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Abstract 
 
The COVID-19 pandemic has heightened public awareness of infectious disease prevention. However, minors often lack fully 
developed hygiene awareness, making it difficult to enforce basic preventive measures such as handwashing and mask-wearing. In 
addition, their frequent close contact in enclosed environments, such as educational institutions, increases the risk of rapid disease 
transmission. As minors can serve as significant vectors of infection, understanding their movement patterns is essential for devising 
effective countermeasures. Despite this need, tracking minors using mobile device location data remains difficult due to the low 
smartphone ownership rate. Therefore, as a first step toward overcoming the limitations of mobile device tracking and enabling large-
scale behavioural analysis of minors, this study developed a method for estimating their residential locations at a micro-scale, such as 
the building level, using various statistical datasets. Furthermore, it estimated their daily commuting destinations—such as schools and 
kindergartens—as well as their daily schedules and commuting routes, in order to project their routine behavioural patterns and spatial 
activity ranges on a nationwide scale. This approach enables a more comprehensive understanding of minors’ daily movements and 
supports the planning and implementation of more effective infectious disease prevention strategies. 
 
 

1. Introduction 

The novel coronavirus disease (COVID-19), first identified in 
December 2019 in Wuhan, Hubei Province, China, rapidly 
spread across the globe, resulting in extensive worldwide impact. 
According to data compiled by Johns Hopkins University, the 
United States reported the highest cumulative number of 
confirmed cases, followed by India, France, Germany, Brazil, 
and Japan. Specifically, the United States recorded 
approximately 103.8 million infections and 1.12 million deaths, 
while Japan reported around 33.3 million infections and 73,046 
deaths (Center for Systems Science and Engineering (CSSE), 
2023). 
 
In response to the profound impact of the COVID-19 pandemic, 
emergency declarations and targeted measures to prevent the 
spread of infectious diseases were implemented multiple times in 
Japan. These actions contributed to increased public awareness 
of infection control measures. 
 
According to the Basic Knowledge of Infection Control 
Measures published by Japan’s Ministry of Health, Labor and 
Welfare, infectious diseases arise through the interaction of three 
key factors: the pathogen (infection source), the route of infection, 
and the host. Effective infection control strategies, therefore, 
depend on disrupting at least one of these factors, with particular 
emphasis on blocking transmission routes (Ministry of Health, 
Labour and Welfare, n.d.). 
 
There are four primary routes of transmission: airborne, droplet, 
contact, and oral. As outlined in the Guidelines for the Prevention 
of Infectious Diseases in Nursery Schools, issued by the 
Administration for Ministry of Health, Labour and Welfare 
(MHLW), it is essential to implement appropriate 
countermeasures tailored to each transmission route (Ministry of 
Health, Labour and Welfare (MHLW), 2021). 

 
Airborne transmission occurs when small respiratory droplets 
expelled by an infected person during coughing, sneezing, or 
speaking dry out, leaving behind droplet nuclei that contain the 
pathogen. These nuclei can remain suspended in the air, retain 
their infectivity, and be inhaled by others. Since airborne 
transmission often occurs in enclosed spaces, ensuring proper 
ventilation is a critical preventive measure. 
 
Droplet transmission occurs when an infected individual coughs, 
sneezes, or talks, releasing droplets that contain pathogens. These 
droplets can be inhaled by individuals in close proximity. 
Preventive strategies focus on minimizing exposure to these 
droplets by avoiding crowded places and close-contact settings 
where conversations or vocalizations occur. In addition, strict 
adherence to cough etiquette and the use of face masks are 
essential. 
 
Contact transmission can occur via two main pathways: direct 
contact, such as shaking hands, holding, or kissing an infected 
person; and indirect contact through contaminated surfaces or 
objects, including doorknobs, handrails, or playground 
equipment. Typically, infection does not occur simply by having 
pathogens on the surface of the body—it is established only when 
the pathogen enters the body. Preventive measures include 
maintaining good hand hygiene through regular handwashing, 
gargling, and the use of hand sanitizers. 
 
