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Abstract 

 

The increase in vacant houses has become a serious social issue in many developed countries, including Japan.  Therefore, to support 

mid- to long-term policy planning, there is a growing need to understand future vacancy distributions. In this study, we develop a 

machine learning model to predict future municipal-level vacancy rates by incorporating not only demographic and building 

information, but also spatial indicators related to road development conditions. First, we constructed a road mesh dataset at the 500-

meter grid level by aggregating physical road indicators, block rectangularity, and the proportion of buildings with front roads. We 

then combined these variables with data from the Population Census and the Housing and Land Survey and developed a vacancy 

prediction model using LightGBM. The results show that incorporating road-related indicators improves prediction accuracy. In 

particular, we found that municipalities with a higher density of narrow roads, more irregularly shaped blocks, and a larger proportion 

of buildings lacking direct road access tend to have higher vacancy rates. This study demonstrates the value of road development 

information, which has received limited attention in previous research, in improving vacancy prediction, suggesting that road 

environments can influence the spatial distribution of vacant houses. Moreover, the findings of this study contribute to the early 

identification of areas at risk of high vacancy and the planning of preventive measures, thereby supporting urban management through 

the use of smart data. 

 

 

1. Introduction 

1.1 Background 

In recent years, the increase in vacant houses has become a 

serious social issue in many cities of developed countries. For 

example, it has been reported that there are approximately 18.6 

million vacant houses in the United States and more than 11 

million across Europe (Lončar and  Pavić, 2020). In Japan as well, 

the upward trend in vacant houses is notable, reaching a record 

high of approximately 9 million vacant houses in 2023, 

accounting for 13.8% of all residential properties (Ministry of 

Internal Affairs and Communications, 2024). Furthermore, some 

projections suggest that the vacancy rate could rise to as much as 

30.4% within the next decade (Nomura Research Institute, 2016; 

Seirin-Lee et al., 2020). 

 

One of the primary reasons why the increase in vacant houses has 

become a serious issue is its wide-ranging negative impact on 

urban environments. For example, it has been pointed out that 

vacant houses can lead to the deterioration of the landscape and 

public safety, as well as a decline in quality of life and heightened 

psychological anxiety among nearby residents (Garvin et al., 

2013). Therefore, local governments are required to understand 

the distribution of vacant houses and implement appropriate 

countermeasures. In response to these concerns, the “Act on 

Special Measures concerning Promotion of Measures for Empty 

Houses” was enacted in 2015, legally mandating local 

governments across Japan to make efforts to address the vacant 

house problem. In order to implement such countermeasures, it 

is essential to accurately grasp the distribution and status of 

vacant houses. However, field surveys are still the most common 

method for identifying vacant houses, which involve 

considerable labor and costs (Martin et al., 2016; Jensen, 2017;  

Masita and Akiyama, 2020). To more efficiently capture the 

spatial distribution of vacant houses, recent studies have focused 

on building-level vacancy prediction using statistical data (e.g., 

Martin et al., 2016; Akiyama et al., 2021). Martin et al. (2016) 

developed a method to identify vacant buildings based on 

attributes such as structural type, construction year, and 

demographic variables including household composition. 

Although their approach demonstrated moderate predictive 

accuracy, it depended on datasets that are not consistently 

available across regions, thereby limiting its applicability to 

broader geographic scales. 

 

Additionally,  other studies have aimed to predict vacancy rates 

over broader geographic scales, such as at the municipal level 

Furthermore, some research has attempted to estimate not only 

current vacancy rates but also those anticipated in the future (e.g., 

Kanamori et al., 2015; Mizutani and Akiyama, 2023). These 

approaches typically rely exclusively on demographic variables 

such as household composition, and physical attributes of 

buildings, such as structural type and construction year. Although 

these methods offer high generalizability, they do not account for 

spatial factors in their analyses. 

 

In contrast to the aforementioned studies on vacant housing, 

research addressing real estate prices, housing reconstruction, 

and surrounding living environments has highlighted the 

significant role played by spatial factors, such as road width and 

connectivity. For example, Aziz et al. (2023) demonstrated that 

narrower roads and complex road networks can negatively affect 

housing prices. Souza (2009) indicated that setback distances 

from front roads significantly influence property values. 

