
Advancing Mixed Land Use Detection by Embedding Spatial Intelligence into
Vision-Language Models

Meiliu Wu1*, Qunying Huang2, Song Gao2

1* School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK - meiliu.wu@glasgow.ac.uk
2 Department of Geography, University of Wisconsin-Madison, 550 N Park St, Madison, WI 53706, USA - 

{qhuang46, song.gao}@wisc.edu

Keywords: Mixed Land Use, Urban Analytics, Vision-Language Models, Spatial Intelligence, Spatially Explicit AI, GeoAI.

Abstract

Embedding spatial intelligence into vision-language models (VLMs) has offered a promising avenue to improve geospatial decision-
making in complex urban environments. In this work, we propose a novel framework that augments the architecture of Contrastive
Language-Image Pretraining (CLIP) with the techniques of spatial-context aware prompt engineering and spatially explicit con-
trastive learning. By leveraging a diverse set of geospatial imagery (e.g., street view, satellite, and map tile images), paired with
contextual geospatial text generated and curated via GPT-4, our approach constructs robust multimodal representations that capture
visual, textual, and spatial insights. The proposed model, termed GeospatialCLIP, is specifically evaluated for urban mixed land
use detection, a critical task for sustainable urban planning and smart city development. Results demonstrate that GeospatialCLIP
consistently outperforms traditional vision-based few-shot models (e.g., ResNet-152, Vision Transformers) and exhibits competitive
performance with state-of-the-art models such as GPT-4. Notably, the incorporation of spatial prompts, especially those providing
city-specific cues, significantly boosts detection accuracy. Our findings highlight the pivotal role of spatial intelligence in refining
VLM performance and provide novel insights into the integration of geospatial reasoning within multimodal learning. Overall, this
work establishes a foundation for future spatially explicit AI development and applications, paving the way for more comprehensive
and interpretable models in urban analytics and beyond.

1. Introduction
As artificial intelligence (AI) evolves, the pursuit of more soph-
isticated, accurate, and intelligent models has led researchers
to explore from single-modal to multimodal learning, typically
with both visual and textual information as input (e.g., GPT-
4.11 and Gemini2) (Lu et al., 2022). In light of this trend, recent
studies have suggested improving the capabilities of vision-
language models (VLMs) with spatial intelligence, an ability
to interpret, analyze, and reason about spatial relationships in
diverse data formats (e.g., images, maps, and 3D environments)
(Gao, 2021, Li and Hsu, 2022, Chen et al., 2024). This capabil-
ity has been integrated into many aspects of our daily lives, such
as navigation and transportation networks (Iyer, 2021), emer-
gency responses (Agbaje et al., 2024), smart cities (Wolniak and
Stecuła, 2024), and precision agriculture (Akter et al., 2024).
However, despite the growing interest in AI applications for
spatial intelligence, many foundational aspects remain under-
developed, from data and methodology, to implementation
and evaluation. For example, how can we develop unbiased AI
models while significant gaps remain in data coverage for many
developing regions? What methods can we use to enable AI
models to understand spatial relationships across various data
modalities? Can we design a foundational framework for de-
veloping AI models to support diverse geospatial applications?
And how should we assess the performances of these models?

To bridge these gaps, this study aims to embed spatial intelli-
gence into VLMs to enhance their spatial thinking ability for
better decision-making in complex real-world tasks. Theoret-
ically, this innovative combination is designed to mimic the
human ability to interpret the world through multiple senses,
thereby enabling AI models to achieve a more comprehensive
and interpretable understanding of our built environment. To
1 https://openai.com/index/gpt-4-1/
2 https://deepmind.google/models/gemini/

validate the effectiveness of the proposed methods, urban mixed
land use detection serves as an ideal case study, as it integrates
complex geospatial patterns, multimodal data (e.g., satellite im-
agery, street view images, and textual urban descriptions and
policies), and human activity dynamics to address real-world
challenges in sustainable urban planning and smart city devel-
opment (Wu et al., 2023). In summary, the key contributions of
this work include:

• Data: Establishing benchmark datasets by curating high-
quality, large-scale geospatial image-text paired datasets
for training and testing VLMs in geospatial analytics;

• Methodology: Addressing the current methodological
challenges and limitations in vision-language learning
through innovative spatial-context aware prompt engineer-
ing and spatially explicit contrastive learning;

• Implementation: Developing an essential vision-
language learning framework that integrates spatial
knowledge effectively as well as demonstrating the
enhanced capabilities of such a framework in urban mixed
land use detection as a case study;

• Evaluation: Showcasing model advancement from
baselines to the proposed VLMs, contributing to the the-
oretical and practical knowledge base towards enhancing
VLMs by spatial intelligence, and thus shedding light on
developing geospatial AI (GeoAI) multimodal foundation
models in the future.