Oral transmission occurs when pathogens are ingested through 
contaminated food or water, eventually reaching the 
gastrointestinal tract and causing infection. Preventing oral 
transmission requires proper hygiene management during food 
preparation and handling, following relevant guidelines and 
official recommendations. 
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Nevertheless, minors—particularly young children—often lack 
sufficient awareness of hygiene practices, making it difficult for 
them to consistently adhere to basic infection prevention 
measures such as handwashing and mask-wearing. In addition, 
they frequently spend time in densely populated environments 
such as schools and childcare facilities, and their immune 
systems are still underdeveloped. As a result, they face a higher 
risk of rapidly transmitting infections to their families and 
surrounding communities, potentially becoming hotspots for the 
spread of infectious diseases. 
 
1.1 Utilization of Human Mobility Data in Infectious Disease 
Control 

Human mobility data can serve as a critical resource in 
formulating effective infectious disease control strategies. By 
analysing such data, researchers and policymakers can gain a 
deeper understanding of how infectious diseases spread, allowing 
them to identify high-risk areas and time periods with greater 
precision. For instance, Doi and Onishi (2023) evaluated the 
impact of Japan’s state of emergency declarations and their 
subsequent lifting during the COVID-19 pandemic by utilizing 
long-term, nationwide mobility data derived from mobile device 
location information. Similarly, Kawakami et al. (2023) 
examined the relationship between COVID-19 case numbers and 
human mobility in Japan, demonstrating that mobility 
restrictions—such as those enacted during emergency 
declarations—were effective in curbing the spread of the virus. 
In another study, Mishima et al. (2022) conducted experiments 
using two types of mobility data—mesh-based population 
distribution data and inter-mesh population transition data—to 
predict the number of confirmed COVID-19 cases during the 
third wave in Tokyo between 2020 and 2021. Their findings 
emphasized the significance of population transition information 
in modelling human-mediated phenomena, including infectious 
disease transmission. Furthermore, Onoda et al. (2020) 
emphasized the necessity of precisely monitoring and adapting to 
rapidly changing human mobility patterns in the context of the 
"with-COVID" and "post-COVID" eras. They advocated for the 
potential application of Mobile Spatial Statistics, which are 
estimated using operational data from approximately 80 million 
mobile phones, as a means of achieving this goal. 
 
Comparable studies have been conducted in countries outside 
Japan. Ilin et al. (2021) demonstrated that publicly available 
mobility data from platforms such as Google, Facebook, Baidu, 
and SafeGraph can be effectively used to assess the impact of 
mobility restriction policies and to forecast the spread of COVID- 
19. Engebretsen et al. (2020) developed a probabilistic 
spatiotemporal model to simulate the spatial spread of influenza 
using mobile phone-derived mobility data in Bangladesh. 
Furthermore, Tao Hu et al. (2021) conducted a comprehensive 
review on the use of human mobility data in COVID-19-related 
research, summarizing data sources, characteristics, applications, 
and future challenges. 
 
1.2 Challenges in Using Existing Mobility Data on Minors 
for Infectious Disease Control 

As demonstrated by the aforementioned studies, understanding 
the dynamic nature of human mobility is essential for formulating 
effective policies aimed at controlling infectious diseases. 
Moreover, as previously noted, it is crucial to analyse and 
comprehend the mobility patterns of minors, who may act as 
potential hotspots for infection transmission. 
 

In Japan, the mobility patterns of minors have been examined 
using data sources such as the Person Trip Survey (Ministry of 
Land, Infrastructure, Transport and Tourism, n.d.) and Pseudo 
People Flow data (Center for Spatial Information Science, 2023). 
The Person Trip Survey focuses on urban travel behaviour and 
collects detailed information on both household and individual 
attributes, as well as daily movement patterns. This allows 
researchers to determine who is traveling, for what purpose, from 
where to where, at what time of day, and by what mode of 
transportation. Since its first large-scale implementation in the 
Hiroshima metropolitan area in 1967, the survey has been 
conducted in major metropolitan regions across Japan and has 
been used to assess current urban transportation conditions, 
forecast future travel demand, and support the development of 
urban transportation master plans. However, the survey is limited 
to selected urban areas and is typically conducted only once every 
ten years in major metropolitan regions. Furthermore, survey 
items are not standardized across different regions, reducing the 
comparability of data. Because the survey relies on direct 
distribution of questionnaires, recent challenges include 
declining response rates due to increased public concern over 
privacy and fraud, resulting in higher operational costs. 
 
