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Abstract

As urbanization accelerates, accurately simulating the heating and cooling demand of buildings becomes increasingly vital for
effective energy system planning. This study proposes an urban building energy modeling framework that prioritizes data quality
enhancement through pre-processing (e.g., outlier detection and repair), integrates SimStadt-based simulations, and automates
post-processing for 3D database storage and visualization, validated through case studies in Rotterdam’s districts of Feijenoord and
Prinsenland. The pre-processing framework targets geometric and attribute errors in municipal CityGML data by employing our
proposed data repair workflow and correcting energy-critical parameters. A post-processing workflow automates the integration
of simulation results into the Energy ADE-extended 3DCityDB and streamlines 3D visualization through a scalar value mapping
strategy. Empirical analysis shows that the framework significantly improves the rationality and reproducibility of the heating and
cooling demand results compared to those of a previous study commissioned by the municipality. This research provides a scalable
technical pathway to support the evaluation of the potential of positive energy districts.

1. Introduction

Urban energy consumption is a critical challenge amid popu-
lation growth, energy transitions, and climate risks. By 2050,
68% of the projected 9.7 billion global population (6.6 billion)
will reside in cities, up from 55% (4.4 billion) in 2023 (UN,
2018), with urban per capita energy use projected by the IEA to
increase 35% by 2043 relative to the level of 2023 (IEA, 2023).
Decentralized renewables (IRENA, 2022) and urban heat island
(UHI) effects (Santamouris, 2021) necessitate precise modeling
to address supply-demand imbalances and resilience threats.
Buildings account for 40% of the European Union’s energy
use (Ali et al., 2021) and 79% of residential heating/cooling
demand (Eurostat, 2024), with refurbishment and smart tech-
nologies offering savings potential. Urban-scale optimization
requires integrating microclimate impacts (Hong et al., 2020),
occupant behavior (Yan et al., 2015), and UHI-driven loads to
achieve positive energy districts (EC PEDs, 2022).

Urban building energy modeling (UBEM) uses top-down (ag-
gregate trends) or bottom-up (granular simulations) approaches,
with physics-based tools like EnergyPlus (Crawley et al.,
2000) enabling spatial analysis but facing computational limits.
Reduced-order tools such as SimStadt (Nouvel et al., 2015) bal-
ance efficiency and accuracy through standardized assumptions,
facilitating district-level simulations. This research merges the
computational advantages of SimStadt with physics-based rigor
to address urban energy challenges.

Data quality critically affects UBEM effectiveness and the in-
tegration of geometric/non-geometric parameters with weather
input (Johari et al., 2020). Inconsistent 3D models, over-
simplified occupancy archetypes, and neglected microclimate
variations hinder accuracy (Johari et al., 2020). Validation
challenges arise from low-resolution municipal data and re-
stricted utility access (Reinhart et al., 2016), with parameter
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errors (e.g., 15–25% cooling load variations from window-to-
wall ratios (Chen et al., 2020)) that impact grid planning despite
city-scale error cancellation (Shimoda et al., 2004).

These challenges are manifested in platforms like SimStadt,
where data fidelity directly dictates simulation reliability. Sim-
Stadt exhibits sensitivity to data quality in urban building en-
ergy simulations: LoD1 models introduce 9.2% mean absolute
percentage error (MAPE) for the energy reference area and
7.3% for the heating demand, while missing refurbishment
status overestimates the heating demand by up to 180% (Nouvel
et al., 2017). Such building-level discrepancies persist in peak
loads, challenging, for example, grid resilience.

To address these limitations, we propose a systematic frame-
work for robust simulation of building energy at the urban
scale. We present a framework for the simulation of the
cooling/heating demand of buildings using SimStadt. First, a
CityGML (OGC, 2012) data repair method and an attribute
integration mechanism are developed, replacing flawed para-
meters through CityGML generic attributes for broader applic-
ability. Second, a post-processing pipeline parses CSV results
into the 3D City Database (3DCityDB) (Yao et al., 2018),
enabling visualization and comparative analysis. Empirical
validation demonstrates better transparency and reproducibility
of our method compared to the previous study commissioned
by the Municipality of Rotterdam, which estimates the heating
and cooling demand at the level of the building unit, however,
not exploiting any spatial data coming from the semantic 3D
city model of Rotterdam.

