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Abstract

Semantically rich 3D city models play a vital role in a variety of applications, such as urban planning. Enhancing these models with
currently unavailable attributes, such as roof material types, can unlock new opportunities to tackle pressing challenges, including
climate change mitigation and sustainable urban development. In this work, we present an end-to-end pipeline for the automatic
detection of roof materials to semantically enrich 3D city models. To support this, a comprehensive training dataset was prepared by
automatically annotating roof materials across Germany using OpenStreetMap (OSM) attributes and high-resolution orthophotos.
Our object detection pipeline classifies five distinct roof material types using the YOLOv11-L architecture. Our detection results
enabled the automatic augmentation of CityGML-based 3D models, filling in missing roof material information. This enrichment
supports advanced applications, such as assessing roof suitability for green infrastructure or simulating urban heat island mitigation
strategies. We validated the feasibility of our approach with real-world data and applied the method to a district in the city of Bremen,
Germany. The paper also includes a detailed discussion of the learning process quality, the integration, and the visualization of the

enriched 3D city model. The used code is available at: https://github.com/hcu-cml/citydb-roofmats-ail

1. Introduction

The integration of cutting edge technologies and infrastructures
is vital for enhancing urban sustainability. As urban populations
continue to grow, cities must explore innovative approaches to
meet the demands of their citizens while simultaneously redu-
cing their carbon footprint for sustainable living environments.
In this context, semantic knowledge of individual buildings
across a wide range of attributes is essential for accurately es-
timating fossil fuel emissions and for enabling informed, data-
driven planning aimed at their reduction (Sun et al., 2025} [Parkl
et al.,2024). This is particularly significant given that the build-
ing sector alone is estimated to account for approximately one-
third of global carbon emissions (Sun et al.,[2025).

Semantic information embedded in 3D building models, partic-
ularly rooftop characteristics, such as type or material, provide
invaluable insights for urban climate analysis (llehag et al.,
2018)). This allows for the creation of controlled simulation en-
vironments, which are essential for evaluating the suitability of
roofs for solar energy platforms, green infrastructure, and other
climate-related interventions (Park et al.||[2024). In this context,
green rooftop infrastructure, such as Blue-Green Roof Systems
or Phase-Change Materials (PCM) contribute to mitigating the
Urban Heat Island (UHI) effect as they can increase evaporative
cooling and store heat more effectively (Richter and Dickhaut,
2023} [Roman et al [2016). However, to simulate their impact
effectively, urban planners rely on semantically enriched 3D
city models, which could benefit significantly from the integra-
tion of semantic information, such as roof material composition
(Nouvel et al., [2015). Furthermore, incorporating rooftop char-
acteristics into semantic 3D city models enables urban planners
to conduct more advanced simulations and analyses addressing
a range of urban challenges not limited to climate-related is-
sues, but also including emergency route planning, thereby sup-
porting more informed and effective decision-making (Biljecki
et al.,|2015)).

However, in practice, semantic information on roof materials is
scarcely available and rarely included in publicly accessible se-
mantic 3D city models. To address this need, our work proposes
an approach for the automatic classification and subsequent se-
mantic enrichment of roof material information within 3D city
models using Volunteered Geographic Information (VGI). For
this aim, we exploited the sparse information about roof ma-
terials from OpenStreetMap (OSM) in whole Germany to label
a training dataset for the sake of object detection. The results
open up new opportunities to augment and enrich city models
with this a-priori unknown information for unmapped rooftops.
Thus, we subsequently integrated the estimated roof materials,
obtained from our learned model, into existing semantic 3D
city models based on the City Geography Markup Language
(CityGML) standard (Groger et al., 2012} [Kolbe et al., 2021).
This end-to-end pipeline allows for an automatic city or even
country-wide enrichment of 3D city models as baseline for fur-
ther urban simulations of relevance. For instance, in the specific
context of blue-green roof systems, the suitability of a building
for roof greening heavily depends on the underlying material —
concrete is typically more supportive due to its load-bearing ca-
pacity and thermal stability, whereas glass or metal roofs are of-
ten unsuitable without significant structural modification. Fig-
urdT]illustrates the resulting 3D city model highlighting differ-
ent roof materials from our object detection in different colors
accordingly.