Pseudo people flow data, on the other hand, reconstructs typical 
24-hour weekday travel patterns across Japan by integrating open 
survey data with commercially available, low-cost datasets. 
However, since pseudo people flow data is generated through 
agent-based simulation, it has inherent limitations in terms of 
accuracy. Furthermore, because it represents only a single 
weekday, it fails to capture long-term behavioural trends or 
mobility patterns tied to specific dates or time periods, thereby 
limiting its usefulness for infectious disease modelling over 
extended time frames. 
 
Mobility surveys that include minors have also been conducted 
in countries outside Japan (Department for Transport, 2025; 
Statistics Netherlands, n.d.; U.S. Department of Transportation, 
n.d.). However, these studies are typically carried out 
infrequently, and their high implementation costs make it 
difficult to respond swiftly to societal changes or public health 
emergencies. Moreover, as these surveys are typically self-
reported, they place a considerable burden on respondents, 
resulting in lower participation rates and limitations in data 
accuracy. 
 
1.3 Purpose of This Study 

In light of the aforementioned challenges, human mobility data 
derived from mobile device location histories is expected to 
contribute to a more precise understanding of minors’ movement 
patterns. However, according to the Children and Families 
Agency’s FY2023 Youth Internet Usage Environment Survey, 
the smartphone ownership rate among children under the age of 
nine in Japan is only 15.9%, indicating a very low level of 
personal device possession (Children and Families Agency, 
2024). Similarly, in many other countries, children typically do 
not own personal devices until around the age of ten (Perowne 
and Gutman, 2023; Marketing Charts, 2022). Consequently, it 
remains difficult to capture minors’ mobility solely through 
mobile-based location data.  
 
This limitation in capturing minors’ mobility through mobile-
based location data is not limited to infectious disease control; it 
also presents challenges in other areas of public policy, such as 
child-rearing support and urban planning. In fact, Japan’s 
Ministry of Land, Infrastructure, Transport and Tourism (2025) 
highlighted this issue in its 2025 Case Studies on the Utilization 
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of Human Mobility Data, noting that the difficulty of obtaining 
mobility data for minors has posed constraints on policy 
development in municipalities such as Imizu City in Toyama 
Prefecture and Ube City in Yamaguchi Prefecture.  
 
Despite these data limitations, it is important not to overlook the 
predictable nature of minors’ daily activities. Their activity 
ranges are typically limited—primarily concentrated around their 
residences, schools, or childcare facilities. Due to the highly 
structured and repetitive nature of their daily routines, it remains 
feasible to estimate their mobility patterns with a reasonable 
degree of accuracy.  
 
Against this backdrop, the objective of the present study is to 
develop a method for estimating the behavioural patterns and 
spatial activity ranges of minors residing in individual 
households across Japan by integrating various existing statistical 
datasets.  
 
As a result, it becomes possible to construct mobility data for 
minors. Minors serve as vital connectors between households, 
schools, and local communities. Therefore, the mobility data 
developed in this study is expected to serve not only as a valuable 
resource for infectious disease control but also as foundational 
information applicable across various domains of public policy. 
 
For instance, understanding how minors use public facilities can 
contribute to the planning, enhancement, and safety of urban 
infrastructure. Furthermore, by analysing commuting routes and 
after-school movement patterns, this dataset can inform concrete 
policy measures aimed at improving school route safety and 
traffic environments. Ultimately, such insights are expected to 
support the realization of a more sustainable society that 
effectively responds to the needs of minors. 
 
As a first step, this study estimates the residential locations of 
minors, the educational institutions they attend, their daily 
schedules, and their commuting routes. Through these 
estimations, this study establishes a method for capturing the 
mobility patterns of individual minors on a nationwide scale. By 
enabling the analysis of detailed behavioural patterns while 
ensuring the protection of personal information, this approach 
represents a novel and distinctive contribution to the field. 
 

