classes include elements such as BridgeConstructiveEle-

ment, BridgeInstallation, and BridgeFurniture. Similarly, the

Tunnel Module follows the same structure, with AbstractTun-

nel as the superclass, while Tunnel and TunnelPart represent the

main tunnel structure and its subdivisions. Internal components

include TunnelFurniture and TunnelInstallation. In the Trans-

portation Module, Roads are divided into Sections and Intersec-

tions, which are further segmented into AuxiliaryTrafficSpaces

and TrafficSpaces, bounded by AuxiliaryTrafficAreas and Traf-

ficAreas to define their spatial extent relative to the ground.

Figure 3. Modular structure of the CityGML 3.0 standard

Thus, CityGML 3.0 provides a well-structured and standard-

ized framework for managing various streetspace modules. It

serves as a viable solution for addressing the challenges asso-

ciated with the management and storage of diverse streetspace

data representations within a consistent semantic model. In this

study, three key components, bridge, lane model, and tunnel,

were transformed into CityGML 3.0 representations to evalu-

ate its capability for the geometric and semantic integration of

complex streetspace scenarios.

4. Data Integration Workflow

The proposed workflow is designed to transform existing mod-

els into a geometrically and semantically integrated CityGML

3.0 representation. The transformation process is divided into

three main stages: preprocessing, geometric alignment, and se-

mantic mapping. Preprocessing varies depending on the model

type. For the bridge BIM model, it primarily involves coordin-

ate system alignment and georeferencing. For the lane and tun-

nel models, preprocessing consists of point cloud data classific-

ation. Geometric alignment focuses on converting geometries

into formats compatible with CityGML 3.0. Semantic mapping

involves assigning feature classes based on semantic informa-

tion. After the transformation, the modules are imported into

the 3DCityDB V5 (Yao et al., 2018). The workflow is illus-

trated in Figure 5.
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Figure 4. Visualization of the existing models. The left figure presents a redesigned bridge model, created as part of a student project.

This model does not exist in reality but represents a conceptual design. The middle figure displays mobile mapping point cloud data of

the tunnel. The right figure presents aerial point cloud data, covering the case study area and capturing surface features.

Figure 5. The workflow for bridge, lane and tunnel models integration.

4.1 Preprocessing

A crucial preprocessing step is ensuring that the bridge BIM

model is correctly positioned. The procedure begins by setting

the appropriate coordinate system in a GIS software environ-

ment. The BIM model is then imported and projected onto the

designated coordinate system. Next, a control point within the

BIM model is matched to a corresponding real-world location

in the GIS. This process can be described using a transforma-

tion matrix T , which integrates translation, rotation, and scaling

operations, defined as T = Ttranslation · Trotation · Tscale (Isikdag
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and Zlatanova, 2009). A specific control point is selected and

aligned with its corresponding coordinate in the GIS.

Apart from the BIM model, point cloud data also requires pre-

processing. One of the primary challenges associated with

point cloud data is the lack of semantic information. There-

fore, a critical preprocessing step involves noise removal and

classification. Aerial and mobile mapping point cloud data is

classified into different categories using a pre-trained model,

which assigns each point clusters to predefined classes based

on location and elevation information. To streamline the pro-

cessing pipeline within a unified environment, a pre-trained

model based on the PointCNN architecture which is available in

GIS software was utilized for pipeline alignment (Esri, 2024).

The ground class within the point cloud data is identified as the

ground surface, while irrelevant structures and noise are filtered

out to enhance data quality and accuracy.

4.2 Geometric Alignment

Geometrically, the CityGML data model does not support para-

metric representations. As a result, implicit geometries created

through parameterized modeling methods, such as Construct-

ive Solid Geometry (CSG), must be converted into explicit rep-

resentations, i.e., boundary representations (B-Rep) (Donkers

et al., 2016). In this step, the geometries from BIM models

are first extracted, then decomposed and reconstructed. For

the geometric alignment of lane models and tunnels, we de-

veloped a transformation method. The semantic 2D lane model

provides semantic information and spatial positioning, where

attributes such as elevation levels are embedded within the poly-

gons. Specifically, elevation level 1 represents lanes on bridges,

level 0 corresponds to ground level lanes where height inform-

ation aligns with the terrain, and level -1 denotes underground

lanes. Using this information, the semantic 2D lane model is

transformed into a 3D by interpolating each level’s elevation

information from 3D representations onto the 2D lane model.