The key contributions of this work are as follows: (1) Roof
Material Dataset: Development of a roof material dataset de-
rived from OSM data and high-resolution aerial imagery across
Germany (2) Object Detection: Implementation of a city-wide
roof material detection and mapping pipeline using a state-of-
the-art deep learning-based object detection (3) Semantic En-
richment: Integration of the predicted roof material informa-
tion into a semantic 3D city model in CityGML format. This
integration is achieved by spatially aligning building footprints
from the city model with their corresponding roof polygons de-
rived from raster data, such as orthophotos.
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Figure 1. Visualization of buildings with enriched roof materials in the test area of Bremen, Germany. Color-coded 3D building
models indicate their roof materials: concrete (grey), metal (magenta), glass (cyan), roof tiles (orange), tar paper (green), and multiple
materials (red). Visualized using CesiumJS and 3DCityDB Web Map Client, with ArcGIS World Imagery as the basemap.

2. Automatic Extraction of Semantic Rooftop Knowledge

For many years, extensive research has been conducted on the
automatic detection and segmentation of rooftops predomin-
antly focusing on general rooftop classification and identific-
ation, e.g., using Support Vector Machines (SVMs) (Mohajeri
or Markov Random Fields (MRFs) (Katartzis and
[2008). Besides, rooftop reconstruction from 3D point
clouds through prior knowledge and informed model sampling
has also been explored [2021). In this context,
deep learning-based approaches proved state-of-the-art accur-
acy in many different semantic segmentation and classifica-
tion tasks of various domains including rooftops. For instance,
the application of Convolutional Neural Networks (CNNs) has
significantly improved the automatic detection of rooftops and
classification roof types from aerial images
(2018). In a recent study, proposed an approach

to address the challenges posed by buildings that often ex-
hibit scale variation, spectral heterogeneity, and geometric com-
plexity. The method integrates a multi-scale global perceptron
network, combining Transformer and CNN architectures with
modified encoder-decoder structures to enhance the contextual
representation of buildings. In particular, the model employs an
improved multi-head attention encoder to better capture spatial
and spectral features.

To monitor health and integrity of flat rooftops,
(2022) applied a CNN-based approach to detect faulty bolts,

which indicate potential rooftop damage. Similarly, to infer the
extent of rooftop damage, [Hezaveh et al (2017) harnessed a
CNN to detect rooftop areas affected by hail impact. Moister
stains on flat rooftops indicate ongoing degradation processes
where water infiltration occurs, compromising the structural in-
tegrity of the roof and the durability of a building. Because
manual inspections on large rooftops often can oversee such
moister stains on flat rooftops, |[dos Santos et al| (2025) com-
pared two deep learning-based approaches for the detection and
segmentation of the aforementioned areas. Besides automatic
approaches for rooftop segmentation and classification, meth-

ods for the automatic detection of rooftop infrastructure, such

as photovoltaic panels [2023)) and the subsequent
potential analysis (Wu and Biljecki, 2021)) from aerial imagery,

have been researched plentiful, proposing deep learning-based
approaches to achieve state-of-the-art accuracies.

In the specific context of roofing materials,
compare various segmentation approaches for predicting roof
materials using high-resolution multispectral and thermal in-
frared imagery. Their work distinguishes between two material
classes: cement tiles and a combined class of colorbond and
zincalume. In a subsequent step, the predicted roof materi-
als are integrated into a 3D model of a specific council area
in Perth, Australia. Similarly, [Solovyev] (2020); [Kim et al
employed a deep learning-based segmentation to clas-
sify roof materials in a small areas of interest. Their model was
trained to identify five classes: concrete and cement, healthy
metal, irregular metal, and incomplete rooftops. Aiming to de-
tect asbestos—cement roofing in aerial imagery,
developed a Convolutional Neural Network (CNN)-
based approach using both RGB and color-infrared image com-
positions featuring a spatial resolution of 25 cm. In their study,
utilize aerial imagery to estimate the potential
energy savings and construction costs associated with imple-
menting cool roof systems in large urban environments. Their
approach employs a Convolutional Neural Network (CNN) to
detect building rooftops, which are then clustered based on
surface color, serving as a proxy for estimating the energy-
saving potential of cool roof retrofitting. Similarly,
(2023) developed a deep learning-based method to automat-
ically identify roof and facade materials using remote sensing
data combined with Google Street View imagery.