2. Methodology 

The flow of this study is shown in Figure 1. As Figure 1 illustrates,  
this study first developed a building-level population estimation 
dataset, referred to as the Micro Population Census (MPC). The 
original five-year age groupings in the MPC were disaggregated 
into single-year intervals, enabling the extraction of individuals 
under the age of 18. These data were then reorganized by school 
grade level to produce grade-specific population estimates for 
minors. Next, each minor in the grade-specific MPC was linked 

to the address of the school or childcare facility they were 
presumed to attend. Then, by estimating each individual's daily 
schedule and commuting route, we constructed a dataset capable 
of representing the routine behavioural patterns and spatial 
activity ranges of individual minors. 
 
2.1 Development of Building-Level Population Estimation 
Data (MPC) 

Various demographic statistics, including the national census, are 
widely used as foundational data by government ministries and 
agencies and play a critical role in academic research across 
disciplines. In the private sector, such data are frequently utilized 
to inform business strategy, underscoring the indispensable role 
of demographic information in society. 
 
However, existing demographic statistics have a notable 
limitation: within survey units that span both densely and 
sparsely populated areas, population distribution is often 
homogenized. This poses challenges for accurately identifying 
fine-grained population estimates, which are essential for 
designing effective infectious disease control measures. 
 
To address this issue, the present study disaggregates census data 
onto residential maps that identify individual building locations. 
This approach enables the construction of a building-level, non-
aggregated demographic dataset. In this study, we refer to this 
dataset as the Micro Population Census (MPC). 
 
2.1.1 MPC Construction Method 

This study developed a building-level demographic dataset 
incorporating attributes such as household distribution, 
household size, family composition, and the estimated age and 
gender of household members, based on the methodology 
proposed by Akiyama et al. (2013). Figure 2 illustrates the flow 
of the MPC construction method. Specifically, we first extracted 
buildings likely to be residential using digital residential maps, 
generating a “candidate household location dataset” in 
accordance with the criteria outlined in Table 8 of the census 
small-area aggregation.  
 
Subsequently, Number of persons per household (hereinafter 
referred to as “Household sizes”) were assigned to these 
candidate buildings based on the distribution presented in Table 
5 of the census, ranging from single-person to seven-person 
households. Feasible family compositions were then allocated 
according to the assigned household sizes. Table 1 summarizes 
the various family structure types and their corresponding 
household sizes. The family structure types comprehensively 

Figure 1. Flow of this study Figure 2. Flow of MPC Construction Method 
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capture and classify household compositions in Japan. Finally, 
the age and gender of household heads and members were 
estimated based on the assigned family composition. 
 
Compared to the method proposed by Akiyama et al. (2013), the 
approach in this study introduces several modifications aimed at 
improving estimation accuracy. Specifically, multiple statistical 
datasets with shared aggregation units were utilized. Household 
information was probabilistically assigned to satisfy one of these 
datasets, allowing for the generation of detailed demographic 
estimates at the building level. The data were then re-aggregated 
according to the units of the remaining statistical datasets. Where 
discrepancies emerged, a substitution process was applied 
between conflicting units to minimize overall errors across the 
multiple datasets. 
 
2.1.2 Results of MPC Construction 

Figure 3 illustrates the estimated distribution of household 
members at the building level in the central area of Maebashi City, 
Gunma Prefecture. The color gradient visualizes the estimated 
number of residents per building, enabling the spatial variation in 
residential density and the clustering of housing areas to be 
clearly observed. This figure demonstrates that population 
estimates are provided for each individual building, allowing for 
a detailed understanding of population distribution at a 
microscale. Similarly, family composition, along with the age 
and gender of household heads and members, was estimated at 
the building level nationwide.  
 
Furthermore, as the MPC includes precise location information, 
it can be seamlessly integrated with other existing statistical 
datasets. Owing to this characteristic, the dataset serves as a 
highly useful foundation for this study, which aims to estimate 
the mobility of minors by integrating various statistical sources. 
 
2.1.3 Reliability Assessment of the MPC 

Table 2 presents the results of regression analyses conducted 
between the MPC—re-aggregated by household size, household 
composition, and age–gender population categories at the small-
area level—and the corresponding original data from the 2015 
national census. High levels of agreement were confirmed across 
all prefectures, indicating that the MPC demonstrates a high 
degree of reliability. 
 