Furthermore, it has been pointed out that densely built-up urban 

districts—which are common in Japan and characterized by 

narrow roads and older housing stock—often face difficulties in 

housing reconstruction (Ando et al., 1997). Thus, road 

characteristics not only influence housing prices and the 

likelihood of reconstruction but also affect the broader residential 

environment. 
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These insights into the relationship between housing conditions 

and road infrastructure suggest that poorly developed road 

networks around residential areas may increase the risk of 

properties becoming and remaining vacant. For example, in 

neighbourhoods characterized by narrow streets or limited 

connectivity, access for large vehicles and emergency services 

may be restricted, creating physical barriers to housing 

reconstruction and maintenance. These constraints can hinder 

renovation or sale, potentially leading to stagnation in the local 

housing market. In turn, reduced market demand may lower the 

priority of upkeep for property owners, increasing the likelihood 

of neglect. As a result, such homes may remain unmanaged, 

raising the risk of becoming vacant or remaining so over the long 

term. In this way, inadequate road infrastructure can impede 

housing renewal, depress property values, and ultimately 

contribute to the emergence and persistence of vacant housing. 

 

In fact, a few studies have explicitly examined the relationship 

between vacant houses and road infrastructure, suggesting that 

buildings with poor access to roads or those facing narrow roads 

are more likely to become vacant (Lee et al., 2022; Park, 2019). 

However, these studies rely on only a narrow set of indicators 

related to the road environment and do not sufficiently account 

for features such as road width, road network density, or street 

block geometry. As a result, it is difficult to comprehensively 

assess how the surrounding road environment influences the 

occurrence of vacant houses. Moreover, since the analyses are 

confined to specific cities or districts, their findings are likely to 

be shaped by local urban structures and context-specific factors. 

Therefore, the insights gained from these studies are insufficient 

to determine whether the observed patterns are generalizable 

across broader geographic scales. 

 

As discussed above, while previous studies have offered valuable 

insights into the relationship between road environments and 

vacant housing, direct analyses of this relationship remain limited. 

Consequently, the influence of road infrastructure on the 

occurrence of vacant houses has not been thoroughly investigated. 

Furthermore, although road-related information has the potential 

to serve as an important predictor and enhance the accuracy of 

vacancy distribution models, it has rarely been incorporated into 

predictive methods for estimating the spatial distribution of 

vacant houses. 

 

1.2 Study Objective 

Against this background, this study aims to develop a machine 

learning model that predicts municipal-level vacancy rates with 

higher accuracy than previously proposed models (Mizutani et al, 

2025), by incorporating indicators related to road infrastructure 

in addition to demographic data such as those from the 

Population Census. In addition, the study seeks to quantify the 

impact of road development conditions on the occurrence of 

vacant houses. To this end, we first constructed a road mesh 

dataset by aggregating metrics such as total road length and 

building frontage conditions at the grid-cell level using road 

network data. This dataset was then integrated with physical 

building attributes and demographic information to create a 

comprehensive dataset for vacancy prediction. Subsequently, we 

developed a machine learning model based on this integration 

data, to estimate future vacancy rates across government 

organizations throughout Japan. 

 

The proposed method has three distinctive features. First, it is the 

first study to construct a detailed dataset on road environments 

across Japan using comprehensive road network data. This 

dataset includes not only physical characteristics of roads, but 

also building-to-road frontage conditions and the geometric 

regularity of city blocks. Second, it is the first attempt to 

incorporate road environment variables (such as road width, 

density, and frontage conditions) into a nationwide model for 

predicting the future spatial distribution of vacant houses. This 

approach enables more accurate predictions than conventional 

models and offers new insights into the impact of road 

infrastructure on vacancy dynamics. Third, because similar data 

are available in many other countries, the proposed method is 

adaptable to regions outside Japan that face comparable 

challenges related to vacant housing. 

 

Moreover, the data-driven approach adopted in this study, which 

is based on detailed nationwide road network data and statistical 

datasets, contributes to the advancement of evidence-based 

policy making (EBPM) grounded in spatial information and 

smart data, and supports the realization of data-driven urban 

management. Specifically, the method developed in this study 

enables local governments to make timely and continuous 

decisions regarding where, when, and how to implement vacant 

housing countermeasures. In the conventional approach, 

understanding the distribution of vacant houses has required field 

surveys, which are both time-consuming and labour-intensive. 