[Biljecki and Dehbil (2019) used available roof attributes from
OSM to label and predict roof types. Similarly, we annotated
a dataset using roof material properties from OSM for end-
to-end detection of different material classes from aerial im-
agery. However, we used a deep learning-based approach, i.e.,
YOLOV11, instead of manually designing relevant features.
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class train dist.  val dist.  testdist.  total obj.
tar paper 17,843 4069 4011 25,923
concrete 1715 395 438 2548

metal 2853 668 652 4173

glass 2055 404 482 2941
roof tiles 107,335 23,022 23,277 153,634
total obj. 131,801 28,558 28,860 189,219

Table 1. Targeted classes and their respective distribution in the
dataset.

3. Methodology

The following section presents our proposed pipeline for de-
tecting, mapping, and integrating roof materials into CityGML.

3.1 Multi-Class Object Detection

After extracting building roof material information from OSM,
we convert it along with the corresponding aerial imagery into
the YOLO object detection format. The resulting dataset is then
randomly divided into three subsets: 80 % training, 10 % valid-
ation, and 10 % testing. Using the training subset, we train the
deep learning-based YOLOvV11-L model to simultaneously de-
tect five distinct roof material classes, as illustrated in Figure
The five roof material classes targeted in our study are tar paper,
concrete, metal, glass, and roof tiles totaling 189, 219 instances
in our dataset. Further details on their distribution among the
dataset are provided in Table[T]

This classification enables the model to distinguish between
these materials during detection and allows for the individual
evaluation of each class’s performance. The classes were se-
lected based on their prominence in Germany. For our experi-
ments, we employed the YOLOv11 implementation developed
by Ultralyticy’} Specifically, we selected the Large version
of YOLOv11, which had been pretrained on the COCO data-
set prior to our training and fine-tuning and more learnable
parameters compared to the Regular and Small versions, re-
spectively. The model was chosen for its broad applicability
and widespread use. Compared to earlier versions, YOLOv11
enhances spatial attention, allowing the model to concentrate
on key regions of an image. This improvement helps achieve
more accurate detections, particularly for smaller or partially
occluded objects (Khanam and Hussain| [2024)).

During training, we monitor performance using three loss com-
ponents: bounding box loss (box loss), classification loss (cls
loss), and Distributed Focal Loss (DFL loss). Classification loss
quantifies the discrepancy between the true class label and the
class predicted by the model. Bounding box loss evaluates the
alignment between predicted and ground-truth bounding boxes,
incorporating factors such as aspect ratio and the spatial dis-
tance between box centers. This is typically achieved using an
IoU-based loss function. In addition, DFL is incorporated to
enhance the learning of bounding box coordinates by reformu-
lating the task as a classification problem rather than a direct
regression. Instead of predicting a continuous value for each
coordinate, the model outputs a discrete probability distribution
over a predefined range of n values where g corresponds to the
final prediction of the coordinates of a bounding box and y;
represents different candidate values for a coordinate as can be
seen in Equation[I] Focal loss is then applied to this distribution
to prioritize high-confidence predictions while down-weighting

! https://github.com/ultralytics/ultralytics?tab=
readme-ov-file

less informative ones, thereby improving localization accuracy
(Li et al.}[2020).

n

i=Y" Py (1)

=0

For post-training evaluation, we employ Precision, Recall, and
mean Average Precision (mAP) as metrics. As of the time of
writing, mAP is a widely used metric for assessing model per-
formance in object detection and information retrieval tasks. In
our study, we utilize mAP to evaluate the accuracy of predicted
bounding boxes in comparison to the annotated ground-truth
data. The following equation describes the mAP formally:

k=n

1
AP = = AP;, 2
m n; 2

where n corresponds to the number of classes and AP; is the
average precision of class ¢ accordingly. To compute mAP, it
is necessary to first calculate the Intersection over Union (IoU),
along with the Precision and Recall metrics. IoU measures the
ratio between the area of overlap and the area of union between
the predicted bounding box and the ground-truth bounding box.
Precision is defined as the ratio of true positive detections to
the total number of predictions made, while Recall is the ratio
of true positive detections to the total number of actual pos-
itives. To assess the quality of predictions, an IoU threshold
is applied beforehand so that only predictions with sufficient
overlap with the ground-truth are considered true positives. The
AP; in Equation 2] corresponds to the area under the Precision-
Recall (PR) curve for each class. This curve is generated by
ranking model predictions by their confidence scores and com-
puting Precision and Recall at each threshold level. Finally, the
AP values are averaged across all classes to obtain the mAP.
In some cases, mAP is further evaluated across multiple loU
thresholds; for instance, mAPs( refers to the average precision
computed at a fixed IoU threshold of 0.5.