2. Geospatial Image-Text Pairwise Datasets
As discussed above, the first challenge lies in the training data.
In this study, vision input includes geospatial imagery such as
street view images, satellite images, and map tile images, while
language input includes both spatial and non-spatial contexts of
geospatial images generated and curated by GPT-4.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W7-2025 
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W7-2025-121-2025 | © Author(s) 2025. CC BY 4.0 License. 121



2.1 Vision Input: Geospatial Imagery
2.1.1 Street View Images Among various types of geospa-
tial images, street view imagery stands out as a vital category, as
these images can provide concrete and subtle visual features in
urban environments, particularly from a human vision perspect-
ive, and thus are suitable for multimodal learning. In addition,
using street view images has become a main research trend (Ze-
mene et al., 2018, Wu and Huang, 2022), as these images have
become largely available in public (Zhang et al., 2018), and are
more likely to be concurrent with textual descriptions of urban
environments, facilitating the training process of VLMs.
Place Pulse 2.0 This dataset, introduced by (Dubey et al.,
2016) and consisting of 110,988 Google Street View images
from 56 major cities across 28 countries worldwide captured
between the years 2007 and 2012, will be used as the visual in-
put of the proposed VLMs. These images were collected with
latitude-longitude coordinates uniformly sampled from grids
spatially intersected with city boundaries.
Mapillary Public Dataset Additionally, 193,254 street view
images across 430 most populated cities worldwide were also
collected from the Mapillary API3, each geo-located with
latitude-longitude coordinates. One of the key advantages of
the Mapillary dataset is that it is global, covering diverse urban
environments worldwide and thus providing a more encom-
passing perspective of street views compared with the Place
Pulse 2.0 dataset.

As results, Figure 1 (a) and (b) display the spatial distributions
of street view images collected in this study.
2.1.2 Satellite Images Another common geospatial image
type is satellite imagery. With its rich detail and comprehens-
ive coverage of the Earth’s surface, satellite imagery offers an
unparalleled perspective on our planet. Furthermore, when
combined with geospatial text, these images may unlock new
potential in training VLMs for geospatial applications (e.g.,
urban planning, disaster response and management, and envir-
onmental monitoring and conservation). Specifically, this study
collected 23,173 satellite images at different zoom levels (from
11 to 14) across 790 most populated cities worldwide from the
2023 Esri World Imagery Map Server4, each geo-located with
latitude-longitude coordinates. To conduct temporal change
analysis over the recent 10 years, 23,139 images with the same
settings in terms of zoom levels and spatial coverage were also
gathered from the 2014 Esri World Imagery Map Server.
2.1.3 Map Tile Images Map tile images, the building
blocks of digital maps that piece together to display detailed
geographic information at various scales, may also find a unique
place in training VLMs to support geospatial tasks, by com-
bining with textual data (e.g., geographic annotations, location-
based social media posts, or descriptive map reports). This syn-
thesis potentially allows for more accurate geographic inform-
ation retrieval.

OpenStreetMap (OSM) provides a rich source of map tile im-
ages through its servers5, offering a detailed and dynamic view
of the world’s geography. These map tiles are essentially small,
square bitmap images that represent different areas of the world
map at various zoom levels. OSM’s map tiles are particu-
larly valuable because they are generated from a free, edit-
able, crowd-sourced map of the world, maintained by a global

3 https://www.mapillary.com/developer/api-

documentation
4 https://services.arcgisonline.com/ArcGIS/rest/

services/World_Imagery/MapServer
5 https://tile.openstreetmap.org/{z}/{x}/{y}.png

community of volunteers, who make it incredibly detailed and
up-to-date. Specifically, using the same configuration for the
satellite imagery collection, 23,173 map tile images at differ-
ent zoom levels (from 11 to 14) across 790 most populated cit-
ies worldwide were collected from the 2023 OSM Raster Tile
Server, each geo-located With latitude-longitude coordinates.

