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Abstract 

 

A detailed map database containing attribute information of individual buildings is highly valuable and expected to be utilized in 

various fields, including urban planning, energy management, and disaster preparedness. However, obtaining such detailed map 

databases are significant difficulty, because of privacy concerns and their high cost. To address this issue, this research aims to construct 

an open building-level spatial database as the goal. In this study, as a first step toward achieving this objective, we developed a method 

to classify buildings into detached houses and other types of buildings by utilizing Foundation Geospatial Data and information derived 

from open data. First, we assigned explanatory variables to each building in the foundation geospatial data for Nagaoka City, Niigata 

Prefecture, and created training data using PLATEAU data as the ground truth. Based on this dataset, we developed a machine learning 

model to classify each building as either detached or other types of buildings. Furthermore, we extrapolated the machine learning 

model to Sanjo City, Niigata Prefecture. We selected buildings in a way that aligns with the number of detached households reported 

in the national census at the subregion level and identified these as detached houses. Finally, validation of the extrapolated results 

showed that the mean absolute error (MAE) at the subregion level was approximately 9 buildings, demonstrating that the model 

successfully reproduced the spatial distribution of detached houses and other types of buildings. 

 

 

1. Introduction 

In recent years, the need for policy development based on a 

detailed understanding of urban spaces and their dynamics has 

become increasingly important. This trend is driven by the global 

push for cities that are sustainable, disaster-resilient, and 

resource-efficient. In this context, a detailed map database 

containing attribute information of individual buildings 

(hereafter referred to in this paper as the Building Attribute Map 

(BAM)) is gaining attention as essential infrastructure. They are 

expected to support a wide range of applications, such as urban 

planning, energy supply and demand optimization, disaster risk 

assessment, future population projections, and residential 

environment analysis. For example, Accurate identification of 

building usage plays a vital role in optimizing the spatial 

distribution of urban functions and analysing urban metabolism 

and resource efficiency, thereby contributing to the development 

of sustainable cities (Ivanović et al., 2020). In the energy sector, 

understanding usage patterns by building type has been shown to 

improve the accuracy of demand forecasting and support the 

optimization of energy-saving measures (He et al., 2024). 

Information on building attributes such as structure and year of 

construction also plays a critical role in estimating damage and 

assessing impacts during natural disasters such as earthquakes 

and floods (Rajapaksha et al., 2024). In Japan in particular, 

seismic performance is known to differ significantly depending 

on whether a building was constructed before or after the 1981 

revision of the Building Standards Act (the introduction of the 

new seismic design standards). Therefore, identifying the year of 

construction is effective for improving the accuracy of damage 

estimation (Takeda et al., 2023). Furthermore, accurately 

identifying the location of each household and the number of 

residents is considered useful for understanding the spatial 

distribution of "shopping-vulnerable" populations and estimating 

the potential human impact of tsunamis (Akiyama et al., 2013). 

These examples highlight the critical importance of BAM as 

foundational infrastructure for urban modeling and policy 

decision-making. Such data are indispensable for advancing 

smart city initiatives and promoting digital transformation (DX) 

in urban governance. 

 

As described above, BAM has the potential to be utilized in 

various fields. Such data is collected and maintained by local 

governments, national agencies, and private companies. 

However, opportunities for these datasets to be made publicly 

available as open data remain extremely limited. In Japan, BAM 

is collected and aggregated through the "Basic Surveys 

Concerning City Planning"(BSCCP) conducted by local 

governments, and it is regarded as highly valuable foundational 

data for urban planning (Ministry of Land, Infrastructure, 

Transport and Tourism of Japan (MLIT), 2023). Nevertheless, 

due to concerns over personal information protection, public 

access to this data is restricted. Even when the data is made 

available as open data, differences in data formats across 

municipalities pose technical challenges to its utilization. In 

addition, MLIT is publishing 3D urban models through the 

"PLATEAU" project. This data utilizes information from BSCCP 

as building attributes, allowing for a detailed understanding of 

building characteristics. As a result, it is expected to be useful in 

applications such as urban design and disaster prevention (MLIT, 

2023). However, the considerable time and resources required for 

data development have meant that coverage has expanded only 

gradually, on a municipality-by-municipality basis. As of 2025, 

only 258 cities have made such data publicly available. Although 

the project aims to cover 500 cities by fiscal year 2027, it does 

not plan to achieve nationwide coverage. As a result, disparities 

in data availability across regions remain a significant issue. 

