
Automatic Detection, 3D Localization, and Semantic Enrichment of Commercial Signboards

Using 360° Mobile Mapping Imagery: A Case Study in Temara, Morocco

Hiba Doi1, Rafika Hajji1,Imane Jeddoub2, Roland Billen2

1 College of Geomatic Sciences and Surveying Engineering, Agronomy and Veterinary Institute Hassan II,

Rabat 10101, Morocco (doihiba,r.hajji)@iav.ac.ma
2 GeoScITY, Spheres Research Unit, University of Liège, 4000 Liège, Belgium (i.jeddoub,rbillen)@uliege.be

Keywords: Signboard Detection, YOLO, 3D Geolocation, MMS Imagery, Line of Bearing , GPT-4o

Abstract

The regulation of urban advertising signage is critical for preserving visual harmony and ensuring regulatory compliance in modern

cities. This study presents a novel pipeline for the automatic detection, tracking, geolocation, and textual identification of storefront

signboards from 360° Panoramic imagery acquired via Mobile Mapping Systems (MMS). We first fine-tune a YOLOv11 object de-

tection model on a custom-labeled dataset of urban scenes, enabling robust identification of signboards across varied viewing angles.

To associate detections across consecutive frames, we leverage the integrated YOLOv11 tracking mode, which assigns consistent

object IDs based on motion and appearance features. Each tracked instance is then localized in 3D space using a photogrammetric

Line of Bearing (LoB) method, relying on known camera poses and pixel coordinates. In parallel, we extract the textual content from

each detected sign using advanced GPT-4o Vision, which has demonstrated improved performance in complex visual environment.

The proposed pipeline offers a scalable alternative to manual inspection, providing precise spatial and semantic information about

urban signage. The pixel-wise projection precision, quantified by an average RMSE of 7.75 pixels (median 7.17px, std dev 2.80px)

derived from LoB intersection consistency, confirms the pipeline’s reliability for automated urban inventory systems and smart city

applications.

1. Introduction

Commercial Signboards represent a widespread form of publi-

city used by businesses to promote their services directly on the

street. However, when these advertising panels are not prop-

erly monitored, their chaotic distribution can lead to visual pol-

lution and reduce the aesthetic quality of urban environments.

Traditionally, inspecting the presence, compliance, and content

of these panels requires human auditors to physically inspect

each storefront. This process is not only time-consuming but

also resource-intensive. In this work, we propose an automated

approach to detect, localize, and identify the textual content of

storefront advertising panels using 360° Panoramic imagery ac-

quired byMobileMapping Systems (MMS). Our goal is to provide

municipalities with a scalable alternative to manual field in-

spections for monitoring urban signage. This work integrates

state-of-the-art computer vision techniques including object de-

tection and tracking, with photogrammetric principles to accur-

ately project detected objects into real-world coordinates. This

allows not only identifying the panels in the image but also geo-

locating them accurately in the urban space. While previous re-

search has mainly focused on the detection and segmentation of

buildings or large urban structures in street-level imagery, few

studies have addressed the detection of storefront advertising

panels. To our knowledge, no prior study, has tackled the ex-

traction of their attributes (such as textual content and business

name) and precise spatial location. Our approach is the first to

address this gap in the literature through an innovative method

by simultaneously identifying, segmenting, reading, and geore-

ferencing these urban objects.

2. Related Work

2.1 Urban Object and Signboard Detection in Computer

Vision

Over the past decade, urban object detection has been predomin-

antly addressed using Convolutional Neural Networks (CNNs).

Traditional approaches, such as Faster R-CNN (Ren et al., 2016),

rely on a two-stage detection process. In the first stage, a Region

Proposal Network (RPN) identifies regions of interest, and in

the second stage, these proposals are refined by a classifier to de-

liver precise bounding boxes and object labels. This decoupled

process typically results in high detection accuracy, which is

essential for analyzing complex urban scenes with diverse ele-

ments like vehicles, pedestrians, and building components.

In contrast, the YOLO series of detectors employs a single-stage

pipeline that directly predicts bounding boxes and class probab-

ilities from full images (Khanam and Hussain, 2024). While

early versions of YOLO had some limitations in precision com-

pared to two-stage methods, the YOLO family has seen signi-

ficant improvements over time, achieving competitive accuracy

along with enhanced efficiency and streamlined design. These

advancements in the YOLO approach have made it an attract-

ive option for applications where scalability and performance

in detection precision, rather than strict real-time capability, are

prioritized.