Consequently, many existing countermeasures have been 

reactive and ad hoc, often failing to address the root causes of 

vacancy. In contrast, the proposed approach allows for the 

efficient and ongoing identification of priority areas for 

intervention by integrating continuously updated road network 

data with demographic and household statistics. This not only 

enhances the effectiveness of current measures but also 

contributes to the development of preventive and strategic urban 

policies aimed at reducing future vacancy. Furthermore, if the 

model developed in this study reveals the extent to which road 

development conditions influence vacancy rates, it may offer a 

new perspective for reinforcing conventional countermeasures. 

In particular, it could enable policymakers to incorporate road 

environment factors—such as road width and building-to-road 

proximity in residential areas—which have not been sufficiently 

considered in previous vacancy mitigation strategies. 

 

2. Method 

2.1 Study Flow 

The study flow is shown in Figure 1. This study consists of three 

phases. First, Phase 1 involves the creation of mesh-based data 

on road development conditions. Next, Phase 2 involves 

constructing a dataset for machine learning. Finally, Phase 3 

involves building a model and predicting future vacancy rates. 

 

In Phase 1, as a preliminary step for aggregating road-related 

indicators at the municipal level, this study first compiles data 

based on the Digital Road Map (hereinafter referred to as “DRM-

DB”) and other sources. Specifically, the following indicators are 

aggregated for each 500-meter mesh: road length categorized by 

width, the degree of block rectangularity, and the rate of 

buildings that have a front road. Although this study adopts the 

municipality as the spatial unit for vacancy rate prediction, the 

aggregation is initially performed at the mesh level in 

anticipation of future applications at a micro scale, such as 

smaller administrative areas. By preparing generalized road-

related data in advance, it becomes possible to extend the analysis 

to finer spatial units and also reduce computational costs. 
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In Phase 2, the mesh-level road development data created in 

Phase 1 is combined with data from the Population Census and 

the Housing and Land Survey to construct both the training 

dataset for model development and the extrapolation dataset for 

prediction. 

 

In Phase 3, a machine learning model is developed using the 

training data to predict vacancy rates at the municipal level. The 

constructed model and the extrapolation dataset are then used to 

estimate future vacancy rates at the municipal level. Since this 

study covers all municipalities in Japan and includes large-scale 

validation, it is possible to build a generalized prediction model 

that is not dependent on any specific region. 

 

2.2 Data 

2.2.1 DRM-DB and Fundamental Geospatial Data 

The data used in this study are listed in Table 1. Among the 

datasets shown in Table 1, the data used for aggregating road 

development conditions are those included in DRM-DB and the 

Fundamental Geospatial Data.  

 

First, the “All Road Links” dataset included in DRM-DB was 

used to represent road geometry. This dataset expresses the road 

network as a combination of nodes and links and contains road 

data nationwide for roads with a width of 3.0 meters or more. 
Next, for representing the geographical shapes of rivers and lakes, 

the “Water System – Line” and “Water System – Polygon” 

datasets in DRM-DB were used. Rivers less than 50 meters wide 

are represented as lines and included in the “Water System – Line” 

dataset, while those 50 meters or wider are represented as 

polygons and included in the “Water System – Polygon” dataset. 

In addition, the “Railway Data” from DRM-DB was used to 

represent the geometry of railway lines. 

 

For building geometries, the “Building Outlines” dataset from the 

Fundamental Geospatial Data was used. In this study, to target 

residential buildings, buildings classified as “ordinary buildings” 

with a footprint area of 25 square meters or more were used 

(Ministry of Land, Infrastructure, Transport and Tourism, 2021). 

 

2.2.2 Population Census 

The Population Census is conducted every five years to 

understand the actual conditions of the population and 

households throughout Japan, targeting all individuals and 

households residing in the country. The data obtained from the 

census include both household-level information, such as 

building characteristics and the presence of children within the 

household, and individual-level information, such as age and  

Table 1. Data used in this study 

 

occupation. As the types of data collected and published vary by 

census year, the variables used in this study were limited to those 

that were consistently available in both the 2015 and 2020 

censuses. Additionally, since the aggregation and publication 

methods differ across years, certain variables were re-aggregated 

to ensure consistency in their format across the two time points. 