After preprocessing, the classified point cloud data contains

clusters of ground points that hold elevation information cor-

responding to their spatial positions. To extract elevation values

for each level, the elevation information from the point cloud

data is converted into a 2.5D raster representation, where each

grid cell stores its corresponding elevation value. To further re-

fine the lane model and remove noise, an interpolation function

Spline is applied to fill voids and create a smooth, continuous

elevation raster. Finally, the elevation values from grid cells are

interpolated to the 2D lane model polygons to generate a 3D

multi-polygon representation. This process can be fully auto-

mated using two approaches. The first approach utilizes model-

building tools within a GIS software environment. The second

approach involves a Python script. Both approaches enable ex-

ecution with the semantic 2D lane model and digital elevation

models as inputs, producing semantic 3D multi-polygon lane

models as the output.

Building on this, we developed an automatic reconstruction al-

gorithm for 3D tunnel modeling based on mobile mapping point

cloud data. This process also incorporates the semantic 2D

lane model. As previously mentioned, the tunnel floor sur-

face should align with the lane model. Specifically, level -1

2D polygons in the lane model represent underground lanes,

directly corresponding to the tunnel floor surface. To recon-

struct the tunnel floor, a new set of 2D polygons identical to the

level -1 polygons is generated, with new created semantic at-

tributes specifically defining as the tunnel floor surface. Using

the classified mobile mapping point cloud data, we apply the

same transformation process used for the level -1 lane model,

producing 3D multi-polygon representations of the tunnel floor

which aligned with lane models. Beyond the floor surface, tun-

nels also consist of walls and a ceiling. To model these com-

ponents, new 2D polygons are generated to represent the tun-

nel ceiling surface, geometrically mirroring the layout of the

tunnel floor. Since mobile mapping point cloud data accurately

reflects real-world conditions, the highest points in the unclassi-

fied mobile mapping point cloud data correspond to the ceiling

surface and contain relevant elevation information. By applying

the 3D transformation process once again, replacing the input

2D polygon with the newly created ceiling polygon and using

the unclassified point cloud data, the tunnel ceiling surface is re-

constructed. For the tunnel walls, 3D multi-polygon representa-

tions are generated by extruding the boundary lines between the

reconstructed floor and ceiling surfaces. This entire process can

be implemented using model-building tools in the GIS software

environment or Python scripting to create a custom function for

automated 3D tunnel reconstruction. The required inputs for

this workflow are classified mobile mapping point cloud data

and level -1 lane models, ensuring the alignment of the tunnel

floor surface with the lane model. Moreover, only the neces-

sary portions of the tunnel are used and transformed from the

mobile mapping point cloud data, which significantly reduces

redundancy.

4.3 Semantic Mapping

From a semantic perspective, IFC to CityGML semantic object

type mapping is performed to transfer element types, attributes,

and relationships from the IFC object model to the CityGML

model (Tan et al., 2023). For the bridge model, the mapping

process involves two key aspects: IFC spatial structure ele-

ments and IFC physical objects. IFC spatial structure elements

act as hierarchical containers within the IFC model, including

elements such as IfcProject and IfcSite. In contrast, CityGML

3.0 provides feature classes that serve as root elements, such

as CityModel and CityObjectGroup. The second aspect per-

tains to IFC physical objects, which are typically defined by

detailed object names such as IfcColumn or IfcWall. In con-

trast, CityGML 3.0 does not classify objects at such a granu-

lar level. Instead, it aggregates similar components into more

generalized feature classes. For example, multiple IFC object

types like IfcColumn and IfcWall are mapped to the broader

class BridgeConstructiveElement in the CityGML Bridge mod-

ule. In our case study, we designed a mapping for IFC Bridge

to the CityGML Bridge Module features. The detailed mapping

of object types is illustrated in Figure 6.