2.2 Development of Spatial Distribution Data for Minors 

Based on the MPC constructed in Section 2.1, we extracted 
minors and developed a dataset that enables the spatial 
distribution of minors to be identified at the building level. Since 
the MPC is originally aggregated in five-year age groups, we 
disaggregated these into single-year intervals to isolate 
individuals under the age of 18. Using nationwide age- and 
gender-specific population estimates published by the Statistics 
Bureau of Japan, we calculated the age composition ratios within 
each five-year group. These ratios were then used to 
proportionally assign a specific age to each individual in the MPC, 
enabling age estimation on a one-year basis. Individuals under 
the age of 18 were then extracted to develop spatial data 
representing the distribution of minors. 
 
Figure 4 illustrates the estimated spatial distribution of minors at 
the building level for a selected area of Okayama City, Okayama 
Prefecture. Each plot represents the age group of minors residing 
in individual buildings, allowing for the visual identification of  
 

 
residential density and spatial variation in age composition across 
urban areas. 
 
2.3 Estimating the School Grade Level of Individual Minors 

To estimate the educational institutions (schools or childcare 
facilities) attended by minors, we first estimated each individual's 
school grade based on age. Because the MPC reflects the  

Figure 3.  Estimated population per building unit based on MPC 
(example of the city center of Maebashi City) 

Table 1. Classification of family types and  
corresponding household sizes 

Family structure types Household
sizes

A. Household consisting only of relatives
1. Nuclear family household
　(1) Married couple only 2
　(2) Married couple with children 3~
　(3) Single-father with children 2~
　(4) Single-mother with children 2~
2. Non-nuclear family households
　(5) Married couple with both parents 4
　(6) Married couple with one parent 3
　(7) Married couple with children
　　　and both parents 5~

　(8) Married couple with children
　　　and one parent 4~

　(9) Married couple with other relatives
　　　(excluding parents and children) 3~

　(10) Married couple with children
　　　　and other relatives (excluding parents) 4~

　(11) Married couple with parents
　　　　and other relatives (excluding children) 4~

　(12) Married couple with children, parents,
　　　　and other relatives 5~

　(13) Siblings only 2~
　(14) Others (not classified above) 2~
B. Households including non-relatives 2~
C. One-person households 1
Household family type: unknown 1~
Institutional households
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population as of the census reference date—October 1—minors 
within the same grade level typically span two adjacent ages, 
with approximately half of the students differing in age by one 
year. To account for this, we randomly divided minors within 
each age group in the MPC into two equal subsets: one half was 
assigned to the grade corresponding to their age, while the other 
was assigned to the grade one year below. This probabilistic 
approach allowed for the estimation of each minor’s likely school 
grade.  
 
2.4 Estimation of School or Childcare Institution Types by 
Grade Level 

Using the school grade classifications derived in Section 2.3, we 
then estimated the type of educational or childcare institution 
each minor was likely to attend. The categories considered in this 
study include not enrolled in any institution (pre-preschool), 
nursery school, kindergarten, certified child centre (kodomo-en), 
elementary school, junior high school, and high school. 
 
For preschool-aged children not yet enrolled in elementary 
school, two data sources were used to estimate age-specific 
enrolment distributions: (1) preschool enrolment rates by age (for 
children not yet enrolled, kodomo-en, kindergartens, and nursery 
schools) from the Children and Families Agency, and (2) 
prefecture-level enrolment counts for kindergartens and kodomo-
en institutions from the School Basic Survey. Minors were then 
proportionally allocated to each institution type by age. For those 
at the elementary, junior high, and high school levels, all minors 
were directly classified into their respective institution types 
based on grade. 
 
2.5 Linking the Addresses of Educational and Childcare 
Institutions 

Based on the institutional classifications assigned in Section 2.4, 
we linked each minor to the most likely school or childcare 
facility by address. First, using prefecture-level public and 
private student enrolment data from the School Basic Survey, we 
calculated the proportion of minors attending public versus 
private institutions and allocated individuals accordingly. 
 
Next, we used Telepoint Data, a geocoded telephone directory 
provided by Zenrin Co., Ltd., to identify facilities whose names 
included the term “nursery school” (hoikuen). For minors 
categorized as nursery school attendees, the address of the nearest 
such facility was linked. Similarly, for those attending kodomo-
en, kindergartens, high schools, private elementary schools, or 

Table 2. Comparison of the national census and  
re-aggregated MPC 

Note: All results were statistically significant at the 5% level. 