This general object detection framework has also been adap-

ted to more specific façade�level detection, while extensive

research has focused on the segmentation of building features

such as windows, doors, and arches (Sezen et al., 2022), relat-

ively few studies have targeted the precise detection of store-

front advertising boards. One notable investigation in this area

is the study conducted by (Bochkarev and Smirnov, 2019); The
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authors proposed a fast CNN-based method for detecting illegal

advertising on building façades. They leveraged a curated train-

ing dataset composed of rectified images to ensure that building

façades were pre-aligned to a frontal view, thereby simplifying

the detection task and enhancing performance. However, such

an approach inherently restricts applicability to scenarios where

strict image rectification is feasible.

2.2 3D Localization of Urban Objects

The georeferencing of detected objects in three-dimensional space

has traditionally been performed by segmenting and classify-

ing elements directly within LiDAR point clouds or dense 3D

reconstructions (Sun et al., 2018). While this approach excels

in detecting large and geometrically distinct urban structures,

such as poles, trees, or building edges, it often falls short when

applied to fine-grained or visually heterogeneous objects like

signboards. These elements tend to be thin, planar, and moun-

ted flush against façades, resulting in sparse or incomplete point

cloud representations, especially when the LiDAR sensor is dis-

tant or at a steep angle. Additionally, the lack of distinct 3D

geometric features makes it difficult for even advanced deep

learning models to differentiate signboards from the surround-

ing façade textures or noise(Sun et al., 2018).

As an alternative, image-based localization techniques have gained

attention due to their broader applicability in such cases. Among

them, methods relying on monocular or stereo depth estimation,

such as MiDaS (Mixed Datasets for Monocular Depth Estim-

ation), estimate per-pixel depth maps directly from RGB im-

ages. When combinedwith calibrated camera poses, these depth

cues enable approximate 3D positioning of objects from im-

agery alone. This strategy has proven particularly useful in urban

navigation and semantic mapping tasks, where LiDAR cover-

age is partial or the objects of interest (like signage) are too

small or geometrically subtle to be consistently captured in point

cloud data (Ranftl et al., 2020). However, despite its flexibility,

monocular depth estimation remains sensitive to occlusions, re-

flectivity, and scene complexity, requiring post-processing for

scale refinement and spatial consistency.

Another category of methods leverages geometric constraints

and photogrammetric principles, such as Line of Bearing (LoB)

localization. LoB methods infer object positions from known

camera poses and pixel coordinates in spherical or panoramic

imagery. They are particularly effective in MMS setups, where

high-resolution and geo-referenced imagery is available, even

in the absence of dense LiDAR. LoB-based approaches are also

better suited for localizing signage in urban settings, where pre-

cise façade alignment and angular coverage are critical (Doi et

al., 2024).

Despite progress across all fronts, current methods rarely com-

bine detection, tracking, and geospatial localization into a uni-

fied pipeline. Our approach bridges this gap by integratingYOLO-

based object detection, multi-frame tracking, and LoB-based

spatial localization, enriched with textual attribution extracted

from each signboard.

2.3 Text Extraction in Urban Imagery

Optical Character Recognition (OCR) remains a key component

for extracting textual information from storefront signs. While

classical OCR systems performwell on clean, well-aligned doc-

uments, they tend to struggle in real-world urban scenes, where

text may appear in varying fonts, orientations, lighting condi-

tions, and levels of occlusion. Recent advances in deep learning,

such as the Convolutional Recurrent Neural Network (CRNN)

architecture, have substantially improved robustness to such vari-

ability by combining visual feature encodingwith sequencemod-

eling. More recently, the emergence of vision-language mod-

els (VLMs) such as GPT-4o has opened new possibilities for

text recognition in complex visual settings. In a recent bench-

mark by (Nagaonkar et al., 2025), GPT-4o outperformed con-

ventional OCR engines acrossmultiple domains, including code

overlays, advertisements, and broadcast video, achieving lower

Word andCharacter Error Rates in highly dynamic scenes. These

results highlight GPT-4o’s potential for accurate text extraction

in visually challenging urban environments like storefront sig-

nage.