Meanwhile, BAM developed by private companies also exist. 

However, these datasets are often expensive, posing a substantial 

financial barrier to their adoption in research and public 

administration. Furthermore, many of these data are based on 

field surveys and are updated infrequently—typically every three 

to five years—leading to concerns over their timeliness. 

 

As illustrated above, access to and utilization of BAM remains 

challenging. This limitation continues to hinder broader 
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application across various domains. To address this issue, the 

development of a detailed and openly accessible BAM holds 

significant potential as a foundational resource for evidence-

based public policy. As a first step toward this goal, this study 

focuses on building use classification. We propose a 

classification approach that integrates existing open spatial data 

with machine learning techniques. This approach aims to 

contribute to the construction of a high-value urban data 

infrastructure, with potential applications in municipal smart city 

initiatives, disaster management, and energy policy. 

 

1.1 Literature Review 

Several studies have attempted to estimate building use by 

utilizing open data. For example, Daniel et al. (2023) developed 

a method to classify buildings as residential or non-residential 

using only building shapes from OpenStreetMap (OSM). Fonte 

et al. (2018) estimated building use in a selected area of Milan, 

Italy, by utilizing building use and point-of-interest (POI) data 

from OSM, Facebook, and Foursquare. Fill et al. (2024) 

developed a highly accurate method for classifying building use 

not only by utilizing building shapes, land use, and urbanization 

levels, but also by incorporating spatial relationships into a graph 

structure. In their approach, buildings were treated as nodes, and 

distances to their nearest buildings were used as edges to 

represent spatial relationships. By using this graph structure in a 

graph neural network (GNN) classifier, high classification 

accuracy was achieved. However, a common issue in these 

existing studies is that they use OSM as the ground truth for 

building use classification. The reliability and quality of OSM 

labels have not been sufficiently examined or corrected, raising 

concerns about the validity of the training data.  

 

In another study, Droin et al. (2020) developed a semantic 

segmentation model (FCN-VGG19) that assigns building use 

labels to each pixel using aerial imagery and building masks. This 

enabled building-level use estimation based on pixel-wise 

classification. Although this study achieved promising results, it 

has the challenge that collecting source data such as aerial 

imagery involves considerable time and financial resources. 

As described above, several studies have been conducted on 

building use estimation using open data, but such approaches 

have rarely been applied in the context of Japan. In Japan, several 

types of open data are available with high reliability and 

accessibility, such as the Fundamental Geospatial Data (FGD), 

which includes nationwide building polygon information, and the 

national census, which provides insights into regional 

demographic trends. By combining these datasets with 

methodologies proposed in previous studies, more accurate 

building use classification can be expected. 

 

1.2 Objective 

The objective of this study is to clarify the distribution of 

detached houses, which represent the most prevalent building use 

category in Japan. This serves as a first step toward estimating all 

types of building use. Specifically, by utilizing publicly available 

building polygon data and statistical information, this study aims 

to develop a method for classifying detached houses and other 

buildings (hereinafter referred to as "non-detached houses") and 

to understand the spatial distribution of detached houses. The 

category of "non-detached houses" includes not only apartment 

buildings but also various other types of buildings such as offices, 

factories, and schools. 

 

This binary classification approach was intentionally adopted as 

the first step of a hierarchical strategy, primarily due to the class 

imbalance within our dataset. As shown in Figure 1, detached 

houses constitute 76.2% of all instances, making them the 

overwhelmingly dominant class. In contrast, all other categories 

are significant minorities (e.g., Public at 5.9%, Apartments at 

4.5%, and Commercial at 2.3%). A direct multi-class 

classification on such an imbalanced dataset would likely result 

in a model that is heavily biased towards the majority class 

(detached houses), leading to poor predictive performance for the 

other building types. Therefore, to build a robust model, we 

prioritized accurately separating the largest category first. This 

methodological choice establishes a solid foundation for more 

detailed, classification of the non-detached category in 

subsequent research stages. 