3.2 Roof Material Integration in Semantic 3D City Models

The City Geography Markup Language (CityGML) is a stand-
ardized information model and data exchange format issued
by the Open Geospatial Consortium (OGC). It is designed to
model, store, and exchange detailed representations of a broad
range of 3D urban and landscape features (Groger et al.,2012).
Unlike other 3D city models that focus primarily on visual as-
pects, such as those based on aerial mesh geometries, CityGML
integrates appearance, geometry, and topology with rich se-
mantic information. The latest version, CityGML 3.0, was
released as an international OGC standard between 2021 and
2023 (Kolbe et al., 2021} |Kutzner et al., [2023).

In practice, many applications do not operate directly on text-
based CityGML datasets. Instead, these datasets are typically
parsed and transformed into structured representations that can
be efficiently stored, managed, and queried using a database
management system. Such representations may take the form
of object-oriented, graph-based, or relational data models.

Relational models represent information as collections of tables
(relations) composed of rows (tuples) and columns (attributes).
Since the advent of Structured Query Language (SQL), Rela-
tional Database Management Systems (RDBMSs) have become
standard across many domains (Davoudian et al., 2018). This
popularity has led to extensive research on storing and man-
aging XML-based formats like GML and CityGML in rela-
tional systems. Several RDBMSs, including Oracle, IBM Db2,
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Figure 2. Overview of our approach for detecting, integrating and mapping building roof materials into semantic 3D city models.

PostgreSQL, and Microsoft SQL Server, support native XML
or GML handling. Spatial extensions, like PostGIS for Postgr-
eSQL, further enable processing of geographic data. CityGML
can be managed using relational models. For example, the
database cjdb (Powatka et al., 2024) leverages CityJSON (Le-
doux et al.,|2019) for compact storage in PostgreSQL. The most
widely used software, the 3D City Database (3DCityDB) (Yao,
et al.L[2018)), is an open-source, high-performance geo-database
for managing, visualizing, and exporting large-scale CityGML
datasets.

Since May 2025, the 3DCityDB has been available in its
latest major release, version 5.0, which offers full support for
CityGML 3.0 and introduces a fully redesigned and simpli-
fied database schema, resulting in improved performance and
greater flexibility. With the 3DCityDB’s well-established soft-
ware suite and the promising capabilities of this new version,
we chose to adopt version 5.0 and its associated tools to store
and manage the selected CityGML test dataset for Bremen. At
the same time, this study serves as one of the first to explore
and evaluate the new release in practice.

The redesigned database schema of the 3DCityDB now in-
cludes a single table feature for all feature types (like buildings)
and a single table property for most semantic attributes and as-
sociations (see Figure [3). The CityGML data model supports
the storage of arbitrary attribute values with user-defined names
through the concept of generic attributes. This mechanism al-
lows for storing the predicted roof materials for each building
directly within the database without requiring prior schema ex-
tensions or additional tables.

The integration of predicted roof materials into the existing se-
mantic 3D city model is performed in two steps: (1) roof seg-
ments identified in the orthophotos are matched to correspond-
ing buildings in the city model based on spatial overlap, such as
by comparing their bounding boxes, and (2) the predicted roof
materials are then inserted as generic string attributes into the
associated building objects within the database. The enriched
city model can then be exported to both CityGML 2.0 and 3.0.