3. Methodology

3.1 Overview of the Pipeline

The proposed pipeline is designed to automate the detection,

tracking, spatial localization, and textual interpretation of store-

front advertising signboards from 360° Panoramic imagery ac-

quired by MMS. This approach leverages deep learning meth-

ods and photogrammetry techniques in a modular architecture,

as illustrated in Figure 1.

The pipeline consists of six main components:

1. 360°MMS image acquisition: Panoramic street-level im-

ages are collected using a calibrated Mobile Mapping Sys-

tem. Each frame is associated with accurate exterior ori-

entation parameters (EOPs), including camera position and

heading, enabling photogrammetric projection of image-

space observations into georeferenced coordinates.

2. ObjectDetection usingYOLOv11: Acustom-trainedYOLOv11

object detection model is employed to identify advertising

signboards in each panoramic frame. This single-stage de-

tector offers a favorable balance between detection accur-

acy and computational efficiency acrosswide field-of-view

images.

3. Multi-frame Tracking via YOLOv11 Tracking Model:

Detected instances are associated across sequential frames

using the built-in tracking mode in YOLOv11. This mech-

anism assigns persistent object IDs based on spatiotem-

poral consistency, allowing each signboard to be tracked

over time, even as viewpoint and appearance vary.

4. Pixel Refinement via Segment AnythingModel (SAM):

To improve the accuracy of pixel-level localization, each

detected bounding box is refined using the Segment Any-

thing Model (SAM). The segmentation masks generated

by SAM allow precise delineation of signboard contours,

reducing background noise and enhancing the reliability of

downstream geolocation. The refined mask centroids are

used as updated keypoints for 3D localization.

5. 3D Geolocation via Line of Bearing (LOB): A photo-

grammetric multi-view LoB method is employed to estim-

ate the 3D position of each signboard. For each tracked in-

stance, bearing rays are constructed from multiple camera

positions using the known exterior orientation and the de-

tected pixel coordinates. The signboard’s spatial location

is estimated by computing the optimal intersection point of

these rays in 3D space.
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Figure 1. Methodology workflow

6. Text Extraction using Vision-Language OCR: Cropped

image patches corresponding to each signboard are pro-

cessed using GPT�4o, a vision-language model, to extract

textual content. This approach leverages the model’s ad-

vanced multimodal capabilities to improve recognition ac-

curacy in complex, multilingual, and unstructured urban

environments.

3.2 Dataset Preparation and Annotation

The dataset used in this study was acquired during a structured

urban data collection campaign in Temara, a city in the Rabat

province of Morocco. The survey was conducted using a Via-

metris MS-96 Mobile Mapping System (MMS) mounted on a

ground vehicle. The system integrates a panoramic camera, a

GNSS receiver, and an InertialMeasurementUnit (IMU), provid-

ing accurate exterior orientation parameters (EOPs) for each

frame, including the 3D position (X,Y, Z) and orientation angles

(pitch, yaw, roll) of the camera.

Figure 2. MMS Trajectory – Temara Center | 03 March 2025

A total of 16,072 equirectangular panoramic images were col-

lected during the mission (see Figure 2). Each with a native res-

olution of 12,600 × 6,400 pixels, later downsampled to 2,560

× 1,260 pixels during the detection phase to optimize training

efficiency and GPU memory usage. The imagery is georefer-

enced using the WGS 84 / Pseudo-Mercator coordinate system

(EPSG:3857). Images were extracted from a continuous video

stream captured at regular 0.5-meter intervals, resulting in dense

spatial coverage along approximately 18 kilometers of urban

road network, corresponding to 9 kilometers of street surveyed

in both directions (round trip). The spatial trajectory of the sur-

vey, color-coded by height (Z), is illustrated in Figure 2, demon-

strating the extent and vertical variability of the collected route.

A total of 708 storefront signboards were manually annotated

using the YoloLabel tool, following the standard YOLO bound-

ing box format. Labels were applied to each signboard instance

with high attention to occlusion, angle, and visibility variations.

This annotation process served as the ground truth for training

and evaluating the object detection model. All labeled images

were split into training (80%) and validation (20%) subsets, en-

suring a balanced representation of signage density, orientation,

and urban variability.