 

 
Figure 1. Distribution of building classes 

 

2. Flow of Study 

In this study, first, we assigned features to each building in the 

publicly available building polygon dataset known as the FGD. 

These features included information derived from the building 

polygon data, such as building shape and size; demographic 

information obtained from statistical data; and the distance to 

POI obtained from OSM. Next, using building use included in 

the PLATEAU dataset, we labeled each building as either a 

detached house or a non-detached house and created a training 

dataset. Based on this dataset, we constructed a machine learning 

model to classify each building as either a detached house or a 

non-detached house.Furthermore, we extrapolated the machine 

learning model to other regions and selected buildings that 

matched the number of detached households from the national 

census at the cho-cho-aza (subregion unit in Japan) level, 

estimating these buildings to be detached houses. Finally, we 

conducted a validation of the extrapolation results. 

 

2.1 Target Area 

The target area of this study is shown in Figure 2. For the creation 

of the training data used in constructing the classification model, 

we targeted the entire area of Nagaoka City in Niigata Prefecture, 

Japan. Nagaoka City is the second-largest city in Niigata 

Prefecture, with a concentration of public and commercial 

facilities in its central urban area, while most of the city consists 

of low-density residential zones. In addition, its suburban areas 

include rural and mountainous regions, resulting in a diverse land 

use structure where urban and rural elements coexist. Given this 

mixture of urban and non-urban characteristics and the diverse 
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distribution of building uses, Nagaoka City is considered well-

suited for the creation of training data.  

 

On the other hand, Sanjo City in Niigata Prefecture was selected 

as the extrapolation target for the constructed classification 

model. Sanjo City is adjacent to Nagaoka City and shares a 

similar regional composition. While it has commonalities with 

Nagaoka City in terms of urban structure and land use patterns, it 

also possesses distinct regional characteristics. Therefore, Sanjo 

City is considered suitable for evaluating the generalization 

performance and regional adaptability of the classification model. 

 

3. Development of a Classification Model for Detached and 

Non-detached House 

3.1 Preparation of Feature Data 

The features used in this study consist of 32 variables necessary 

for classifying buildings as either detached or non-detached 

houses. These features can be broadly categorized into two 

groups: geometric characteristics and surrounding environmental 

characteristics. Geometric characteristics include features such as 

Area, Perimeter, and Rectangularity. Surrounding environmental 

characteristics include demographic information such as the 

proportion of the population by age group, length of residence, 

and income level within the cho-cho-aza to which each building 

belongs. These surrounding environmental features were created 

using data from the 2018 Housing and Land Survey, aggregated 

at the municipal level, and the 2020 Population Census, 

aggregated at the cho-cho-aza level. In addition, surrounding 

environmental characteristics also include features derived from 

POI data available in OSM. A full list of the features used is 

provided in Table 1. 

 

3.2 Preparation of Training Data 

In this study, we used FGD (2020) as the base building polygon 

dataset. However, this dataset does not contain any attributes 

related to building use. To classify buildings as detached or non-

detached houses using machine learning, it is necessary to create 

accurate training data that includes the true building use for each 

building. Therefore, we spatially joined building use from the 

PLATEAU dataset—which is based on BSCCP—with the 

building polygons. Each building was then labeled as either a 

detached house or a non-detached house, thus completing the 

preparation of the training dataset. 