To accurately associate an extracted roof segment, represented
by a bounding box A, with a corresponding building from the
city model, bounded by bounding box B, we employ the Jac-

1
convert + export

CityGML
LOD2 v3.0

feature
id objectid envelope
1 DEHB01ALn000100e 01030000_
25 DEHBO1ALnOOO1PBB 01030000_
43 DEHB0O1ALn000102t 01030000_
y
Primary key
property Foreign key
v
id feature_id name val_string
7 1 Datenquellelage 1000
10 1 status measured
14 1 roofType 2100

Figure 3. Example of the contents and the primary key - foreign
key relationship between the tables feature and property.

card index (also known as IoU), defined as the ratio of the in-
tersection area to the union area of the two geometries:

ANB
- 02

3

A match is considered valid if the Jaccard index exceeds a pre-
defined threshold. However, as illustrated in Figure EL mis-
matches can arise in two directions: (1) a single bounding
box in the orthophoto may cover multiple buildings in the city
model, and (2) a single building in the city model may intersect
with several smaller roof bounding boxes from the orthophoto.
In such cases, the standard Jaccard index may fail to establish
desired results. To address this, we shift the matching strategy
to prioritize building bounding boxes, thereby maximizing the
number of correctly assigned roof materials in the city model.
Specifically, we employ a modified version of the Jaccard index
in which the denominator is limited to the area of the building
bounding box only:

_|AnB|

4

J'(A,B)

This approach accommodates cases where the building bound-
ing box is fully contained within a larger roof segment, as well
as instances where it overlaps partially with multiple smaller
roof segments. The threshold for J'( A, B) determines the sens-
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Figure 4. Example cases where a segmented roof may contain
multiple buildings (left), and vice versa, where a building may
contain multiple detected roofs (right).

itivity of the matching: lower values increase the number of
matches (at the risk of false positives), while higher values im-
prove precision but reduce potential matches. In this study,
a threshold of J'(A, B) = 0.15 is used. Both the standard
and modified forms of the Jaccard index, including the variant
used in this study, have been widely employed in related spatial

matching applications [2024). In PostgreSQL/Post-

GIS, spatial overlapping is done using an R-tree index.

After a segmented roof and its corresponding building have
been successfully matched, the predicted roof material is stored
as a generic attribute of the building using the following SQL
statement:

INSERT INTO citydb.property (
feature_id, datatype_id, namespace_id,
name, val_string)

VALUES (id, 5, 3, ’PredictedRoofMaterials’,

’concrete |metal|glass|roof_tiles|tar_paper’);

The table property is defined in the schema citydb, while the
values datatype_id and namespace_id are 5 and 3 for a generic
string attribute in the 3DCityDB version 5.0, respectively.

4. Experimental Results

The following section describes the generation of training data
in more detail and gives insight into the experimental results
our approach achieved evaluating commonly used quantitative
metrics for object detection.

4.1 Annotated Training Data Generation

To generate annotated training data containing roof material in-
formation, we utilized OSM. To ensure coverage of all com-
monly found materials in Germany, we queried the complete
OSM dataset for the country using the Overpass API. In the
next step, we constructed a grid with cells of 100x100 meters,
which served to define both the spatial extent of the roof ma-
terial annotations and the corresponding aerial image patches
for training. To focus on the most relevant data, we filtered the
OSM-derived material types to retain only the most frequently
occurring ones, removing rare or ambiguous entries. Addition-
ally, we imposed a constraint on grid cell selection: only those
cells containing at least three distinct rooftop instances, each
larger than 10 m?, were retained. This filtering step aimed to
reduce dataset size while ensuring that training samples con-
tained dense and meaningful information.

Finally, we used the selected grid cells to extract aerial image
patches at a map scale of 1:2400. Each patch was cropped to
a size of 500x500 pixels, resulting in the final training pairs of
aligned image data and roof material labels. All aerial imagery
was openly provided by the geoinformation authorities of the
federal states of Germany and features a ground sampling dis-
tance (GSD) of 20 cm. Since many roofs are only a few meters
in size, high-resolution RGB aerial imagery is preferred over
lower-resolution hyperspectral data. This is based on the as-
sumption that the color and patterns of roof materials in high-
resolution imagery are more informative for our model com-
pared to the less detailed features in hyperspectral data.

To visualize the predicted results in our area of interest, we
converted the object coordinates from the YOLO annotation
format to real-world coordinates in the ETRS89 / UTM Zone
32N coordinate system. This conversion was performed using
the coordinate bounding box provided with each aerial image,
which is stored as a GeoTIFF. The resulting coordinates were
then saved as Well Known Text (WKT) for the integration into
3D city models, such as CityGML, later on.