MAE MAE MAE
Hokkaido 0.994 0.153 0.960 0.633 0.976 1.420

Aomori 1.000 0.004 0.942 2.542 0.975 2.138
Iwate 1.000 0.009 0.931 2.878 0.975 2.238
Miyagi 1.000 0.010 0.931 3.124 0.967 2.870
Akita 1.000 0.005 0.923 2.355 0.973 1.782
Yamagata 1.000 0.005 0.901 2.944 0.967 2.870
Fukushima 1.000 0.006 0.944 2.355 0.973 1.782
Ibaraki 1.000 0.003 0.935 2.949 0.978 2.108
Tochigi 1.000 0.005 0.941 2.655 0.978 2.108
Gunma 1.000 0.006 0.942 4.060 0.974 3.468
Saitama 1.000 0.009 0.966 4.265 0.976 3.468
Chiba 1.000 0.006 0.964 3.927 0.977 4.627
Tokyo 1.000 0.013 0.967 5.552 0.971 2.209
Kanagawa 1.000 0.013 0.969 4.840 0.979 7.714
Niigata 1.000 0.003 0.904 2.646 0.964 2.109
Toyama 1.000 0.004 0.905 2.456 0.965 2.002
Ishikawa 1.000 0.004 0.930 2.140 0.971 2.029
Fukui 1.000 0.004 0.889 2.447 0.957 1.959
Yamanashi 1.000 0.004 0.945 3.562 0.981 2.922
Nagano 1.000 0.011 0.932 4.107 0.980 2.973
Gifu 1.000 0.003 0.936 1.926 0.977 1.727
Shizuoka 1.000 0.006 0.953 5.148 0.980 3.638
Aichi 1.000 0.006 0.953 2.404 0.978 2.712
Mie 1.000 0.007 0.941 2.770 0.973 2.862
Shiga 1.000 0.005 0.931 2.848 0.967 2.897
Kyoto 1.000 0.006 0.972 1.164 0.976 1.715
Osaka 1.000 0.009 0.976 2.773 0.967 4.484
Hyogo 1.000 0.004 0.969 2.065 0.976 2.838
Nara 1.000 0.005 0.969 1.941 0.977 2.322
Wakayama 1.000 0.006 0.971 1.852 0.982 2.071
Tottori 1.000 0.003 0.944 1.918 0.975 1.653
Shimane 1.000 0.006 0.926 4.121 0.973 2.916
Okayama 1.000 0.008 0.961 1.963 0.982 1.990
Hiroshima 1.000 0.008 0.949 2.600 0.974 3.310
Yamaguchi 1.000 0.004 0.953 1.465 0.980 1.985
Tokushima 1.000 0.004 0.949 2.728 0.984 2.250
Kagawa 1.000 0.005 0.953 5.217 0.984 4.212
Ehime 1.000 0.007 0.967 1.982 0.983 2.249
Kochi 1.000 0.007 0.976 1.402 0.985 1.722
Fukuoka 1.000 0.004 0.964 2.574 0.973 3.385
Saga 1.000 0.005 0.920 2.704 0.961 2.471
Nagasaki 1.000 0.008 0.960 2.012 0.973 2.235
Kumamoto 1.000 0.007 0.942 2.680 0.977 3.222
Oita 1.000 0.007 0.957 2.424 0.980 2.662
Miyazaki 1.000 0.009 0.972 1.790 0.983 2.253
Kagoshima 1.000 0.009 0.978 2.389 0.982 3.862
Okinawa 1.000 0.010 0.972 4.319 0.961 6.129

Age and gender
-based

population

Family structure
-based

household count

Household size
-based

household countPrefecture

𝐑𝟐 𝐑𝟐 𝐑𝟐

Figure 4. Estimated spatial distribution of minors at the  
building level (example of part of Okayama City) 
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private junior high schools, school address data from the National 
Land Numerical Information (NLNI) database were used to 
assign the nearest institution within each category. 
 