 

Table 1. List of input features and their descriptions 

 

3.3 Development of a Classification Model 

Using the training data constructed as described above, we 

developed a classification model for detached and non-detached 

houses. The model adopted for this task was eXtreme Gradient 

Category Feature Description 

Geometric 

characteristics 

Area Area of the building 

Perimeter Perimeter of the building 

Rectangularity 
Rectangle of the 

building 

Surrounding 

environmental 

characteristics 

Age categories 

(Three 

categories) 

Ratio of young 

population (<18), 

working age 

population (18–65), 

and aging population 

(>65) 

Period of 

residence 

categories 

(Six categories) 

Ratio of each section 

in which they live 

Family income 

categories 

(Nine 

categories) 

Ratio of households 

in each income group 

Percentage of 

building use 

(three 

categories) 

Proportion by building 

use type (Detached 

houses, Row houses, 

Apartment buildings) 

Percentage of 

structures by 

construction 

method 

(Three 

categories) 

Percentage of each 

structure in each way of 

building a house 

Use district 
Dummy variable for 

use district 

Points of 

interest (POI) 

Percentage of each 

structure in each way 

of building a house 

Figure 2. Overview of the target area: Nagaoka city and Sanjo city in Niigata Prefecture 
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Boosting (hereafter referred to as "XGBoost"), chosen for three 

primary reasons. First, the training data used in this study 

contains some missing values. XGBoost (Chen et al., 2016) is 

capable of learning directly from features with missing values, 

which allows for the construction of a robust model for our 

dataset. Second, its training speed is extremely fast, significantly 

reducing the computational cost required for model building. 

Third, as a tree-based method, XGBoost does not require data 

standardization. This is because it creates splits based on the 

relative order of feature values, making it insensitive to 

differences in their scale or variance. This characteristic, in turn, 

allows for a much more efficient data preprocessing workflow. 

For these reasons, we implemented XGBoost as the classification 

model for this study. 

 

XGBoost is an ensemble method belonging to the "gradient 

boosting" family. Boosting, in general, is an approach that 

sequentially trains multiple "weak learners" and combines their 

results to construct a strong learning model, thereby enhancing 

predictive performance. A "weak learner" in this context refers to 

a model that, on its own, does not achieve high performance in 

classification or regression tasks. Gradient boosting, specifically, 

considers the error between the predicted output of a weak learner 

and the true value, and then uses the subsequent learner to correct 

this error. By iteratively repeating this process, the method 

progressively reduces the error and builds a robust learning 

model.XGBoost is a decision-tree-based algorithm, specifically 

utilizing regression trees. This applies to classification tasks as 

well, where the final predicted values are converted into 

prediction probabilities. The following outlines the primary 

operational principles of the XGBoost algorithm. Initially, a 

single decision tree is trained based on the given data. The error 

(or residual) between the predictions made by this decision tree 

and the actual true values is then calculated. Subsequently, this 

error becomes the target for the next decision tree to learn. This 

process is repeated for a specified number of decision trees, 

bringing the model's overall prediction closer to the target 

variable. The model's predicted value here is the sum of the 

weights of the leaves to which the predicted data belongs in each 

decision tree. Specifically, XGBoost aims to minimize the loss 

function as described in equation (1). 

 

ℒ(𝜙) =  ∑ 𝑙(𝑦̂𝑖 , 𝑦𝑖)

𝑖

+ 𝛾𝑇 +
1

2
𝜆‖𝜔‖2 (1) 

 

where  𝑙(𝑦̂
𝑖
, 𝑦

𝑖
) = error between predicted and true values 

 𝛾𝑇 +
1

2
𝜆‖𝑤‖2 = regularization term 

 𝛾, 𝜆 = parameters 

 𝑇 = number of leaves in the decision tree 

 𝜔 = weights on each leaf 
 

Ultimately, thousands of decision trees are constructed, and by 

summing the values calculated from each decision tree, the final 

estimated vacant house probability can be obtained. By adopting 

such a structure, the model can effectively fit unknown data and 

return predictive values. 

 

After training the model, it predicts the probability (pi) that each 

building is a detached house. A building is then classified as a 

detached house if its predicted probability (pi) exceeds a 

threshold of 0.5. Logarithmic Loss (logloss) was employed as the 

evaluation metric for the model's performance. The logloss, 

defined by the following equation (2), quantifies the distance 

between the predicted probabilities and the true labels (yi ∈

{0,1}), with N representing the number of data points. A smaller 

logloss value indicates a superior model performance. 