As results, the spatial distributions of satellite and map tile im-
agery are displayed in Figure 1 (c) and (d), respectively.
2.2 Language Input: Generating Spatial and Non-spatial

Context from Geospatial Images through GPT-4
Given the vision input, there is a need for language input that
matches the geospatial imagery. Note that all global imagery in-
put, including street view images from the Place Pulse 2.0 data-
set and the Mapillary public dataset, satellite images from Esri,
and map tile images from OSM, do not contain textual descrip-
tions of the urban scene reflected by themselves. To obtain geo-
spatial image-text pairwise datasets, this work first conducted
multiple visual question answering tasks on GPT-4 for geospa-
tial image reasoning. In return, GPT-4 not only demonstrated
remarkable zero-shot transfer capabilities for urban analytics,
but also generated both spatially and non-spatially contextual-
ized descriptions for each image.

As outputs, extensive geospatial image-text pairs have been cur-
ated, split into training and testing sets, and summarized in
Table 1. Additionally, this study also generated geo-location
text for images and used these pairs for model training (Section
3.3).

3. Methodology
This work develops two novel methods to embed spatial intelli-
gence into VLMs, i.e., spatial-context aware prompt engineer-
ing and spatially explicit contrastive learning. A competitive,
open-source VLM - Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021) - is used as the model backbone
and being fine-tuned to build GeospatialCLIP tailored for better
supporting geospatial tasks.
3.1 Contrastive Language-Image Pre-training
CLIP (Radford et al., 2021) is well-known for its ability to
bridge the gap between textual descriptions and visual content
via contrastive learning, through its pre-training on more than
400 million pairs of online images and their corresponding tex-
tual descriptions. With an enriched understanding of the content
in both modalities, CLIP excels in associating images and text
based on the similarity of their embedding space.
3.2 Spatial-context Aware Prompt Engineering
Traditional prompts often lack spatially contextual awareness,
leading to inefficiencies and inaccuracies in the model output,
particularly for geospatial applications. To address this issue,
spatial-context aware prompts have emerged as a promising ap-
proach, leveraging spatially contextual cues to enhance the out-
comes for geospatial applications (Wu et al., 2023).

Spatial context refers to the geographical and physical
environment-related information that can significantly influ-
ence the interpretation of data. Correspondingly, spatial-context
prompt tuning involves incorporating spatial metadata and geo-
graphical features directly into the prompts, enabling the pre-
trained model to comprehend these spatial contexts. Intuit-
ively, this method can offer strategic guidance to harness the
power of pre-trained models for generating more insightful and
spatial-context relevant descriptions, by tailoring prompts to
capture domain-specific features and spatial contexts. Literat-
ure has shown that evaluating a constrained set of keywords and
prompts can help better explain and interpret learned models
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Figure 1. Spatial distributions of (a) Place Pulse 2.0 street view imagery, (b) Mapillary street view imagery, (c) Esri satellite imagery,
and (d) OSM map tile imagery. These datasets cover a global extent, obtaining a population-based spatial representation for model

training in urban analytics.

Table 1. Geospatial Image–Text Pairwise Datasets Generated by GPT-4

Image dataset
Num.
training
images

Num.
testing
images

Generated context types

Image
caption

Urban
percep-

tion

Land
use

Land
use

changes

Spatial
pat-
terns

Geo-
features

Urban
growth

Place Pulse 2.0 street view
images

6,489 8,755 – –

Esri Satellite images (2014
& 2023)

11,463 4,755 –

OSM map tiles (2023) 5,732 2,378 – – –

(Caliskan et al., 2017). Thus, to design spatial context-aware
prompts, initial approaches may involve formulating prompts
that explicitly direct models to focus on a set of urban key ob-
jects and their spatial relationships, by providing spatial context
cues or constraints (e.g., geo-locations at different scales, the
detected objects and their spatial patterns, and land use descrip-
tion and reasoning) to ensure that the generated text aligns with
desired outcomes for geospatial applications (Figure 2).

Specifically, these prompts should at least reflect six dimen-
sions, i.e., geospatial image types, geo-localization clues, spa-
tial patterns, land use/land cover (LULC), urban perception, and
urban development, which are outlined in detail in Table 2. This
investigation scheme is particularly helpful for explaining how
each type of spatial context can facilitate or impede the model
performance in the case study (Section 4), further enhancing the
interpretability of the prompt-tuned model as well as offering a
more rigorous understanding of how prompts influence model
behavior and decisions.