Annotating the dataset presented challenges specific to urban

environments and the nature of equirectangular 360° Panoramic

imagery. Although not all scenes were severely impacted, dis-

tortions near the top and bottom poles of the panorama complic-

ated the consistent placement of rectangular bounding boxes. In

some cases, such as figure 3, signs appeared visibly skewed due

to projection effects. This phenomenon tends to be more notice-

able when signboards are positioned close to the camera, where

local perspective effects are more pronounced in the equirectan-

gular projection. Despite these annotation challenges, the train-

ing process benefits from the robustness of YOLOv11, whose

architecture is well-suited to handle geometric distortions, par-

tial occlusions, and non-linear signboard shapes common in equir-

ectangular 360° Panoramic imagery.

3.3 Signboard Detection

To automatically detect advertising signboards on storefronts,

we fine-tuned a YOLOv11 object detection model a fast, single-

stage detector belonging to the “YouOnly LookOnce” family of

networks. This model was trained on a custom-labeled dataset.

Training was conducted locally on a workstation equipped with

an NVIDIA GeForce RTX 2080 SUPER GPU (8GB VRAM),
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Figure 3. Skewed Signboard

using the YOLOv11 framework. The model was trained for 500

epochs with an input image resolution of 640×640 pixels.

The performance of the trained model was evaluated on the val-

idation set using standard object detection metrics. The model

achieved a precision of 0.795, recall of 0.724, and a mean Aver-

age Precision (mAP) of 0.797 at IoU=0.5. Additionally, the F1

score, which provides a harmonic mean of precision and recall,

was calculated to be 0.758, indicating a strong balance between

detection accuracy and completeness.

3.4 Implementation of YOLOv11 Tracking

For multi-frame tracking, we utilize the ByteTrack algorithm

integrated within YOLOv11’s tracking framework (Zhang et

al., 2022). ByteTrack associates detections across frames us-

ing IoU-based matching combined with Kalman filter motion

prediction. Low-confidence detections are recovered through a

secondary association step, which is particularly beneficial for

partially occluded signboards in 360° imagery. Object identities

are maintained using appearance similarity and spatial proxim-

ity, enabling robust tracking despite viewpoint variations inher-

ent in panoramic sequences. Thismodule integrates appearance-

based similarity and spatial proximity to associate detections

over time, ensuring that the same physical object is reliably

identified throughout the image sequence. An example of this

process is illustrated in Figure 4, where the same signboard is

consistently tracked acrossmultiple frames, maintaining a unique

ID throughout the sequence.

Figure 4. Tracking ID consistency

Figure 5. Object tracking with YOLO bounding boxes across

multiple images

Tracking plays a critical role in our localization pipeline. By

maintaining identity continuity for each detected signboard, we

are able to group multiple observations of the same object from

different viewpoints/Images, as illustrated in Figure 5. These

grouped instances form the basis for our Line of Bearing (LoB)

triangulation method, enabling accurate estimation of the ob-

ject’s position in 3D space.

Thus, the tracking module serves as the critical bridge between

2D detection and spatial refinement. By consistently grouping

detections for each signboard across multiple frames, we estab-

lish a reliable dataset for subsequent processing. In the next

step, we employ the Segment Anything Model (SAM) to re-

fine the pixel coordinates of each detection, calculating a more

accurate visual centroid that truly represents the object’s geo-

metry, before proceeding to 3D localization using our Line of

Bearing (LoB) triangulation strategy.

3.5 Object Segmentation and Centroid Estimation

To improve the spatial accuracy of 3D geolocation, we intro-

duced an intermediate segmentation refinement step. Rather

than relying solely on the geometric center of the bounding box

produced by the object detector, we leverage the Segment Any-

thing Model (SAM) to extract a pixel-level binary mask of the

signboard, allowing for a more accurate estimation of its visual

footprint. The SAM model is applied to the cropped region

defined by the detected bounding box , as shown in Figure 6,

using a box-guided prompt strategy to generate a binary seg-

mentation mask. This process captures the actual shape of the

signboard, including cases where the object is elongated, tilted,

or partially occluded, scenarios where the bounding box center

may deviate significantly from the visual centroid.

After computing the refined pixel centroid for each signboard

using the segmentation mask, we merged this output with the

corresponding tracking results. This operation allowed us to as-

sociate each centroid with its respective object ID, forming a

consolidated dataset in which each tracked instance is grouped

across multiple panoramic frames.