 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 =  −
1

𝑁
∑ 𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)

𝑁

𝑖=1

(2) 

 

where  𝑁 = the number of data points 

 𝑦𝑖 = true values 

 𝑝𝑖 = probability of being a detached house 

 

For model construction , the entire dataset was first split into 

training/validation (70%) and testing (30%) subsets. To optimize 

hyperparameters and enhance generalization performance, we 

applied Stratified K-Fold Cross-Validation to the 

training/validation subset. In this approach, the data were divided 

into three folds (K = 3), with the class distribution (detached / 

non-detached) maintained consistently across each fold to mirror 

the overall distribution. In each iteration, one fold was used for 

validation while the remaining two were used for training. This 

process was repeated three times to ensure a consistent and 

reliable evaluation of the model. 

 

Furthermore, the model was optimized to maximize the F1-score, 

and key hyperparameters were tuned accordingly. Specifically, 

we optimized the maximum depth of the decision trees, the 

learning rate, the subsampling ratio for data instances, and the 

column subsampling ratio for features. Table 2 summarizes the 

types and search ranges of the hyperparameters considered, along 

with the optimal values identified in this study. Of note is the 

maximum tree depth, for which the optimal value was found at 

the upper boundary of our search range (10). While this might 

suggest that a deeper tree could yield better performance, we 

intentionally set the upper limit at 10 to manage computational 

costs and mitigate the risk of overfitting. Trees with a depth 

greater than 10 are prone to overfitting the training data, which 

can impair the model's generalization performance on unseen 

data. Therefore, after considering the trade-off between 

generalization performance and model complexity, we 

determined this range to be a practical and appropriate setting for 

our study's objectives. 

 

Hyperparameter Search range Optimized value 

Maximum tree depth 3 - 10 10 

Learning rate 
0.01 - 0.5 

(log scale) 
0.0383 

Subsample ratio 0.5 - 1.0 0.868 

Column subsampling  

per tree 
0.5 - 1.0 0.623 

Table 2. Summary of tuned hyperparameters used in this study 

 

3.4 Classification Results 

The estimation results for the test data are shown in Table 3. The 

overall accuracy was approximately 79%, and the F-score was 

0.804, indicating that the classification model developed in this 

study can perform high-accuracy classification. On the other 

hand, some buildings were found to be misclassified. One 

possible reason for this is the use of geometric characteristics as 

features. One possible reason for this is the use of geometric 

characteristics as features. As a result, it is possible that detached 

houses with large areas and complex shapes were misclassified 

as non-detached buildings, while non-detached buildings with 

small areas and simple shapes were mistakenly classified as 

detached houses. Among the misclassified cases, the most 

frequent error involved non-detached buildings being incorrectly 
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predicted as detached houses. This may be attributed to the use 

of aggregated data at the cho-cho-aza level as surrounding 

environmental features, which might not have accurately 

reflected the specific characteristics of individual buildings 

within cho-cho-aza. aggregated data at the cho-cho-aza level as 

surrounding environmental features, which might not have 

accurately reflected the specific characteristics of individual 

buildings within cho-cho-aza. 
 

Figure 3 shows the classification results for the area around 

Nagaoka Station in Nagaoka City. As can be seen from Figure 2, 

many buildings located in the central urban area around Nagaoka 

Station were classified as non-detached houses, while detached 

houses were found to be distributed in the surrounding areas. As 

described in Section 2.1, public and commercial facilities are 

concentrated near Nagaoka Station, and much of the city consists 

of residential zones. Therefore, the classification results 

appropriately reflect the actual building use in the area, 

demonstrating the model's high classification accuracy. 

 

Figure 4 visualizes the model's classification results for the area 

around Nagaoka Station, with each building color-coded by its 

confusion matrix category. The map shows that correctly 

classified buildings—True Positives (TP) and True Negatives 

(TN)—account for the majority of all instances. However, it is 

also apparent that a non-negligible number of False Positives 

(FP) are present. A closer inspection reveals that many of these 

FP buildings, which were misclassified as detached houses, tend 

to have areas and shapes similar to those of actual detached 

houses. 