3.3 Spatially Explicit Contrastive Learning
Within the CLIP architecture, this study introduces a spatially
explicit textual module in the stage of text processing, designed
to manipulate textual input for CLIP, allowing the model to un-
derstand and encode spatial relationships and contexts expli-
citly in the text embedding (Figure 2). Specifically, the spatially
explicit textual module is integrated with CLIP’s text encoder. It
first extracts different types of textual descriptions paired with a
geo-tagged image, which are then concatenated with the labels
of a given task to create contextualized text input. Later, the
textual input becomes text embeddings after being encoded by
the text encoder. Next, the image embeddings and the formu-
lated text embeddings would be fused as dot products to meas-
ure their similarity, which is used to update the parameters in
both text and image encoders based on the pre-defined contrast-
ive loss computation. This integration allows the model to not
only learn from the visual data, but also from the spatial context
reflected by the textual data.

As for the training details, an initial learning rate of lr = 1e−7
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Table 2. Dimensions of Spatial Context-Aware Prompts

Dimension Types of Spatial Context Description Prompt Examples

Geospatial image types {image type} “street view”, “satellite”, or
“map tile.”

This {image type} image is
{label}.

Geo-localization clues {geo-location} Formatted as [city] or [city,
country, continent].

This place is {label} in
{geo-locations}.

{geo-features} Distinctive features that can
provide geo-location clues.

This place is {label}, with
{geo-features}.

{geo-reasoning} Explaining why this image is
from its city.

This place is {label}.
{geo-reasoning}.

Spatial patterns {object patterns} Objects and their spatial
patterns.

This place is {label}, showing
{object patterns}.

{urban patterns} Urban structure and spatial
patterns.

This place is {label}, showing
{urban patterns}.

LULC {land use} LULC description. This place is {label} for {land
use}.

{land use changes} LULC changes over 10 years. This place is {label}, with
{land use changes}.

Urban perception {perception} Describing why this image
looks [perception label].

This place is {label}.
{perception}.

Urban development {growth} Urban growth description and
prediction over 10 years.

This place is {label}. {growth}.

Note: Content within “[ ]” is the assigned label for a given task.

was adopted. The model was trained with 50 epochs, allow-
ing sufficient time to learn spatially contextualized text embed-
dings effectively and to integrate these insights with the image
embeddings. Regarding the training data, 180,119 pairs of geo-
spatial image-text records are used, including 43,202 pairs of
satellite images (14-level in 2023 and 2014), 30,626 pairs of
map tiles (14-level), 20,334 pairs of Mapillary’s street view im-
ages (only with geo-location text), and 85,957 pairs of Place
Pulse 2.0 street view images, to reach a balance of learned
representations across different geospatial tasks. A batch size
of 32 was used, optimized with Adam, with parameters as
betas = (0.98, 0.999), eps = 1e− 10, weight decay = 0.0, to
achieve better computational efficiency and meet the need for a
diverse set of inputs for effective contrastive learning. Lastly,
CLIP’s original contrastive loss function was implemented, as
its mechanism has already penalized incorrect geospatial asso-
ciations between the contextualized text and the geospatial im-
age. That is, the contrastive loss function brings closer the rep-
resentations of “positive” pairs of geospatial text and images,
while pushing apart those of “negative” pairs.
3.4 A Vision-Language Learning Framework with Spatial

Intelligence
The CLIP-based framework enhanced by spatial-context aware
prompt engineering (Section 3.2) and spatially explicit contrast-
ive learning (Section 3.3) to develop a GeoAI VLM (i.e., Geo-
spatialCLIP) is demonstrated in Figure 2. To evaluate its per-
formance, experiments have been conducted for urban mixed
land use detection (Section 4). Specifically, the outcome of
spatially explicit contrastive learning is the spatially augmen-
ted text encoder and image encoder, which can better extract
geospatial representations in both text and image formats and
capture a more in-depth understanding of the geospatial rela-
tionships (e.g., similarity or dissimilarity) between visual and
textual features.

4. Experimental settings for Mixed Land Use Detection
Our work uses mixed land use detection as a case study to as-
sess the proposed methods. Mixed land uses integrate various
socioeconomic functionalities such as residential, commercial,
industrial, and recreational spaces. Historically, mixed land use

has been central to urban landscapes since the early 20th cen-
tury (Moos et al., 2018), improving health conditions (Brown
et al., 2009), housing values (Wu et al., 2018), crime reduction
(Zahnow, 2018), and reducing automobile dependency (McCor-
mack et al., 2001). Mixed land uses are recognized as essen-
tial for creating livable and sustainable communities (Ye et al.,
2005).