2. Related work

Urban Building Energy Modelling (UBEM) integrates multi-
scale analysis of building performance and urban microclimate
interactions to inform energy demand insights for urban design,
policy, and operations, relying on datasets, simulations, and
stakeholder-driven evaluation (Hong et al., 2020). Residential
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energy models use top-down approaches (macroscale econo-
metric/technological) or bottom-up methods (high-resolution
physics/data-driven), balancing scalability and granularity but
facing trade-offs in adaptability and computational complex-
ity (Ali et al., 2021). We focus on bottom-up methods for
UBEM, emphasizing the critical role of diverse data types in
enabling high-fidelity urban energy simulations.

2.1 Modelling approaches

Physics-based UBEM methods (Swan et al., 2009) use
distribution-, sample-, or archetype-based strategies with tools
like EnergyPlus (Crawley et al., 2001) for detailed thermal sim-
ulations. While distribution/sample methods aggregate spatial
data (Nägeli et al., 2022), archetype models simplify inputs via
standardized assumptions, limiting adaptability despite scalab-
ility (Swan et al., 2009). Data-driven approaches (statistical/AI)
achieve up to 91% energy prediction accuracy (Ali et al.,
2024) but require extensive datasets and struggle with complex
occupant behavior (van den Brom, 2020). Innovations like
Bayesian calibration (Yoon, 2020) enhance reliability, although
generalized applicability remains challenging. Reduced-order
models (e.g., SimStadt (Nouvel et al., 2015), CitySim (Walter et
al., 2015)) align with standards such as ISO 52016 ISO 52016-1
(2017) to balance efficiency and physical parameter integration.
Their reliance on standardized assumptions improves urban-
scale scalability but may compromise precision compared to
detailed physics-based tools (Rossknecht et al., 2020).

While existing UBEM methods address specific challenges,
their computational inefficiency and non-standardized inputs
necessitate adaptable frameworks. SimStadt advances the field
by combining reduced-order models with automated semantic
processing, enabling scalable energy assessments while main-
taining interoperability with physics-based tools.

2.2 Data requirements

Semantic 3D city models (s3DCM) for UBEM require geospa-
tial data that integrates geometric, topological, and semantic
elements. If such data also follows a standardized open data
model, such as CityGML (OGC, 2012), ideally extended with
the Energy ADE (Agugiaro et al., 2018, 2025) for energy-
specific objects and attributes, then some of the typically time-
consuming data integration and harmonization steps can be
reduced or simplified. Multi-LoD (Level of Detail) frame-
works balance granularity and scalability, enabling adaptive
resolution from block models (LoD1) to detailed interiors
(LoD4) (Biljecki et al., 2016). Building physics data are
critical for demand prediction, but are challenged by het-
erogeneous building stocks. Archetype classifications (e.g.,
TABULA (EPISCOPE, 2017)) harmonize data by age/type,
although standardized models remain incomplete (Agentschap
NL, 2011). Occupancy schedules, stochastic archetypes, and
agent-based models capture behavioral dynamics (Doma et al.,
2023) but risk oversimplification, while weather inputs (TMY
datasets, microclimate parameters) struggle to reconcile static
assumptions with urban climate variability (Deng et al., 2023).

UBEM uncertainties arise from input inaccuracies—including
geometrical and attribute errors—and scale-related trade-offs,
necessitating frameworks that address data standardization gaps
and interoperability challenges (Kong et al., 2023). This study
introduces a CityGML repair pipeline to enhance SimStadt-
based simulations by resolving these errors, improving data
fidelity for cooling/heating demand prediction.

3. Methodology

Accurate prediction of urban heating and cooling demand
requires robust integration of multi-source data (geometric,
meteorological, and typological) and scalable simulation tools.
To address this need, we developed a four-stage framework.
First, input data such as CityGML 3D building models, weather
data, and building typology/function are gathered. Second, pre-
processing via data repair and integration is carried out. Third,
energy simulation for heating and cooling demand calculations
is performed using SimStadt. Finally, post-processing includes
database storage and visualisation.