4.2 Experimental Setup

To detect, classify and map different classes of roof material
we apply as mentioned a pretrained deep learning-based object
detection model, namely, YOLOv11-L with 25.3 million para-
meters and 86.9 billion Floating-Point Operations Per Second
(FLOPS) provided by Ultralytics. The model has been pre-
trained on the COCO datasef’| featuring 80 object classes. The
model is implemented in PyTorch where the CUDA acceler-
ator has been used. In this context, our experiments have been
conducted with PyTorch version 2.2.0 with CUDA version 12.8
using an NVIDIA RTX 2000 Ada GPU with 8GB of VRAM.
The default configuration of hyperparameters have been select
and the model was trained for 100 epochs.

For the integration of predicted roof materials, we selected the
publicly availableﬂ CityGML 2.0 dataset of Bremen at Level
of Detail (LoD) 2. Specifically, we focused on a 4km by
3km area encompassing the districts of Mitte, Ostliche Vor-
stadt, Schwachhausen, and Vahr.

4.3 Multi-Class Object Detection

The experimental results reveal distinct performance variations
across training, validation, and testing phases for all five tar-
get classes. During training and validation, all three loss func-
tions exhibit a consistent downward trend over the course of
the epochs. As shown in Figure [6a] & [6b] the bounding box
loss and classification loss follow a similar range of values, in
contrast to the DFL loss. This similarity is attributed to the fact
that both losses evaluate the model’s performance on regres-
sion tasks locating objects and bounding boxes in the case of
the bounding box loss, and predicting the correct class labels
in the case of the classification loss, as described in Section
[3:1] When comparing the training and validation bounding box
loss with the classification loss further, it becomes evident that
after 50 epochs, the classification loss decreases more rapidly
than the bounding box loss. When evaluating the mAP, mAPs,
Precision, and Recall during validation, all metrics demonstrate
an increasing trend across epochs, as illustrated in Figure
The consistent decrease in both training and validation losses,

2 https://cocodataset.org
3 https://metaver.de
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coupled with the increase in validation metrics, indicates effect-
ive model learning and generalization.

To evaluate our trained model on the test dataset, we computed
the F1-Confidence curve, Precision-Recall curve, and confu-
sion matrix, which collectively illustrate the model’s perform-
ance across all five target classes, as shown in Figure[7]] The
F1-Confidence curve (Figure[7a) captures the model’s accuracy
by combining Precision and Recall scores across varying con-
fidence thresholds. Our results show that the highest overall
mean F1 score across all classes is 0.62, achieved at a confid-
ence threshold of 0.286. This is a reasonably good result, con-
sidering the heterogeneity of the dataset, as discussed in Sec-
tion[.Il A closer examination of individual classes reveals that
while metal, glass, and tar paper exhibit similar trends in their
F1 scores across confidence thresholds, roof tiles and concrete
emerge as outliers.

As shown in Table [I] class imbalance has a notable impact
on model performance. The roof tiles class exhibits signific-
antly higher F1 scores, exceeding the overall mean F1 score
across all classes by approximately 20 %. In contrast, the con-
crete class which contains substantially fewer samples shows
markedly lower F1 scores, falling roughly 12 % below the over-
all mean. Furthermore, the F1-confidence curve reveals that the
highest F1 score for roof tiles is achieved at a comparatively
higher confidence threshold. This indicates that the model can
achieve more accurate and confident predictions for the roof
tiles class relative to the average performance across all classes.

To further support the previous observation, Figure [7b] presents
the Precision-Recall curve. Consistent with the F1-Confidence
curve, the Precision-Recall curve shows notably higher Preci-
sion and Recall values for the roof tiles class, while the concrete
class exhibits lower performance. Additionally, as observed
earlier, the metal, glass, and tar paper classes perform close to
the overall class mean. The highest mAPs( score representing
the area under the Precision-Recall curve at an IoU threshold of
0.50 is 0.624, indicating strong overall performance across all
confidence thresholds and for all classes combined.