However, mixed land use detection remains a challenge due to
data limitations and processing methods. Most land use data
assign a single label to each feature, while many support mul-
tiple functions (Pande et al., 2021). These data are typically
gathered via visual interpretation of remote sensing imagery,
which may not capture mixed land uses accurately, especially
for multi-story properties (Helber et al., 2019). The persistent
issue is the use of one-class classification for multi-class scen-
arios (Omrani et al., 2017). This approach relies on aggregating
land uses within larger parcels, resulting in biased mixed land
use detection (Tian et al., 2017). Recent studies have imple-
mented multi-label concepts, but still face challenges such as
coarse-grained aggregation and reliance on manual interpreta-
tion (Liang et al., 2021).

To address these issues, recent studies proposed using street
view imagery, which offers detailed, side-view visuals of urban
land uses (Zhu et al., 2019). Street view images can be geo-
located at the point level, more informative than overhead-view
imagery, and improving spatial resolution for land use classific-
ation (Castelluccio et al., 2015). Moreover, it has been demon-
strated that VLMs combining street view images and contextual
land-use prompts outperforms traditional vision-based methods
(Wu et al., 2023).
4.1 Study Area
This experiment is conducted within New York City (NYC),
one of the most densely populated urban centers in the United
States, distinguished by its pronounced prevalence of mixed
land uses affirmed by the NYC Department of City Planning.
4.2 Datasets
Place Pulse 2.0 Street View Images With this context, the
street view images in NYC have been used to evaluate the zero-
shot performance of CLIP and GPT-4 on mixed land use detec-
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Figure 2. A framework for embedding spatial intelligence into VLMs (e.g., CLIP), achieved by spatial-context aware prompt
engineering and spatially explicit contrastive learning.

tion. Particularly, the applied dataset is a subset of the Place
Pulse 2.0 and consists of 3,398 Google Street View images
captured from 2007 to 2012, referencing (Wu et al., 2023)’s
study for mixed land use measurement and mapping using the
same dataset. These images were only used for model test-
ing, sampled from the four primary boroughs of NYC, namely
Brooklyn, Queens, Manhattan, and the Bronx.
OpenStreetMap (OSM) Land Use Data OSM provides
public, cloud-sourced online maps. OSM data contain spatial
geometries in vector format (i.e., point, line, or polygon) that
are linked with various attributes, including land use informa-
tion. Many previous studies have demonstrated the effective-
ness of using OSM land use data to train models for urban
land use classification (Fonte et al., 2020). In this work, the
OSM shapefiles were downloaded from the BBBike website6.
Specifically, after data preprocessing (e.g., removing the in-
valid features), the layers of “buildings” (277,875 polygons),
“landuses” (21,362 polygons), and “natural” (9,233 polygons)
in NYC were used as the land use validation data.

Additionally, since the original OSM land use types are defined
as very detailed classes, we re-classified them into six categor-
ies that are more general, i.e., residential, commercial, indus-
trial, greenfield, recreation, and transportation, following sim-
ilar data pre-processing procedures of previous studies (Wu et
al., 2022, Wu et al., 2023).

Next, for each location of an image, a buffer zone with a ra-
dius r (i.e., 50-meter) will be created and intersected with the
polygons in the land use layer. If different land use types are
identified in this buffer zone, then this location will be classi-
fied as mixed land uses. Specifically, accuracy is defined as
the percentage of correctly predicted images (i.e., the predicted
land use is the OSM one, or one of them in the case of mixed
uses).

5. Results and Analysis
5.1 Zero-shot Learning on VLMs
To evaluate the effectiveness of the proposed zero-shot models,
baseline model comparisons have been conducted using a tradi-
tional vision-based CNN model, ResNet-152 (He et al., 2016),
pre-trained on ImageNet-1K V2 (Deng et al., 2009) as well
as a vision transformer model, ViT (Dosovitskiy et al., 2020),

6 https://download.bbbike.org/osm/

pre-trained on ImageNet-1K V2 (Deng et al., 2009) and Im-
ageNet2012 (Russakovsky et al., 2015), considering their well-
established and strong performances across various computer
vision benchmarks. These two baseline models are fine-tuned
based on few-shot learning, and computed the cross-entropy
loss after 32 training epochs, with a learning rate of 10−3 and
an optimizer of Stochastic Gradient Descent (SGD).