Furthermore, in the municipality-level data, each attribute is 

provided both as a total count and as a breakdown into 

subcategories. Therefore, for each available variable, this study 

calculated the proportion relative to the total count and used these 

ratios as features for model development. For variables where no 

relevant records exist in a given municipality, the value was 

treated as "Not applicable" and imputed as ”0”. Through these 

processes, the resulting features represent the proportion of 

households or individuals with specific attributes, which are used 

as explanatory variables in the model. 

 

2.2.3 Housing and Land Survey 

The Housing and Land Survey is conducted every five years to 

assess housing conditions and residential usage throughout Japan. 

The survey covers all cities, towns, and villages with a population 

of 15,000 or more. 

 

This survey includes data on the number of houses with occupied 

households, the number of houses without occupied households, 

and the number of houses under construction in each 

municipality. Vacant houses are included among the houses 

without occupied households. The survey classifies vacant 

houses into four categories: secondary residences, rental 

properties, properties for sale, and vacant houses that exclude 

rental properties, properties for sale, and secondary residences 

(hereinafter referred to as “other vacant houses”). 

 

Data Source Data Year 

DRM-DB 

All road links 

2020 Water system – line, polygon 

Railway data 

Fundamental 

Geospatial Data 
Building footprints 2020 

Population 

Census 

Population and households by 

gender 

2015, 

2020 

Population ratio by gender 

Number of households by 

household size 

Number of general 

households, household 

members, and single-person 

households by family type 

Number of general 

households, household 

members, and single-person 

households by family type 

Number of households by 

housing structure 

Number of general households 

by economic status 

Housing and 

Land Survey 

Total number of housing units 

2018, 

2023 

Number of vacant houses 

excluding rental, for-sale, and 

second homes (other vacant 

houses) 

Figure 1. Study flow 
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Secondary residences refer to vacation houses such as resort 

condominiums and second homes that are not regularly occupied 

but are intended for temporary use within a certain period. Rental 

properties and properties for sale refer to unoccupied houses that 

are intended to be leased or sold. Although these are classified as 

vacant houses, they are managed by a clearly identified owner or 

administrator and are expected to be used or inspected as 

necessary within a reasonable timeframe. 

 

In contrast, “other vacant houses” refer to houses that have been 

unoccupied for a long time, with no plans for reuse or circulation, 

and are effectively abandoned. These houses often lack a clearly 

identified manager, particularly when the vacancy has been 

prolonged. Such properties may pose risks to nearby 

communities, including structural deterioration or the spread of 

overgrown vegetation. 

 

Therefore, in this study, we focus on this specific category of 

vacant houses—those that are likely to require municipal 

intervention in the future due to lack of proper management. We 

define the vacancy rate as the proportion of “other vacant houses” 

relative to the total number of housing units. This vacancy rate is 

used as the target variable for the machine learning model 

developed in this study. By doing so, the model aims to estimate 

the extent to which unmanageable vacant houses, which are 

likely to necessitate municipal action, comprise the overall 

housing stock. 

 

2.3 Construction of Road Mesh Dataset 

2.3.1 Overview of Road Mesh Dataset 

Road data is typically provided as line data. However, line data 

alone makes it difficult to capture spatial characteristics such as 

total road length or density, making it challenging to obtain 

information on which types of roads are prevalent in which areas 

from an areal perspective. Therefore, to use road-related 

indicators as features for predicting vacancy rates at the 

municipal level, which is the primary objective of this study, it is 

necessary to convert line-based road data into areal data. 

 

To address this issue, we developed a dataset that captures road 

development conditions by aggregating multiple indicators at the 

500-meter mesh level. The dataset was constructed using DRM-

DB and the Fundamental Geospatial Data, and includes variables 

such as the number, total length, and density of roads by width 

category, block rectangularity, and the number of buildings 

classified by the presence or absence of a front road. Table 2 

presents the list of attributes included in the road dataset.  