For the lane model, each polygon encapsulates rich semantic

information, including lane type, function, material, and other

attributes. In the CityGML 3.0 Transportation Module, roads

are decomposed into specific feature classes, optimizing the

data structure by avoiding redundancy and improving clarity,

which is shown in Figure 7. By leveraging the semantic de-

tails embedded in the lane model and the feature classes of the

CityGML 3.0 Transportation Module, we established a system-

atic mapping that transforms the semantic 3D surface represent-

ation into a structured CityGML 3.0 data model. Specifically,

during the CityGML 3.0 transformation process, the 3D multi-

polygons were first mapped to CityGML 3.0 TrafficArea and

AuxiliaryTrafficArea based on the semantic attribute lane type.

The lane type represents the function of the lane within the road

network. The corresponding mapping is detailed in Table 1.
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Figure 6. Mapping of IFC Bridge Object Types to CityGML

Bridge Module Features.

Following this, manual adjustments were necessary to map sec-

tions and intersections. A Section is a transportation segment

that can be clearly assigned to a single Road, whereas an In-

tersection is a shared transportation space that serves as a com-

mon segment for multiple Roads or other transportation objects.

Thus, in the case study area, junctions within the lane model

are classified as intersections, while all other segments are con-

sidered sections. Due to the complexity of the test area and the

original format of the lane model and the Junction feature class

being in 2D, automatically identifying sections and intersec-

tions proved challenging, especially for bridges and viaducts,

which require definition in the vertical dimension. To address

this, we compared the data with real world conditions using the

2D Junction feature class, where intersection and section fea-

tures were manually identified and assigned to the reconstructed

3D multi-polygon. These features were then mapped back into

CityGML 3.0 for the Section and Intersection feature classes.

Furthermore, since these features were originally decomposed

from the Road feature class based on road names, they were

later unified into the Road class through real world validation.

For tunnels, the mapping process is more straightforward. Dur-

ing the creation of the 3D multi-polygon representation, the

floor and ceiling names were assigned, allowing direct map-

ping based on these attributes. The TunnelPart is bounded by

FloorSurface, CeilingSurface, and InteriorWallSurface.

Figure 7. Visualization of CityGML 3.0 Transportation Module.

Table 1. Mapping of Lane Types to CityGML 3.0 Objects.

Lane Types CityGML 3.0 Objects
driving lane

TrafficArea

footpath
cyclepath
combined foot-/cyclepath
square
parking lay by
rail
rail road combined
crosswalk
bus lay by
motorway
emergency lane
road works
unknown
shoulder

AuxiliaryTrafficArea

green area
kerbstone
restricted
traffic island
raised median
low kerbstone
border
road channel

4.4 Integration into 3DCityDB

The case study primarily utilized ArcGIS Pro, FME, and

3DCityDB. ArcGIS Pro was primarily used for preprocessing

and geometric alignment of the lane and tunnel models. FME

was used for geometric alignment and semantic mapping of the

bridge model, as well as for semantic mapping of the lane and

tunnel models. Following the transformation, several CityGML

3.0 models relevant to semantic 3D streetspace were generated,

including the Transportation Module features, Bridge Module

features, and Tunnel Module features. However, these models

initially existed as standalone entities without explicit relation-

ships between them. To address this, 3DCityDB V5 was used

for CityGML 3.0 feature management, visualization, and in-

teraction. It was also used for the storage, management, and

analysis of large scale semantic 3D streetspace models. The

3DCityDB citydb-tool was used to import each CityGML 3.0

model into a unified database, ensuring centralized manage-

ment of all models. For visualization, the models were exported

in 3DTiles and visualized in the 3DCityDB web client.

5. Results and Discussion

By utilizing CityGML 3.0 as a hub, we successfully integ-

rated streetspace models from various data formats. The case

study area comprises multiple complex components, includ-

ing lane models, bridge model, and tunnel model. We semi-

automatically transformed these three different models into

CityGML 3.0, ensuring geometric and semantic consistency.

To illustrate the integration process, we imported the original

models into the ArcGIS Pro environment, as shown in Figure

9. This visualization clearly demonstrates that the three models

initially exist as entirely separate entities. Geometrically, when

visualized by absolute height, the BIM model and point cloud

data are represented in 3D, whereas the lane model is stored in

a 2D format. Semantically, the point cloud data lacks structured

attributes, as it consists purely of unstructured points, while the

BIM and lane models follow different semantic schemas. In

their raw form, these models remain disconnected, lacking in-

herent relationships.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025 
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-65-2025 | © Author(s) 2025. CC BY 4.0 License.