Fig. 3 illustrates the contrast in prediction performance of
the proposed zero-shot models versus the few-shot ResNet-152
and ViT models. As results, CLIP wins the few-shot ResNet-
152 and ViT models with the degrees of matching as 71.27%,
achieving 17.66% and 7.19% better than the 20-shot ResNet-
152 and ViT, respectively. Moreover, GPT-4 outperforms CLIP
by 4.83%, reaching a remarkable accuracy at 76.10%. These
results underscore the competitive edge of VLMs in land use
detection tasks, compared to traditional single-modal models
that are only tailored for the input of imagery. For instance,
CLIP yields visual features that are extracted in a contrast-
ive learning manner and informed by the self-supervised pre-
training on extensive text-image paired data, which also contain
descriptions of land use scenarios or contexts. Consequently,
these features can be easily linked to distinct representations for
each land use label. In contrast, traditional supervised single-
modal models must derive visual features solely from input im-
ages, which poses the limitation that the labeled class of an im-
age could be associated with many different visual objects de-
tected from the image, in which the primary object(s) for the
class may not be distinguished. This issue becomes especially
pronounced in few-shot scenarios when the model has not yet
established representative visual objects for each class. This
result demonstrates the capacity of natural language to aid in
referencing learnt visual objects, facilitating the feasibility of
the model for land use detection via zero-shot transfer.

Specifically, CLIP’s visual feature space of land use labels is
plotted in showing that a certain level of mixture in the visual
representations for land use labels has been captured by its pre-
trained image encoder, as a result of CLIP’s enormous amount
of pre-training pairwise data that were learned contrastively, en-
abling the land-use visual features and their mixture represent-
ations to be linked to land use labels (in text).
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5.2 Spatial-context Aware Prompt Engineering on VLMs
Next, Table 3 shows the accuracies of CLIP’s prompt tuning
results for detecting mixed land use from street view images,
with various prompts applied:

• No prompt: The model achieves 69.36% accuracy
without any prompts. This serves as the baseline for com-
paring the effectiveness of other prompts.

• Non-spatial prompts:

– Image Caption: Using an image caption as a
prompt decreases accuracy to 56.00%, suggesting
that non-spatial captions may not contain useful in-
formation for land use detection and can actually de-
grade performance.

– Non-spatial ensemble: Referring to the work by
(Wu et al., 2023), combining various non-spatial ele-
ments (e.g., “for [land use]” or “[land use] pur-
pose”) with a softmax function to form an ensemble
prompt slightly improves the accuracy over the
baseline to 69.97%, indicating that a well-structured
combination of non-spatial information can be bene-
ficial.

• Spatial prompts:

– Image type: This prompt indicating the “image
type” significantly reduces accuracy to 32.77%,
which could imply that the type of image alone (i.e.,
“street view”) is not informative for mixed land use
detection.

– Perception-based prompts (Beauty, Boringness,
Depression, Liveliness, Safety, Wealthiness):
These prompts generally deteriorate accuracy over
the baseline, with Beauty leading to the worst de-
crease to 45.8%. This suggests that subjective per-
ceptions of a street view cannot provide useful con-
textual clues about its land use.

– Land use: Very surprisingly, directly using a “land
use” prompt lowers accuracy to 31.7%, indicating
that CLIP may be confused by too complex land use
descriptors, although its capability of street view im-
agery geo-localization is significantly improved by
“land use” prompts.

– Spatial patterns: The prompt related to spatial pat-
terns gives an accuracy of 51.5%, which is lower
than the baseline, indicating that spatial patterns
alone do not contribute to determining mixed land
use.

– Geo-features: This prompt also decreases accuracy
to 44.6%, probably due to the same reason men-
tioned earlier (i.e., GPT-4 cannot provide sufficient
information in this prompt).

– City label: The highest increase in accuracy is ob-
served with the “city label” prompt, jumping to
71.27%, which indicates that knowing the city where
the image was taken from provides significant con-
textual information that aids in land use detection.