 

In selecting road environmental variables, we aimed to capture 

spatial conditions that are assumed to affect vacancy rates. 

Narrow road widths may limit reconstruction and emergency 

response in the event of a disaster. Irregular block shapes may 

lead to inefficient land use and reduced resident satisfaction.  

Furthermore, buildings without access to front roads may face 

barriers to reconstruction, such as legal or large vehicle access 

restrictions. The subsequent sections provide detailed 

explanations of the aggregation methods used for each attribute. 

 

2.3.2 Aggregation of the Number, Length, and Density of 

              Roads 

The number of roads and total road length were calculated based 

on the number of road links and their lengths, categorized by 

width, within each mesh. Road density was then calculated by 

counting road endpoints located along the top, bottom, left, and 

right edges of each mesh, also by width category. 

 

Table 2. Attribute list of the road dataset 

 

2.3.3 Creation of Block Data 

The shape of city blocks significantly influences building 

development and walkability. Moreover, irregularly shaped 

blocks tend to lead to inefficient development and may also result 

in a lower-quality residential environment (Shpuza, 2021). 

Therefore, in this study, city blocks were generated using data 

included in the DRM-DB, and their shape were evaluated. For 

block generation, road line data, railway data, and river data 

represented as lines were used. In general, city blocks are 

considered spatial units that make up urban areas and are defined 

as regions bounded by geographic features such as roads, 

railways, and rivers. Based on this concept, these three datasets 

were first merged into a single geometry. This process produced 

polygonal regions enclosed by roads, railways, and rivers, which 

were treated as candidate city blocks. Although many of the 

generated polygons could be regarded as valid city blocks, some 

were not appropriate. For example, polygons overlapping with 

lakes or those covering vast areas in mountainous regions with 

sparse road networks could not be considered actual city blocks. 

To remove such unsuitable polygons, we first excluded those that 

spatially intersected with area-based water body data. Then, 

based on the interquartile range (IQR) of polygon areas, we 

identified outliers as those exceeding 1.5 times the IQR and 

excluded them from the dataset. The remaining polygons were 

defined as the final set of city blocks. 

 

2.3.4 Evaluation of Block Shape 

Next, to evaluate the shape of each city block, we calculated the 

rectangularity, an index that quantifies how closely a polygon 

approximates a rectangle. Rectangularity is calculated using the 

following equation (1). 

𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑡𝑦 𝑏𝑙𝑜𝑐𝑘

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 
𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒    

 
(1) 

 

Rectangularity takes a value between 0 and 1, with values closer 

to 1 indicating that the shape is more similar to a rectangle. Such 

blocks are considered to be more suitable for development.  

 

2.3.5 Aggregation of Building Counts by Presence Front 

              Roads 

The presence and width of the front road for each building 

significantly affect its value and the likelihood of redevelopment 

(Miyakawa 2018). In this study, we defined a building as having 

a front road if the distance from the centroid of the building 

polygon, as provided in the Fundamental Geospatial Data, to the 

nearest road was less than 15 meters. If the distance was 15 

meters or more, the building was considered to lack a front road. 

We then aggregated the number of buildings in each mesh, as 

Data 

Category 
Variable name  Data source 

Road  

Number of Roads by Width 

Category 

DRM-DB 

Total Road Length by Width 

Category 

Road Density by Width 

Category 

City Block 

City Block Rectangularity 

Number of Buildings by City 

Block Rectangularity 

Category 

Front Road 
Number of Buildings by 

Front Road Presence 

Fundamental 

Geospatial 

Data 
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well as the number of buildings classified by the presence or 

absence of a front road and by front road width. 

 

2.4 Development of a Predictive Model for Future Vacant  

        Housing Distribution 

2.4.1 Overview of the Predictive Model for Future Vacant 

              Housing Distribution 

 In this study, we used a dataset for vacancy prediction that 

combines the variables used in Mizutani et al.  (2025) with the 

road data developed in Section 2.3. Figure 2 illustrates the 

process of building the model to predict vacancy rates three years 

into the future. First, we build a machine learning model using 

information on population and households from the 2015 

Population Census, along with the road dataset, in order to predict 

vacancy rates based on the 2018 Housing and Land Survey. Next, 

we apply the trained model to the population, household, and 

road data from the 2020 Population Census. Under the 

assumption that the vacancy generation mechanism remains 

largely unchanged, this approach enables us to estimate 

municipal-level vacancy rates for 2023, three years after 2020. 