3.6 Text extraction

We initially explored traditional OCR tools, namely Tesseract,

EasyOCR, and PaddleOCR, to extract textual content from store-

front signs, in an effort to evaluate whether free, open-source al-

ternatives could meet the needs of our application. Although we

were aware of the superior performance of GPT-4o, we sought

to empirically assess the viability of these tools. While they
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Figure 6. SAM model is applied to the cropped region defined

by the detected bounding box

performed reasonably well on clean, front-facing signs, they

showed significant limitations when applied to the multilingual,

angled, and visually complex signage typical of urban environ-

ments.

To address these challenges, we adoptedGPT-4o, a vision-language

model, to directly interpret the content of cropped signboard im-

ages. This approach significantly improved recognition accur-

acy. GPT-4o was able to return structured semantic fields, in-

cluding the store name, business category, and contact informa-

tion, even when the text appeared in Arabic, French, or English,

or when stylized fonts and partial occlusion were present.

Figure 7 presents visual sequences of five tracked storefront

signboards, where each row corresponds to a distinct detected

instance (e.g., ID_14, ID_63, etc.). For each sequence, the me-

dian image from the chronological tracking sequence was se-

lected and submitted to the GPT-4o vision API. This median

selection strategy automatically identifies themost central view-

point, typically corresponding to the most frontal view with op-

timal text visibility and minimal perspective distortion, as the

mobile mapping system passes the signboard location. This se-

lective submission approach optimizes semantic extraction ac-

curacy while reducing the number of API calls required. The

extracted information, including normalized store names, cat-

egorized business types, and structured contact details, is sum-

marized in Table 1.

object_id store_name store_category contact_info
14 MICHWAT BOU-

AFOUD
Food specializing
in roast chicken

63 Laboratoire
Chaouki

D’Analyses
Médicales

{’phone’: ’+212 (0) 5
37 60 72 36’, ’email’:
’labochaouki@gmail.com’}

136 Banque Populaire Bank
146 Cabinet de Chirur-

gie Dentaire Al
Kadi

Dental Surgery {’phone’: ’05.37.58.07.63’}

Table 1. Structured text extraction results using GPT-4o

3.7 Tracking-InformedLoBTriangulation: Motivation and

Design

As illustrated in Figure 9, ourmethod employsmulti-frame track-

ing to associate object identities prior to Line of Bearing (LoB)

Figure 7. Tracked visual sequences of storefront signboards for

five detected instances (ID_14, ID_63, ID_136, ID_146, and

ID_432), used for semantic enrichment and spatial mapping

triangulation. This enables us to compute LoBs solely for the

frames where an object is consistently tracked and segmented.

In contrast, classical LOB-based methods such as (Doi et al.,

2024, Li et al., 2022) generate LoBs for all detected features

across frames and rely on post-hoc spatial filtering to remove

ghost intersections (see Figure8). By focusing only on frames

with verified object presence, our approach significantly reduces

the search space and computational burden of constraint-based

algorithms, eliminating the need for extensive thresholding or

clustering steps and leading to more robust and efficient local-

ization.

Figure 8. Illustration of classical LoB-based triangulation. Rays

are generated for all detected features across frames, leading to

multiple false intersections, known as ”ghost nodes”, due to the

absence of object identity association

3.8 Line of Bearing Angle Calculation and Geospatial Co-

ordinate Transformation

First, we convert the pixel coordinates (x,y) from the panoramic

image into spherical coordinates (ϕ, λ), where ϕ represents the

azimuth angle and λ the elevation angle. This transformation

is illustrated in Figure 10 (left to right). A detailed explanation

of the full pipeline, from pixel coordinates to spherical, then

Cartesian, and finally world coordinates-can be found in (Doi

et al., 2024).

((a)) ((b))

Figure 10. This figure illustrates the process of localizing a

detected signboard point from image space to spherical

coordinates
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Figure 9. Illustration of our tracking-informed LoB

triangulation. By leveraging consistent multi-frame object

identities, LoBs are computed only for verified detections,

resulting in accurate object localization without spurious ghost

intersections

In Figure 10, subfigure (a) shows the point P identified in pixel

coordinates (w,h) within a 360° panoramic image. Subfigure (b)

illustrates the same point P represented in spherical coordinates

by projecting it onto the unit sphere, yielding the azimuth and

elevation angles that define its direction in 3D space.