In conclusion, while most prompts do not boost CLIP’s per-
formance in this experiment, the “city label” prompt and the
“non-spatial ensemble” prompt contain contextual information

Table 3. GeospatialCLIP’s Prompt Tuning Results of Mixed
Land Use Detection

Prompt Type Prompt Acc. CLIP Acc. GeospatialCLIP

No prompt — 69.36% 70.81%

Non-spatial
Image caption 56.0% 57.2%
Non-spatial ensemble 69.97% 72.41%

Spatial

Image type 32.77% 40.85%
Beauty 45.8% 39.2%
Boringness 60.4% 44.2%
Depression 62.7% 46.7%
Liveliness 66.8% 58.1%
Safety 64.1% 47.2%
Wealthiness 53.5% 41.4%
Land use 31.7% 34.6%
Spatial patterns 51.5% 48.0%
Geo-features 44.6% 49.2%
City label 71.27% 75.15%

that can assist CLIP in achieving the best results over the
baseline for mixed land use detection.
5.3 Spatially Explicit Contrastive Learning on VLMs
Table 3 compares the accuracies between CLIP and Geospa-
tialCLIP in detecting mixed land uses, with and without non-
spatial and spatial prompts. A detailed analysis is described
below:

• No prompt: This serves as the baseline accuracy for each
prompt-tuned case, with CLIP at 69.36% and Geospatial-
CLIP at 70.81%.

• Non-spatial prompts:

– Image caption: When using an image caption,
CLIP’s accuracy falls to 56.00%, and Geospatial-
CLIP to 57.2%, suggesting that non-spatial inform-
ation might not be beneficial for mixed land use de-
tection.

– Non-spatial ensemble: Both models show an im-
provement over their “no prompt” baselines with a
non-spatial ensemble, with CLIP reaching 69.97%
and GeospatialCLIP reaching 72.41%. This indic-
ates that a well-designed combination of non-spatial
information can contribute positively.

• Spatial prompts:

– Image type: Introducing the image type as a prompt
leads to a decrease in accuracy for both mod-
els, with CLIP falling to 32.77% and Geospatial-
CLIP to 40.85%. Despite the decrease, Geospatial-
CLIP maintains higher accuracy than CLIP with this
prompt.

– Perception-based prompts: All perception-based
prompts reduce the accuracy compared to the “no
prompt” baseline for both models. However, for
CLIP, the declines are less steep, and it consistently
outperforms GeospatialCLIP in these categories.

– Land use: The “land use” prompt deteriorates the
performance of GeospatialCLIP (to 34.6%) over its
baseline, the same as CLIP (decreasing to 31.7%).

– Spatial patterns and Geo-features: Both prompts
result in reduced accuracy for both models compared
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to the “no prompt” baseline.

– City label: This prompt provides the highest accur-
acy for both models, with CLIP reaching 71.27%
and GeospatialCLIP achieving 75.15%. Both see an
increase over the “no prompt” baseline, especially
GeospatialCLIP, which suggests that it learns and
leverages city-based knowledge very effectively.

To sum up, only “Non-spatial ensemble” and “City label”
prompts can lead to higher accuracy in mixed land use detec-
tion tasks compared with the “no prompt” baseline.

Figure 3. Comparison of model performances on mixed land use
detection.

In addition, Figure 3 compares the performance of differ-
ent models, with few-shot ResNets and few-shot ViT as the
baselines, which have the same model configuration as Section
5.1. Specifically, few-shot ResNets have the lowest perform-
ance, and few-shot ViT shows a considerable improvement over
few-shot ResNets, displaying a variable performance as more
training examples are fed.

Next, comparing the VLMs to these baselines, GPT-4 shows
a remarkable performance of 76.10%, which not only signific-
antly outperforms the few-shot performance of both ResNets
and ViT but also surpasses the other VLMs. As for Geospa-
tialCLIP, with an accuracy of 75.15%, it also exceeds the few-
shot models, gaining a comparable performance with GPT-4.
CLIP’s performance is impressive as well, topping the few-shot
models.

Based on the findings, several implications may be inferred:

• All zero-shot VLMs (GPT-4, GeospatialCLIP, CLIP)
demonstrate a higher degree of matching accuracy, show-
casing the strength of VLMs in leveraging learned land use
representations compared with single-modal image-based
models.

• Both GPT-4 and GeospatialCLIP excel in this task and
show very similar performances, indicating that they are
particularly well-suited for mixed land use detection,
likely due to their extensive pre-training on multimodal
datasets that include urban scene and land use information.

• CLIP also performs quite well, suggesting that its vast
image-text pairwise pre-raining data endow it with satis-

factory textual representations of visual concepts related
to land uses.

• The few-shot image-based models require labeled ex-
amples to learn. While ViT shows a better performance
than ResNets with a high degree of variance in its learning
trajectory, both are outperformed by VLMs’ capabilities,
highlighting the power of VLMs to generalize sufficiently
from their learned representation space and perform well
on land use tasks without additional labeled data.