For minors attending public elementary and junior high schools, 
school district boundary data from the NLNI were used to 
determine the appropriate school based on residential location. 
However, due to gaps in the school district dataset, minors who 
could not be matched to a school through district data were 
instead assigned the nearest public school using the same 
proximity-based method applied to other institution types. 
 
2.6 Estimation of Daily Schedules for Individual Minors 

We then estimated the daily schedules of individual minors. For 
each educational or childcare institution type, reasonable arrival 
and departure times were defined based on standard attendance 
patterns. Subsequently, the straight-line distance between each 
minor’s residence and their assigned facility was calculated. 
 
Assuming that longer commutes involve faster transportation 
modes, we assigned travel speeds as follows: walking (4 km/h) 
for distances up to 1 km; bicycle (10 km/h) for 1–5 km; and 
automobile (30 km/h) for distances exceeding 5 km. Morning 
departure times from home were calculated by subtracting the 
estimated travel time from the arrival time, while return times 
were calculated by adding the travel time to the departure time 
from the facility. 
 
2.7 Estimation of Commuting Routes to Schools and 
Childcare Facilities 

Finally, we estimated the commuting routes for each minor. 
Specifically, we utilized origin-destination (OD) coordinate pairs 
representing home and educational facility locations, derived in 
Section 2.5, in conjunction with the inferred travel modes 
identified in Section 2.6. Route estimation was conducted using 
Google Maps Routes API (Compute Routes). 
 
This API supports multiple travel modes—including walking, 
bicycling, and driving—and calculates optimal routes according 
to the characteristics unique to each mode. For walking and 
bicycling, the API generates paths along pedestrian- or bicycle-
appropriate roads and pathways, as defined within the underlying 
road network data. For driving, it accounts for traffic conditions, 
network topology, one-way restrictions, and other regulatory 
constraints to compute time-efficient routes. 
 
Notably, in the case of bicycling, the API may fail to return a 
complete route to the destination when dedicated bicycle lanes 
are unavailable, resulting in truncated paths. To ensure 
consistency and completeness in route generation, the walking 
mode was uniformly applied to both walking and bicycling travel 
modes. 
 
This approach enabled the estimation of realistic travel distances, 
durations, and route geometries for each minor, aligned with their 
respective inferred travel modes. 
 

3. Results 

Using the proposed method, we were able to estimate, on a 
nationwide scale, the school or childcare facility attended by each 
minor residing in an individual household, along with their 
estimated departure and return times and commuting routes. 
 

Figure 5 illustrates the distribution of elementary school students’ 
residences and their corresponding public and private schools in 
the Yokohama City area of Kanagawa Prefecture. In the figure, 
the residential locations of students attending public and private 
elementary schools are visualized as origin–destination (OD) 
pairs, connecting their place of residence (origin) with their 
assigned school (destination). Clear differences can be observed 
between public and private school commuting patterns in terms 
of both geographic range and density. Specifically, students 
commuting to private schools are distributed across a wider area, 
whereas students attending public schools generally commute 
within their designated school districts. The spatial relationship 
between students’ homes and schools also enables visual 
assessment of school district boundaries and actual commuting 
distances. This provides valuable baseline information for 
evaluating the spatial distribution of educational facilities and the 
geographic disparities in commuting burdens across regions. 
However, as noted in Section 2.5, school assignments were 
determined algorithmically based on proximity. As a result, in 
cases where no suitable facilities exist nearby, students were 
assigned to distant institutions, sometimes even across municipal 
boundaries, which may not reflect realistic commuting behaviour. 
 
Figure 6 visualizes the estimated departure times from home for 
students commuting to a specific elementary school. Each 
student’s home and school are connected by a line representing 
the origin–destination (OD) pair, with the lines color-coded 
according to departure time intervals (e.g., 7:45–8:30). This 
visualization enables the identification of patterns in departure 
times based on commuting distance, as well as the temporal 
spread of student movement during the school arrival period.   
 
Figure 7 visualizes the estimated school commuting routes of 
students attending an elementary school in Kashiwa City, Chiba 
Prefecture. The estimated routes, represented by blue lines, 
extend from each student’s residential location to the school. The 
visualization reveals a radial pattern of commuting paths centered 
on the school, and a directional concentration of routes that 
reflects the spatial distribution bias of student residences. 
 