Throughout both the training and extrapolation stages, we use 

variables derived from the DRM-DB (2020), based on the 

assumption that road conditions at the municipal scale will not 

change significantly in the near future. 

 

2.4.2 Construction of a Dataset for Machine Learning 

Each municipality in the Population Census and the Housing and 

Land Survey has a unique corresponding code, which enables 

one-to-one matching between the two datasets. In cases where a 

match was not possible due to municipal mergers or name 

changes, we adjusted the data appropriately to ensure that the 

resulting statistics reflect actual conditions. Next, we joined the 

road mesh data created in Section 2.3 by collecting the mesh IDs 

corresponding to each municipality and aggregating the relevant 

mesh-level information from the road dataset. Through this 

process, we integrated the Population Census, Housing and Land 

Survey, and road dataset at the municipal level, thereby 

constructing the dataset used for building the vacancy prediction 

model. Consequently, in addition to the variables such as age 

group, number of households, and family type used in Mizutani 

et al. (2025), we also included road environment factors listed in 

Table 3. The final input dataset for the vacancy rate prediction 

model consists of these variables. 

 

2.4.3 Construction of the Machine Learning Model 

We used LightGBM, a machine learning regression method 

based on gradient boosting decision trees, as proposed by Ke et 

al. (2017), to build our model. LightGBM combines multiple 

weak learners and iteratively learns from prediction errors to 

minimize them. The algorithm adopts a method called "leaf-

wise" growth, which splits from the leaf that achieves the greatest 

reduction in loss. Additionally, it reduces computational cost by 

using only a subset of samples with small residuals during 

training. These characteristics allow LightGBM to achieve high 

prediction accuracy with shorter training times compared to other 

methods. 

 

We adopted LightGBM in this study for the following reasons. 

First, gradient boosting decision tree methods such as LightGBM 

are well suited for building predictive models that capture 

complex real-world relationships. For example, vacancy rates 

may exhibit nonlinear patterns, with significant differences 

observed between single-person households and multi-person 

households. Simple regression analysis cannot adequately 

capture such nonlinear relationships. In contrast, LightGBM uses 

a decision tree–based approach, which allows the model to  

Table 3. List of Variables Used in the Model 

 

flexibly adapt to changes in feature values and achieve high 

prediction accuracy. 

 

Second, previous studies across various fields, both in Japan and 

internationally, have frequently reported that LightGBM delivers 

strong performance (e.g., Zhang et al., 2019; Takeda et al., 2022). 

 

3. Result 

3.1 Results of Road Dataset Construction 

In this section, we examine part of the results from the 

development of the road mesh dataset. Figure 3 shows the 

average rectangularity for each mesh across Japan. We observe 

that many city blocks in the Tokyo metropolitan area exhibit high 

Category Variable 

Road 

Total length of roads (width less than 3 

meters) 

Total length of roads (width from 3 to 5.5 

meters) 

Total length of roads (width from 5.5 to 13 

meters) 

Total length of roads (width more than 13 

meters) 

Number of roads (width less than 3 meters) 

Number of roads (width from 3 to 5.5 

meters) 

Number of roads (width from 5.5 to 13 

meters) 

Number of roads (width more than 13 

meters) 

Road density (width less than 3 meters) 

Road density (width from 3 to 5.5 meters) 

Road density (width from 5.5 to 13 meters) 

Road density (width more than 13 meters) 

Building 
Number of buildings 

Proportion of buildings with a front road 

City Block 

Proportion of city blocks with rectangularity 

(0.0–0.2) 

Proportion of city blocks with rectangularity 

(0.2–0.4) 

Proportion of city blocks with rectangularity 

(0.4–0.6) 

Proportion of city blocks with rectangularity 

(0.6–0.8) 

Proportion of city blocks with rectangularity 

(0.8–1.0) 

Figure 2. Overview of the vacancy prediction model 
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rectangularity. In particular, several areas within the 23 special 

wards of Tokyo, where large-scale redevelopment projects have 

taken place since the 1990s, show especially high values. We also 

find city blocks with high rectangularity in the central areas of 

major cities such as Osaka and Nagoya, where redevelopment has 

occurred. In contrast, suburban areas, rural regions, and 

mountainous zones, where narrow streets from earlier periods 

still remain without significant improvement, tend to have many 

meshes with low rectangularity.  