Figure 1. Overview of the proposed workflow of urban energy
simulation. A four-step framework: (1) Input data (CityGML 3D
building models, weather data, building typology/function); (2)

Pre-processing (data repair and integration); (3) Energy
simulation (heating and cooling demand calculations); (4)

Post-processing (database storage and visualisation).

3.1 Input data

Our objective is to simulate the cooling and heating demand
of the buildings in the study area based on weather data
and 3D building models, providing a foundation to support
the creation of positive energy districts. We focus on the
Feijenoord (8.5 km2, population estimated at 80,000) and
Prinsenland (1.8 km2, population estimated at 10,000) districts
in Rotterdam (see Fig. 2), which together encompass 25,681
buildings—14,915 of which have active energy consumption
profiles. The building stock is dominated by terraced houses
(85.2%), with smaller shares of apartment blocks (4.3%), com-
mercial properties (9.1%), and single-family houses (1.4%),
spanning mixed functions including residential, commercial,
industrial, and cultural uses. Feijenoord’s building year dis-
tribution includes pre-WWII and newly built structures, while
Prinsenland is mostly composed of new constructions. These
areas were prioritized by the Municipality of Rotterdam due
to their heterogeneous building typologies and high energy
intervention potential. As shown in Fig. 1, the input comprises:

• 3D building models: Sourced from Rotterdam3D in
CityGML format, the Level of Detail 2 (LoD2) models
provide (Rotterdam, 2018): Thematic surfaces: roofs,
walls, and ground surfaces for geometric energy reference
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area/volume calculations; Generic attributes: construction
year and height to infer thermal parameters (e.g., U-
values via TABULA typology-year mappings) for Sim-
Stadt inputs; Spatial context: adjacent building positions
(distance, height, orientation) for microclimate effects like
shading/ventilation on heating/cooling demand.

• Weather data: Derived from the Royal Netherlands Met-
eorological Institute (KNMI (2024)), hourly meteorolo-
gical averages (1954–2023) in EPW format were conver-
ted to TMY3, including irradiance, ambient temperature,
wind speed, pressure, precipitation, and diffuse radiation.
These data influence building energy demand simulations
under local climatic conditions. Ambient temperature and
solar radiation from weather data directly drive conduction
losses and solar gains in the heat balance equation for
heating demand, while for cooling demand, high temper-
atures and solar radiation increase conduction gains and
solar heat influx. Consequently, inaccuracies (e.g., from
suburban station measurements) propagate to both heating
and cooling demand uncertainties (see Limitations).

• Building typology: Based on TABULA (EPISCOPE,
2017), covering construction periods from pre-1964 to
post-2015. Building types include Single Family House,
Terraced House, Multi Family House, Apartment Block,
Commercial, Big Multi Family House, and High Tower.
This database predefines envelope parameters (e.g., U-
values, thermal capacity, airtightness) for different build-
ing types, enabling rapid parameter assignment via
CityGML semantic mapping to minimize manual errors.

• Building functions: Obtained from the Dutch Cadastral 2D
BAG dataset (Kadaster, 2025), including building func-
tions (residential, commercial, industrial). These attributes
allow to associate internal loads and operational profiles
(occupancy, heating/cooling schedules, domestic hot water
usage) to the building.

Local datasets often exhibit incompleteness, inconsistencies,
and mismatches, necessitating pre-processing for integration
into energy simulations.

Figure 2. Study areas in Rotterdam. The Feijenoord and
Prinsenland districts are outlined in the red polygons.

3.2 Pre-processing

We aim to repair and integrate data to meet simulation input
requirements, ensuring reliable results. National-level datasets
(e.g., weather data and building functions) generally have fewer
errors, whereas municipal-level data (e.g., CityGML (OGC,

2012)) often require extensive corrections. Additionally, build-
ing typologies and functions must be integrated into CityGML
for SimStadt compatibility, though these attributes are rarely
preconfigured, which are typically designed for visualization;
thus, energy-specific attribute extensions are essential.

Figure 3. Schematic overview of the data repair workflow.