 
70



Bridge Entrance Main Bridge Bridge Exit

Viaduct Section Tunnel Entrance Tunnel Exit

Figure 8. Visualization of the semantic 3D streetspace model in 3DCityDB web client.

Figure 9. Visualization of the existing models, which exist as

separate entities with no explicit relationships between them.

The original models were transformed into corresponding

CityGML 3.0 module features, specifically Bridge, Tunnel,

and Transportation. Using the 3DCityDB V5 citydb-tool, all

CityGML 3.0 data was stored in a single database. The visu-

alization results are presented in Figure 8. When visualized,

individual components remain interactable, demonstrating the

capability of CityGML 3.0 to serve as a hub for the geometric

and semantic integration of heterogeneous streetspace models.

Table 2 compares the file sizes of the original models with their

transformed CityGML 3.0 representations, as well as the final

exported integrated streetspace model in CityGML 3.0 repres-

entation. After the transformation process, the overall size of

the streetspace model was significantly reduced. This reduction

is primarily due to the removal of irrelevant, noisy, and redund-

ant data from the original point cloud data.

Table 2. File size comparison

Component Original File Size
Transformed File Size

(CityGML 3.0)

Bridge
IFC:

404 MB
449 MB

Road
LAS and Shapefiles:

1125 MB
84 MB

Tunnel
LAS:

437 MB
19 MB

StreetSpace Model
IFC, LAS and Shapefiles:

1966 MB
376 MB

In the workflow illustrated in Figure 5, the transformation pro-

cess consists of 9 steps, including preprocessing, geometric

alignment, and semantic mapping for each of the three com-

ponents. Among these steps, manual interventions are limited

to BIM model preprocessing and lane model semantic mapping.

The remaining steps can be automated using Python scripts or

model-building tools, demonstrating a semi-automated process

for transforming heterogeneous streetspace models into a de-

tailed 3D CityGML 3.0 representation.

6. Conclusions

In conclusion, this study integrates various models in different

data formats within the streetspace into a geometrically and se-

mantically integrated semantic 3D model based on CityGML

3.0 representation. The test area encompasses a complex en-

vironment containing multiple digital models, including BIM

models, semantic 2D lane models, and point cloud data. First,

by treating CityGML 3.0 as a hub, this study enables the man-

agement and storage of diverse models within a unified frame-

work, facilitating a more accessible and manageable semantic

3D streetspace model. The approach also demonstrates the

capability of CityGML 3.0 to serve as an integration plat-

form for heterogeneous semantic 3D streetspace representa-

tions. Second, the proposed workflow effectively extends bey-

ond traditional building models to include infrastructure com-

ponents such as bridges and tunnels. Finally, the transformation

process can be performed semi-automatically, further enhan-

cing operational efficiency.

However, several limitations were identified and addressed dur-

ing this research. First, although the tunnel can be topologically

aligned with the lane model, the topological alignment between

the bridge and the lane model remains a challenge. Ideally, the

bridge surface should align with the lane model as well. How-

ever, due to the separate design of the bridge, redesigning the

bridge lane to achieve alignment is time-consuming. Addition-

ally, the attribute mapping of roads, intersections, and sections

in CityGML 3.0 was performed manually, requiring us to verify

roads based on real world conditions. To improve automation,

the semantic structure of the 2D lane model should be further

refined. Specifically, adding a junction attribute and integrating

it with elevation levels would enable a more automated and effi-

cient process. During the tunnel model transformation process,
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the mobile mapping point cloud data was incomplete, capturing

only a unidirectional view of the tunnel, whereas in reality, it is

a bidirectional structure. To compensate, we artificially gener-

ated the opposite side of the tunnel. Additionally, we simplified

the tunnel structure by reconstructing only the inner space.

Moving forward, additional features from other modules can

be incorporated into streetspace modeling, such as the CityFur-

niture module and other relevant extensions. Furthermore, it

is worth exploring the application of this approach in additional

areas that involve multiple digital models represented in various

data formats. Additionally, we aim to enhance the integration

of bridge and road models to further reduce redundancy and

improve consistency. To evaluate the effectiveness of this ap-

proach, we plan to test the process in various locations with a

broader range of components and establish a more systematic

evaluation framework to assess the integration method.
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