 

Figure 5 shows the top 10 features that contributed to the 

classification of building types. While it is difficult to fully 

explain the causal relationships behind how these features 

affected the model’s classification results, it is possible to infer 

their roles to some extent by considering the meaning and 

tendencies of each feature. However, it is possible to infer their 

roles to some extent by considering the meaning and tendencies 

of each feature. In this study, we used Shapley values (SHAP) to 

visualize how each feature contributed to the classification 

decisions (Scott M. Lundberg, 2017). As shown in Figure 5, both 

geometric characteristics and surrounding environmental 

characteristics play an important role in the classification 

accuracy. Regarding geometric characteristics, there was a 

tendency for buildings with larger values for “Area”, 

“Perimeter”, and “Rectangularity” to be classified as non-

detached houses. This suggests that buildings with more complex 

shapes are more likely to be identified as non-detached houses. 

As for surrounding environmental characteristics, there was a 

tendency for buildings to be classified as non-detached houses in 

cho-cho-aza where the proportion of long-term residents was 

higher—particularly those falling under the period of residence 

categories "Resident Since Birth" and "Resident for More Than 

20 Years". In addition, there was a tendency for buildings to be 

classified as non-detached houses in areas where the values were 

lower for the categories "Detached House" (Percentage of 

Building Use) and Percentage of Structures by Construction 

Method "Standard Building"(Percentage of structures by 

construction method). As for the Age categories, there was a 

tendency for buildings to be classified as detached houses in areas 

with a higher proportion of the “Young Population” and also in 

areas with a lower proportion of the “Aging Population.” Based 

on these results, it can be concluded that both the physical shape  

information at the building level and the statistical data available 

at the cho-cho-aza level function effectively in the classification 

of building use. 

 

Table 3. Confusion matrix and performance metrics on 

our classification model 

 
Figure 3. Estimation results in Nagaoka city, Niigata prefecture 

(example of Nagaoka Station area) 

 
Figure 4. A spatial distribution of the confusion matrix in 

Nagaoka city, Niigata prefecture 

(example of Nagaoka Station area)

 
Figure 5. Top 10 feature contributions to the detached/non-

detached classification model, based on SHAP summary plot 

Test data 
Predicted 

Non-

detached 
Detached 

True 

Non-

detached 16,218 7,232 

Detached 2,379 19,677 

Accuracy 0.789 

Precision 0.731 

Recall 0.891 

F-score 0.804 
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4. Extrapolation 

4.1 Extrapolation to Other Regions and Validation of 

Extrapolation Results 

In this study, we extrapolated the developed classification model 

to all buildings within Sanjo City, Niigata Prefecture, in order to 

estimate the probability that each structure is a detached house. 

At the initial stage, a threshold-based approach was adopted, 

whereby buildings with a model-derived probability of 0.5 or 

higher were classified as detached houses. When the extrapolated 

results were aggregated at the cho-cho-aza level, this threshold-

based method led to biases in the estimates: in some areas, the 

number of detached houses was overestimated, while in others, 

none were identified at all. As shown in Figure 6, this issue 

became evident through validation against the digital residential 

map (Zmap TOWN II: 2020), resulting in a mean absolute error 

(MAE) of approximately 42 and a mean absolute percentage 

error (MAPE) of 336.7%, indicating considerable discrepancies 

and regional variability. 