6. Conclusions and Discussion
In this study, we have presented a comprehensive framework
for embedding spatial intelligence into VLMs, evaluated on the
task of urban mixed land use detection. Our proposed method
integrates two core innovations, i.e., spatial-context aware
prompt engineering and spatially explicit contrastive learning,
within a CLIP-based architecture. The resulting model, Geo-
spatialCLIP, harnesses multimodal data from diverse sources
(e.g., street view imagery, satellite snapshots, and map tile im-
ages), alongside geospatial text generated and curated by GPT-
4, to capture the complex spatial relationships inherent in urban
landscapes.
6.1 Key Contributions
The primary contributions of this work can be summarized as
follows. First, we introduce a novel methodology that fuses
spatial intelligence with VLMs by designing spatially aware
prompts that incorporate key dimensions of urban context. This
includes geo-localization clues, spatial patterns, and urban de-
velopment indicators, which collectively guide the model to-
ward a more in-depth understanding of urban scenes. Second,
the development of spatially explicit contrastive learning allows
GeospatialCLIP to effectively align geospatial image-text pairs
in a manner that emphasizes geographic relationships. Third,
we construct large-scale geospatial image-text pairwise datasets
by curating high-quality inputs from multiple sources, thereby
addressing the data scarcity and bias issues prevalent in exist-
ing geospatial applications. Finally, our extensive experimental
evaluation on mixed land use detection demonstrates that the
proposed framework not only achieves superior accuracy relat-
ive to few-shot vision-based baselines, but also attains compet-
itive performance with advanced models (e.g., GPT-4), particu-
larly when leveraging carefully designed spatial prompts.
6.2 Pros and Cons of the Current Approach
One of the major advantages of our framework is its ability to
explicitly model spatial relationships, a feature that is largely
absent in existing VLMs. By integrating spatial-context cues
directly into the prompt design and contrastive learning pro-
cess, GeospatialCLIP is better equipped to discern subtle vari-
ations in spatial patterns. This leads to improved interpretability
and enhanced performance in detecting mixed land use scen-
arios, a task that traditionally challenges single-modal mod-
els. Moreover, our zero-shot learning approach underscores the
generalizability of the model, reducing reliance on extensive
labeled datasets and thereby accelerating deployment in real-
world settings.

However, the proposed methodology also has limitations. The
performance of spatial-context aware prompts is highly sensit-
ive to the choice and formulation of the prompt, which may in-
troduce variability and require extensive empirical tuning. Ad-
ditionally, while our approach effectively captures spatial rela-
tionships in urban environments, its applicability to rural or less
densely populated areas remains to be fully explored. The com-
putational complexity inherent in integrating additional spatial
modules also poses challenges for scalability, especially when

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W7-2025 
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W7-2025-121-2025 | © Author(s) 2025. CC BY 4.0 License.

 
127



processing large volumes of high-resolution geospatial data.
Furthermore, the reliance on geospatial text generated by GPT-
4, although innovative, may lead to biases if the textual descrip-
tions do not fully capture local details or are influenced by the
inherent limitations of the language model.
6.3 Implications and Future Directions
The integration of spatial intelligence into VLMs opens up sev-
eral promising directions for future research. One immediate
avenue is the exploration of adaptive prompt strategies that can
dynamically adjust spatial cues based on context or region-
specific characteristics. This would not only enhance model ro-
bustness but also facilitate its application across a wider range
of geographies. Future work could also investigate the incor-
poration of additional modalities, such as LiDAR or environ-
mental sensor data, to further enrich the spatial representations
in heterogeneous environments.

Another potential direction involves extending the spatio-
temporal dimension of the proposed model. Urban environ-
ments are dynamic, and the ability to accurately predict mixed
land uses across different cities or suburban areas as well as to
capture land use changes over time through multi-temporal im-
agery could significantly advance our understanding of urban
evolution and transitions, thereby providing valuable insights
for urban planning and policy-making.

Additionally, the development of more interpretable models
remains a key priority. Although GeospatialCLIP demon-
strates improved interpretability through spatial-context aware
prompts, further research is needed to disentangle the specific
contributions of various spatial cues to the overall decision-
making process. For example, the impact of different prompt
dimensions could be visualized by performing t-SNE based on
the textual embedding space. Developing methods for model
interpretability will be critical for building trust and facilitating
the adoption of GeoAI systems in operational settings.
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