Data repair: We address two issues in CityGML data, in-
cluding: (1) Geometric errors, such as holes, non-manifold geo-
metries, incorrect normals, and self-intersections, often caused
by modeling quality issues or format conversions. Conventional
mesh repair tools -designed for non-semantic 3D models- often
risk semantic data loss. We employed CityDoctor2 (e.g.,
Genetic algorithm) (HFT, 2021) and FME (GeometryValidator
module) (FME, 2025) to preserve semantics while repairing
geometric errors; (2) Attribute errors, such as outliers, missing
values, and inconsistencies in the units of measure directly
impact critical energy simulation parameters, including energy
reference area, volume, and building type. After the repair
by CityDoctor2, we still detected 389 (out of 25681 total)
buildings with geometric or attribute outliers in the study
area, and these outliers were estimated through the method we
proposed. These errors may arise from data entry errors during
model creation or irreparable geometric errors that propagate
to attribute inconsistencies. The energy reference area de-
pends, among the rest, on the building footprint, while volume
calculations rely on a watertight model, and building types
are mapped using height, construction year, and TABULA
classifications (EPISCOPE, 2017). To address outliers (e.g.,
null, zero, missing, infinite, or negative entries) in area and
height, we implemented alternative methods (see Fig. 3): area
was estimated via 2D planar projections of overhead shadows,
and height was interpolated from bounding box z-axis values
(zmax–zmin), and for models with invalid solid geometries
(e.g., with holes), the volume was approximated using these
new area/height values. Both Building and Building Part
entities were processed independently. Corrected values for
area, volume, energy reference area, and building type were
stored in the CityGML file as generic attributes, enabling direct
input into SimStadt and overriding its internal computations
and classification algorithms, which are restricted to valid
geometries and would otherwise skip simulating buildings with
invalid geometries.

Data integration: The energy simulation tool (SimStadt)
uses the ALKIS code system (AdV, 2015), a German ca-
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dastral standard. To align Dutch building functions (from
2D BAG (Kadaster, 2025)) with ALKIS codes, we manually
mapped local functional categories to the closest ALKIS equi-
valents using QGIS and FME. Challenges arose in mixed-use
buildings (e.g., residential-commercial combinations), where
dominant functions were determined via street-view image
validation. For the study area, 104 functional combinations
were identified and mapped to ALKIS codes, stored in the
‘citygml function’ attribute.

3.3 Energy simulation

Our objective is to simulate the energy demand of buildings
within the study area. The input data consists of the repaired
CityGML dataset and the weather data, processed through
the Heat Demand Analysis workflow in SimStadt2 (Nouvel
et al., 2015), which outputs files in CSV format containing
both heating and cooling demand values. To efficiently handle
large-scale data, the CityGML files are partitioned into admin-
istrative sub-regions, each containing hundreds to thousands
of buildings. The simulation workflow integrates multiple
computational modules: the Geometric Preprocessor (handling
building geometry metrics such as height and volume, and
identifying neighboring buildings), the Geometric Estimator
(deriving energy-related parameters like heated areas), the
Physics Preprocessor (classifying building types), the Usage
Preprocessor (defining occupancy zones), the Weather Pro-
cessor, the Irradiance Processor (leveraging INSEL HAY (IN-
SEL, 2025) for solar calculations), and the Monthly Energy
Balance module (applying DIN V 18599-2 standards (DIN,
2018) for energy balance calculations and IWU NUTZUNG-
based (Hörner et al., 2022) consumer behavior modeling). Not-
ably, precomputed attributes stored as generic attributes in the
input CityGML—such as area, volume, and building type—are
directly utilized by the Geometric Preprocessor, Geometric
Estimator, and Physics Preprocessor to streamline calculations.
The final CSV output files undergo post-processing to enable
database integration and visualization on 3D building models,
ensuring compatibility with downstream applications.

3.4 Post-processing

The purpose of post-processing is to transform the simulation
output into storable, visualizable, and comparable data formats.
Specifically, storage and visualization are achieved by integrat-
ing simulation results into CityGML.