The transformation from image space coordinates to world co-

ordinates is given by:

xw

yw
zw

 = s ·R ·

 xc

yc
−zc

+

xcamycam
zcam

 (1)

R = Rz(yaw) ·Ry(pitch) ·Rx(roll)

where s is the depth coefficient,R is the rotationmatrix, (xc, yc, zc)
are the image space coordinates, and (xcam, ycam, zcam) are the
camera position coordinates in the world frame.

Using Equation (1), we obtain the 3D projection rays corres-

ponding to each detected point in image space. From these, we

extract the line of bearing (LoB) using Equation (2), and the ver-

tical angle using Equation (3). The LoB allows us to estimate

the (x,y) coordinates by intersecting the bearing lines computed

from multiple frames, as illustrated in Figure 9. The vertical

angle is then used to estimate the height (z-coordinate) relative

to the (x,y) position, resulting in a full 3D localization of the

object.

• Line of Bearing

bearing = arctan

(
yc − ycam
xc − xcam

)
(2)

• Elevation angle

V = arctan

(
(−zc)− zcam√

(xc − xcam)2 + (yc − ycam)2

)
(3)

Line of Bearing is represented by l, as shown in Equation 4:

l = (xcam, ycam, zcam, bearing) (4)

This yields a 3D line (ray) originating from the known cam-

era position and extending in the direction of the signboard’s

pixel centroid. For each object, we collect all such rays from

the frames in which it was detected and tracked.

Because each set of rays corresponds to exactly one object, we

compute the optimal intersection point among them using a least-

squaresmethod. Themean of all pairwise ray intersection points

is used to estimate the final (X, Y, Z) coordinates of the sign-

board in real-world space.

3.9 Fusion of Spatial and Textual Signboard Data

In parallel, each localized signboard is assigned precise 3D co-

ordinates (x,y,z), and linked, via a unique object ID, to semantic

attributes such as store name, business category, and contact in-

formation, extracted using the GPT-4o Vision API. This integ-

ration results in a spatially anchored semantic dataset that com-

bines geometric and textual data for each detected object. The

final output of the pipeline is shown in Figure 11,and Figure

12, where each signboard instance is both geolocated in 3D and

enriched with its semantic content.

Figure 11. Final 3D positioning and semantic enrichment of

signboards:Covers food�service businesses (cafés and small

shops)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W6-2025 
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W6-2025-73-2025 | © Author(s) 2025. CC BY 4.0 License.

 
78



Figure 12. Final 3D positioning and semantic enrichment of

signboards:Concerns the medical / pharmaceutical sector

(pharmacies, dental practices)

4. Results and Discussion

4.1 Object Detection Performance

Weevaluated the detection performance of theYOLOv11model

on a validation set comprising 20% of our annotated images.

The model achieved a mean Average Precision mAP of 0.797,

with a recall of 0.724 and a precision of 0.795, resulting in an F1

score of 0.758. These results demonstrate the model’s robust-

ness in detecting signboards under varied illumination, occlu-

sion, and 360° Panoramic imagery distortions. A related study

by Bochkarev et al. (Bochkarev and Smirnov, 2019), which also

focused on signboard detection, reported a best mAP of 0.59

using Faster R-CNN with Inception v2 on rectified façade im-

ages in controlled conditions. In contrast, our method operates

directly on unrectified panoramic street-view imagery, indicat-

ing a significant performance gain under more challenging and

realistic acquisition settings.Our method aims to robustly de-

tect signboards across diverse urban settings, ultimately sup-

porting a more scalable and realistic framework for monitor-

ing urban advertising. This broader applicability is essential for

real-world applications where strict image alignment cannot be

assured.

4.2 Tracking Performance Evaluation

To enable rigorous tracking evaluation, we developed a custom

manual annotation platform designed specifically for 360° pan-

oramic imagery tracking tasks. This platform facilitates frame-

by-frame annotation of signboard instances with persistent iden-

tity assignment across temporal sequences, accommodating the

unique challenges of panoramic distortion.

We evaluated tracking performance using standard MOT met-

rics on a manually-annotated subset of 400 frames containing

662 ground truth signboard detections from our 1,610 frame

dataset.