 

Next, Figure 4 shows the ratio of buildings with a front road for 

each mesh. As with the rectangularity, it can be seen that in large 

cities such as Tokyo, there are many buildings with front roads 

and a large number of land and buildings with relatively good 

access by car tend to be distributed. On the other hand, in other 

areas, the proportion of front roads tends to be higher than in large 

cities and their surrounding areas. This may be due to the fact that 

the front roads in these areas are truly narrow, or the setback 

distance is greater than 15 m because the sites where buildings 

are located are flagpole lots. 

 

3.2 Results of Predicting Future Vacant Housing 

        Distribution 

First, we examine the prediction accuracy. This study evaluates 

how much the inclusion of variables from the road dataset affects 

prediction performance and whether road narrowness can serve 

as a factor in vacancy occurrence. To do this, we compare the 

performance of two machine learning models: one that excludes 

variables from the narrow road dataset and one that includes them. 

For both models, we use data from the 2015 Population Census, 

the 2018 Housing and Land Survey, and the road dataset. We 

split the samples into 85% for training and 15% for testing. We 

evaluate prediction accuracy by calculating the generalization 

error based on the difference between the predicted and actual 

values in the test data. We also predict vacancy rates for 2023 

using both models and assess their accuracy by comparing the  

 

Table 4. Comparison of Prediction Accuracy  

          with and without Road Variables  

predicted values with the actual values from the Housing and 

Land Survey. Table 4 presents the prediction accuracy for each 

model. 

 

We confirmed that both models achieved a high level of accuracy, 

with the coefficient of determination (R²) exceeding 0.8 

regardless of whether the model included indicators related to 

road development conditions. In addition, in the extrapolation 

results, the R² value remained close to 0.8, demonstrating robust 

predictive performance even when applied to future data. In 

addition, incorporating variables derived from the road mesh 

dataset developed in this study led to improvement in prediction 

accuracy. 

 

Next, we examine how road development conditions influence 

vacancy rates. Figure 5 shows the top nine explanatory variables 

with the highest positive and negative correlation coefficients 

with the predicted vacancy rates. The results indicate that a 

greater total length, number, and density of narrow roads with a 

width of less than 3 meters positively influence vacancy rates. In 

contrast, a higher city block rectangularity and a greater number 

of buildings with front roads negatively influence vacancy rates. 
That is, areas with a high concentration of narrow roads tend to 

have higher vacancy rates, while areas with better building-road 

connections and more regular block shapes tend to have lower 

vacancy rates. 

values from the Housing and Land Survey. Table 4 presents the 

prediction accuracy for each model. 

Presence/Absence 

of Road-Related 

Variables 

Test Data 

Extrapolation 

(Prediction for 

2023) 

R² MAE R² MAE 

Presence 0.860 0.0136 0.804 0.0172 

Absence 0.849 0.0142 0.770 0.0183 

Figure 3. Average Rectangularity (500m Mesh) 

Figure 4. Ratio of Buildings with a Front Road (500m Mesh) 

Figure 6. Estimation results of the vacancy rate  

 in each municipality (2023) 

Figure 5. Top 9 Explanatory Variables Positively and 

              Negatively Correlated with Vacancy Rates 
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Finally, Figure 6 shows the estimated vacancy rate for each 

municipality in 2023. As seen in the map, vacancy rates tend to 

be lower in major metropolitan areas such as Tokyo (shown in 

the enlarged map in the upper left), Osaka, and Nagoya, and in 

their surrounding suburbs. In contrast, higher vacancy rates are 

observed in mountainous regions and in prefectures located in the 

western part of Japan , where depopulation is more severe. 