As shown in Table 2] the mAP for both the metal and glass
classes is 0.604, which may suggest a weak correlation with the
number of training samples. Both classes had a similar number
of samples extracted from OSM, as indicated in Tablem This
potential relationship is further supported by the roof tiles class,
which achieved the highest mAP value of 0.841 and also had
the largest number of training samples. However, the concrete
class, despite having a comparable number of training samples
to metal and glass, shows notably lower performance. This sug-
gests that factors beyond sample size may influence the model’s
performance. One possible explanation is the greater spectral
heterogeneity of concrete rooftops in RGB imagery. Concrete
roofs are often covered with additional materials such as tar or
gravel to enhance weather resistance, resulting in a more vari-
able visual appearance compared to glass or metal surfaces.

Interestingly, across all classes, the most frequent misclassi-
fication occurs with the background class, as shown in Fig-
ure This observation is important, as it suggests that the
primary source of misdetections is not confusion between ma-
terial classes, but rather a failure to detect any object at all,
classifying them as background. This may imply that class im-
balance in the dataset is not the primary factor limiting model
performance, since errors are predominantly due to missed de-
tections rather than incorrect class assignments among roof ma-
terial categories.

Figure 5. Examples of predicted roof material objects identified
in four aerial images.

As illustrated in Figure[3] the model successfully detects nearly
all roof material types across all classes in each example image,
with the exception of rooftops that are partially occluded by
vegetation. A likely explanation for this limitation is that the
aerial imagery used is based solely on high-resolution RGB data
rather than hyperspectral imaging. As a result, the model lacks
the spectral depth necessary to infer or distinguish materials that
are obscured by vegetation, making it difficult to identify what
lies beneath these occluded areas.

4.4 Integration in CitytGML

Out of 20,764 buildings contained in the selected CityGML
dataset of Bremen, 17,139 buildings have been assigned with
at least a roof material, as illustrated in Figure[I] This corres-
ponds to a coverage of 83 %. Among these, approximately 78 %
have been assigned with the roof material roof tiles, while 16 %
are labeled with tar paper. Buildings with multiple roof materi-
als account for 5 %, and the remaining 1 % consist of buildings
with a single roof material, such as concrete, metal, or glass.
A breakdown of these distributions is presented in Figure[§] In
total, 17,994 generic string attributes representing roof materi-
als have been inserted into the city model, with 828 buildings
assigned more than one material.

5. Conclusion & Outlook

In this paper, we addressed the automatic enrichment of se-
mantic 3D city models with roof material information. Using

class Precision Recall mAP mAP5g
tar paper 0.662 0.58  0.632 0.49
concrete 0.618 0.377 0.439 0.336
metal 0.725 0.495 0.604  0.455
glass 0.719 0.544 0.604  0.432
roof tiles 0.742 0.837 0.841 0.664
all 0.693 0.567 0.624  0.475

Table 2. Classes and their respective bounding box Precision,
Recal, mAP and mAPsq after inference on the test dataset.
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volunteered geographic information (VGI) from OpenStreet-
Map (OSM) across Germany, where roof material attributes are
available, and high-resolution orthophotos, we created a labeled
dataset for object detection. This enabled the categorization of
roof materials, facilitating the enrichment of existing 3D city
models. As a result, our approach allows for the large-scale ex-
pansion of CityGML datasets, supporting applications like roof
greening initiatives and urban heat island assessments. Our ap-
proach is applicable across Germany and can be extended to
regions beyond, provided they exhibit similar building morpho-
logies. Alternatively, the model can be adapted for global ap-
plication, contingent upon the availability of high-resolution or-
thophotos and roof materials provided through VGI.

To achieve even more robust detection, the class imbalance
problem in the underlying OSM attributes could be addressed
as a next step. In particular, integrating roof type information
into the learning process could enhance the prediction quality
for specific classes. The investigation of the impact of incor-
porating high-resolution hyperspectral images will be also a
subject of future research. The achieved material classification
could also enable new applications beyond roofs, such as the es-
timation or prediction of the underlying building materials and
thermal insulation. For the sake of bidirectional data enrich-
ment, we can also augment the roof material attributes from the

CityGML model into OSM.

The compact schema of the new 3DCityDB simplifies queries,
enabling the insertion of roof materials for 20,000 buildings in
Bremen within minutes. Due to inherent schema limitations,
these attributes were added as generic atrtibutes. In the near fu-
ture, we also aim to explore graph-based approaches, supported
by recent advancements in CityGML graphs.
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