MOT Evaluation Results:

• MOTA (Multiple Object Tracking Accuracy): 0.809

• MOTP (Multiple Object Tracking Precision): 0.693

• IDF1 (Identity F1 Score): 0.804

Trajectory Analysis:

• Mostly Tracked (MT): 38/47 tracks (80.9%)

• Partially Tracked (PT): 9/47 tracks (19.1%)

• Identity Switches: 22 across 662 detections (3.3% switch

rate)

The MOTA score of 0.809 indicates robust tracking accuracy

despite panoramic distortions, while IDF1 of 0.804 demonstrates

effective identity preservation across viewpoint variations. The

MOTP score of 0.693 reflects the inherent challenges of pre-

cise localization in 360° imagery but remains within acceptable

ranges for our application context.

We assessed the tracking performance also through visual in-

spection. As shown in Figure 4, the majority of signboard in-

stances were consistently tracked across frames, maintaining

stable identities despite variations in viewpoint and occlusion.

In a few cases, the tracker assigned multiple IDs to the same ob-

ject across different frames Figure13 or failed to maintain track-

ing altogether. However, these instances were infrequent and

did not significantly affect the downstream 3D localization or

semantic linking steps. Overall, the tracking module demon-

strated reliable performance under challenging 360° panoramic

conditions.

Figure 13. Exemple of tracker assigned multiple IDs to the same

object

4.3 Localization Accuracy

To quantify the precision of the targeted LoB triangulation, we

computed complementarymetrics acrossmultiple evaluation di-

mensions (Table 2). Internal precision analysis demonstrated

substantial improvementwhen using SAM-derived centroids com-

pared toYOLObounding box centers, representing a 20%preci-

sion enhancement in average RMSE performance. SAM main-

tains superior performance across the entire range, from best-

case to challenging conditions.

Spatial agreement between methods indicates systematic posi-

tioning differences, with performance ranging from near-perfect

alignment to significant divergence across varying signboard

geometries. The pixel-level accuracy demonstrates reliable sub-

pixel localization capabilities. These comprehensive metrics

confirm that the system achieves facade-mounted signboard loc-

alization with precision levels suitable for automated urban in-

ventory applications.
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Table 2. YOLO Bounding�Box Centres vs. SAM�Derived

Centroids for 3D Position Estimation

Metric Average Median Best Worst Std.

Dev.

Internal Precision (RMSE, m)

YOLO BBOX centres 0.499 0.516 0.042 0.784 —

SAM�derived centroids 0.398 0.406 0.106 0.750 —

Improvement 20.2% 21.3% — 4.3% —

Spatial Agreement Between Methods

BBOX vs. SAM (RMSE) 0.881 0.869 0.004 2.332 0.431

Pixel�Level Localisation Accuracy

SAM pixel accuracy 7.75 7.17 1.88 14.58 2.80

4.4 Semantic Enrichment Results

From each localized instance, we extracted semantic content us-

ing GPT-4o. Table 1 presents a subset of the semantic extrac-

tion results, showcasing successfully parsed store names, busi-

ness categories, and where available contact information. The

extraction was performed using GPT-4o Vision, which demon-

strated robust performance even in challenging conditions such

as angled views, low resolution, and multilingual signage. In

our evaluation, GPT-4o consistently outperformed traditional

OCR tools such as Tesseract and EasyOCR on our test set, par-

ticularly in terms of accuracy, contextual understanding, and

completeness of extracted information.

5. Conclusion

In this paper, we presented a comprehensive pipeline for the

automatic detection, tracking, 3D localization, and semantic en-

richment of commercial signboards using 360° MMS imagery.

Our approach combines modern object detection (YOLOv11),

multi-frame tracking, geometry-aware centroid refinement via

SAM segmentation, and a targeted LoB triangulation strategy

to accurately estimate the spatial coordinates of signboards in

real-world coordinates.

Beyond localization, we introduced a semantic layer by lever-

aging GPT-4o for robust textual content extraction, enabling

each spatial instance to be enriched with business-specific at-

tributes such as store name and category. The results demon-

strate strong detection performance, reliable tracking consist-

ency, and the ability to generate structured, georeferenced in-

ventories of urban signage.

This pipeline is designed to be modular, scalable, and adapt-

able to diverse urban environments. The integration of detec-

tion, tracking, localization, and semantic extraction supports ap-

plications in urban inventory management, signage compliance

monitoring, and large-scale geospatial annotation.
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