 

3.3 Discussion 

First, the improved prediction accuracy obtained by 

incorporating indicators related to road development conditions 

into the model suggests that road conditions around buildings can 

serve as valuable information for predicting the distribution and 

occurrence of vacant houses. Furthermore, the correlations 

shown in Figure 5 indicate that vacancy rates are primarily 

influenced by a high proportion of elderly residents, a greater 

presence of narrow roads, irregular block shapes, and limited 

building access to front roads. This result supports the hypothesis 

proposed in this study that road development conditions affect 

vacancy rates, highlighting their important role in understanding 

vacancy patterns across municipalities. It is also consistent with 

the observations obtained from interviews with local 

governments, as mentioned in Section 1.1. 

 

On the other hand, incorporating variables from the road mesh 

dataset into the model did not significantly improve prediction 

accuracy. This is likely because, as shown in Figure 5, 

population-related variables, especially the proportion of elderly 

residents within each municipality, explain much of the variation 

in the number of vacant houses. Nevertheless, these variables 

enhance the interpretability of the model by quantitatively 

identifying specific spatial factors—such as narrow roads and 

irregular block shapes—that are associated with higher vacancy 

rates. This provides valuable insights for policymakers and local 

governments, as it highlights the role of road environment 

conditions in shaping vacant housing trends and informs the 

prioritization of intervention areas. 

 

In this study, we used municipalities as the spatial unit of analysis, 

which represents a relatively macro scale. However, as the results 

in Section 2.6.1 show, spatial factors such as road width, 

building-road connections, and block shapes vary greatly at the 

micro scale, such as the level of individual buildings. These 

factors influence residential environments and property values. 

Therefore, when estimating vacancy at finer spatial scales in 

future research, such as at the small-area or building level, 

incorporating information from the road mesh dataset as 

explanatory variables can help more accurately represent local 

locational characteristics and residential conditions. This may 

lead to improved prediction accuracy. 

 

4. Conclusion 

In this study, we aimed to improve the accuracy of future vacancy 

distribution estimation and clarify how road development 

conditions affect vacancy rates. Previous models mainly relied 

on municipal-level population and household attributes from the 

Population Census as explanatory variables. In contrast, by 

incorporating the newly constructed road mesh dataset into the 

model, we enabled the learning of features that represent the road 

conditions of each municipality.  As a result, we made it possible 

to predict nationwide vacancy rates while accounting for road 

development conditions, and we observed a slight improvement 

in prediction accuracy compared to conventional models. 

Furthermore, municipalities with longer and denser networks of 

narrow roads tended to have higher vacancy rates, while those 

with more regular block shapes and a greater number of buildings 

with front roads tended to have lower vacancy rates. 

 

We plan to further improve prediction accuracy by enhancing the 

explanatory variables, for example by incorporating temporal 

changes in variables derived from the road mesh dataset and 

adding information on narrower roads. We also aim to refine the 

model so that it can estimate vacancy rates at finer spatial scales, 

such as sub-municipal areas. This refinement may deepen the 

insights gained in this study, as discussed in Section 3.3. 

 

The findings of this study support evidence-based policy making 

(EBPM) and promote efficient urban management using smart 

data. By visualizing areas with high or increasing numbers of 

vacant houses, regions requiring priority interventions can be 

identified. The study also reveals how road development 

conditions affect vacancy, offering a new perspective beyond 

conventional demographic factors. In particular, areas with dense 

narrow roads, irregular blocks, and poor building access tend to 

have higher vacancy risks. Improving such road networks—e.g., 

by widening streets or reorganizing blocks—can help reduce 

future vacancies and guide strategic urban planning. 

 

In addition, many countries maintain population censuses and 

road-related data similar to those used in this study. Therefore, 

the proposed approach may be applicable beyond Japan, 

particularly in East Asia and other regions where vacant housing 

is a pressing issue. To apply this method effectively in diverse 

urban contexts, however, several considerations are necessary. 

For instance, the concept of building frontage may be less clearly 

defined in some developing countries due to informal address 

systems and unregulated land use. Moreover, vacancy in such 

areas may be influenced more by socioeconomic factors—such 

as local insecurity, poverty, or rapid urban migration—than by 

physical access constraints. To ensure accurate forecasting and 

effective policy application, it is important to tailor the model to 

reflect the dominant local drivers of vacancy. 
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