 

This estimation error is primarily attributed to the use of 

aggregated statistical data at the cho-cho-aza level as model 

features, which introduced a regional bias into the predicted 

probabilities. In other words, aggregated data has the limitation 

of "averaging out" the diversity and micro-locational 

environment of individual buildings, thereby failing to capture 

their unique characteristics. Indeed, our results confirmed this 

phenomenon, showing that even for buildings with similar 

geometric shapes, their classification probabilities differed 

significantly depending on their location. To  address this, we 

revised the extrapolation method by aligning the estimated 

number of detached houses with the figures from the 2020 

Population Census at the cho-cho-aza level. Specifically, within 

each area, buildings with higher probabilities were selected in 

descending order until the census-based count was matched. As 

illustrated in Figure 7, this adjustment improved estimation 

accuracy, especially in previously over- or under-estimated areas, 

reducing the MAE to approximately 8.8 and the MAPE to 12.5%. 

It should be noted, however, that the Population Census is based 

on household counts, and may not fully account for dwellings 

with multiple households, such as two-family homes. Taking this 

into consideration, the extrapolated results shown in Figure 8 

indicate a slight overestimation of detached houses compared to 

the digital residential map in many areas. Nonetheless, this 

suggests that the model accurately reflects actual residential 

patterns and performs well in terms of classification accuracy. 

 

To further assess the validity of the extrapolation results, the 

absolute error between the extrapolated number of detached 

houses and the digital residential map was visualized for each 

cho-cho-aza. Figure 8 shows the distribution of absolute errors 

based on the threshold-based method, revealing substantial 

variation in errors across different regions. In contrast, Figure 9 

presents the distribution of absolute errors using the census-based 

method, where the errors were reduced to fewer than 20 buildings 

in most areas. These results demonstrate that the initial threshold-

based method caused large regional errors and spatial bias, 

whereas the adjustment using census data effectively mitigated 

these issues. Based on this process, Figure 10 shows the 

extrapolated results around Higashi-Sanjo Station in Sanjo City. 

 
Figure 6. Comparison of extrapolation results and  

digital residential map (Threshold-based method) 

 
Figure 7. Comparison of extrapolation results and  

digital residential map (Census-based method) 

 
Figure 8. Distribution of absolute errors between extrapolated 

results and digital residential map (Threshold-based method) 

 
Figure 9. Distribution of absolute errors between extrapolated 

results and digital residential map (Census-based method) 
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Figure 10. Estimation results in Sanjo City, Niigata Prefecture 

(example of Higashi Sanjo Station area) 

 

5. Conclusion 

In this study, we developed a method for classifying buildings as 

either detached or non-detached houses by utilizing open 

statistical data and POI data from OSM, based on the publicly 

available building polygon data from the FGD. As a result, the 

spatial distribution of detached houses could be identified with 

high accuracy. However, the model, trained on data from a single 

regional city, shows limited generalizability when extrapolated 

to large metropolitan areas. This issue stems from the fact that 

the statistical features used are not consistent across different 

urban scales. To overcome this and enable nationwide 

application, our future work will involve developing separate 

models tailored for distinct 'urban,' 'suburban,' and 'rural' 

typologies. We also aim to refine the classification of non-

detached houses by distinguishing specific types such as 

apartment buildings and commercial facilities. In particular, we 

are considering applying the graph neural network (GNN) 

classifier method proposed by Fill et al. (2024), which accounts 

for spatial relationships among buildings, to develop a use 

classification model tailored to regional characteristics in Japan. 

 

The ultimate goal of this research is to construct a detailed, 

nationwide building database. To achieve this goal, a key 

advantage of our methodology is its ability to build this database 

efficiently and at a low cost by leveraging open statistical data 

and building polygons that are available across the country. The 

construction of this database will involves estimating key 

building attributes—temporal attributes (e.g., construction year), 

thematic attributes (e.g., building structure), and spatial attributes 

(e.g., height and number of floors)—which are then combined to 

infer the location and number of residents for each household. 

Through these estimations, we aim to build an open map database 

that integrates detailed information on individual buildings at a 

nationwide scale. Such a database is expected to serve as a 

foundational resource for enhancing analysis and decision-

making in a wide range of fields, including urban planning, 

energy policy, and disaster risk assessment. Beyond academic 

use, this resource is also expected to contribute to the realization 

of smart cities by supporting digital transformation (DX) in 

municipal planning and promoting the visualization and 

understanding of dynamic and complex urban spaces. 
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