This type of spatial visualization facilitates the identification of 
high-risk areas along commuting routes and zones where traffic 
safety interventions are most needed. As such, it provides 
valuable information to support decision-making by boards of 
education and local governments in planning and implementing 
student commuting assistance and safety measures. 

 
 

Figure 5. Distribution of elementary school students and  
their schools (example from the Yokohama Area) 
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It should be noted, however, that as described in Section 2.7, the 
analysis assumes that commuting modes are limited to walking, 
bicycling, or travel by car. This simplification may introduce 
discrepancies between the estimated routes and actual 
commuting behaviours. 
 
Based on these results, the method developed in this study 
enables the nationwide estimation of each minor’s place of 
residence, school or childcare facility, daily schedule, and 
commuting route. These data collectively offer a fundamental 
framework for representing the routine behavioural patterns and 
spatial activity ranges of minors across Japan. 
 

4. Conclusion 

This study developed a method for estimating the school or 
childcare facility attended by each minor, along with their daily 
schedules and commuting routes, in order to capture the spatial 
distribution and routine behavioural patterns of minors at the 
building level on a nationwide scale. 
 
To enhance the accuracy of the model, future work will 
incorporate estimated commuting times into the school and 
childcare facility allocation process. If the estimated travel time 
is deemed unrealistic, students will be reallocated to alternative 
institutions attended by peers of the same age group, thereby 
ensuring more plausible assignments. 
 
Furthermore, we plan to incorporate public transportation as a 
potential travel mode by utilizing data sources such as the 
Navitime API and GTFS. We also aim to account for multimodal 

commuting patterns, including combinations of walking and train 
travel. 
 
In addition, we seek to improve the classification accuracy of 
school destination types by utilizing small-area income statistics 
and considering the existence of single-gender schools. We also 
intend to analyze non-school-commute mobility patterns—
including visits to after-school care programs, extracurricular 
activities, parks, shopping areas, and other destinations—to 
further refine the estimation of minors’ behavioral patterns and 
activity spaces. 
 
Looking ahead, we aim to conduct more rigorous reliability 
validation. Although acquiring the necessary data presents 
certain challenges, we plan to evaluate the population distribution 
generated by the MPC and assess its accuracy at finer spatial 
scales. To further examine the mobility patterns of minors, we 
also intend to utilize GPS data from child monitoring devices, as 
well as school commute route data obtained from the National 
Police Agency and individual educational institutions. 
 
Building upon this foundation, we will integrate the dataset 
developed in this study with human mobility data derived from 
mobile device location histories. This integration will enable the 
construction of a comprehensive, real-time dataset that captures 
the mobility of all age groups. Consequently, such a dataset could 
make a significant contribution to the design and implementation 
of more effective infectious disease control strategies. 
 
For example, we envision the development of an application 
capable of simulating scenarios in which, following the 
confirmation of an infection at a specific school, a certain 
proportion of children transmit the infection to their households, 
and a portion of their guardians subsequently spread it in their 
workplaces. This system would enable the identification of 
locations at elevated risk of secondary transmission following an 
initial outbreak, thereby facilitating proactive and timely public 
health interventions—contrasting with the reactive measures that 
have often been employed in the past. Furthermore, we plan to 
validate the model by using empirical data recorded during actual 
infectious disease outbreaks. 
 
Moreover, the human mobility dataset for minors developed in 
this study enables microscale identification of spatial distribution 
and commuting behaviours on a nationwide level. This capability 
holds implications not only for infectious disease control but also 
for a wide range of social infrastructure applications. Specifically, 
the dataset can support the optimal placement of childcare 
facilities, schools, cram schools, and commercial establishments; 
improve public transportation route planning; and enhance 
strategies for allocating disaster preparedness supplies. 
 
From a traffic safety perspective, the dataset can also support the 
development of targeted measures such as the time- and location-
specific assignment of traffic control personnel based on mobility 
patterns. Taken together, these potential applications contribute 
to the advancement of evidence-based policy making (EBPM) 
and underscore the value of incorporating minors’ mobility data 
as a novel foundation for decision-making in urban planning and 
public service design. 
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