To database: To integrate energy simulation outputs from
SimStadt into the 3DCityDB (extended with EnergyADE (Agu-
giaro et al., 2018)), a Python-based script was developed to
address interoperability gaps in urban digital twin workflows.
It connects to a remote PostgreSQL database via SSH, parses
SimStadt’s CSV outputs (e.g., monthly cooling/heating de-
mand) and maps them to Energy ADE entities through batch
SQL operations (see Fig. 4). The main steps are: (1) Auto-
mated CSV-to-Energy ADE mapping, which structures CSV
entries into Energy ADE entities. For each simulated building,
several EnergyDemand objects, each one containing a Regular-
TimeSeries object (either with monthly or hourly values), are
created and stored in the respective tables in the 3DCityDB.
During the process, additional attributes are generated (e.g.,
unique gmlids via UUID functions); (2) Transactional batch
insertion, leveraging the pandas library for data transform-
ation and SQLAlchemy for efficient bulk operations to in-
sert heating/cooling demand data; and (3) Atomic transaction

management, which ensures data consistency through rollback
mechanisms. This solution successfully writes all simulation
results into Energy ADE tables. It provides a scalable ETL
solution to easily enrich the 3DCityDB with simulation results
and allow for further analyses.

(a) SimStadt outputs (CSV files)

(b) 3DCityDB visualisation via pgAdmin.

Figure 4. An example of SimStadt results to 3DCityDB

For visualization: Due to limited native 3D rendering sup-
port for Energy ADE results, a method was developed to
visualize energy simulation outcomes in 3D by converting the
energy demand values per-building into scalar values stored in
CityGML’s generic attributes. Using KITModelViewer (KIT,
2024), CityGML data is imported, and color mapping is applied
by selecting rendering categories (e.g., yearly heating demand)
under Color → Property Value → Type Independent. This
approach also supports converting CityGML into other 3D
formats (e.g., OBJ, PLY) by embedding scalar values into
data attributes, enabling visualization in 3D tools. Addition-
ally, to enable comparative analysis, energy simulation results
from Rotterdam’s previous study were similarly integrated into
CityGML for consistent rendering and evaluation.

4. Evaluation

Our analysis quantifies the heating and cooling demand per
building by calculating the specific space energy demand (based
on energy reference area) and annualizing monthly profiles,
with results compared against Rotterdam Municipality’s data.

4.1 Results

Analysis of the study area revealed distinct historical patterns
in the age distribution of buildings (see Fig. 5 left). The
majority of buildings were constructed in two primary periods:
the late 19th century to the 1940s (peaking around 1920)
and post-1980s (around 2000), with relatively fewer buildings
built between 1940 and 1980. The spatial distribution of the
specific heating demand ( Fig. 5 middle) further highlighted
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Figure 5. Building year of construction, distribution, and simulated energy demand. Left: Year of construction in the study area;
Middle and right: SimStadt results for specific heating/cooling demand, expressed in kWh/(m2 · a).

Dimension Values provided by Municipality of Rotterdam Our simulated values (from SimStadt)
Input Data Relies on archival data (Rc/Uw values, ventilation

types) and field measurements (e.g., airtightness).
CityGML models with 3D geometry; requires
material properties and user behavior profiles.

Simulation Method Static model (NTA 8800 and TOjuli) for annual
heat demand and summer overheating risk.

Hourly simulation (DIN V 18599) with weather
data and thermal inertia analysis.

Building Typology Classified by residential type (apartment / terraced
/ detached) and construction era (pre-/post-1945).

Classified by functional use (terraced house / ap-
partment block) with energy demand profiles.

Building Function Focuses on residential refurbishment; no explicit
commercial/industrial analysis.

Supports multi-functional buildings (e.g., offices,
schools) with distinct load patterns.

Output Objective Prioritizes policy compliance (energy labels) and
cost-effective retrofit packages.

Optimizes city-scale energy systems (grid interac-
tion, renewables integration).

Table 1. Main differences between values provided by the Municipality of Rotterdam and our SimStadt input/output values

Figure 6. Quantitative comparison between values provided by the Municipality of Rotterdam and our SimStadt input/output values.
From left to right, it shows the energy reference area (absolute/relative differences), space heating and cooling demand (both for

specific and absolute values).

that approximately 15% of the high-consumption buildings
(>175 kWh/(m2 ·a)) were pre-1945 residential structures, most
likely with poor thermal insulation, while post-1980 buildings
exhibited lower demand (50–100 kWh/(m2 · a)), aligning with
more recent and improved insulation standards. The cooling
demand ( Fig. 5 right) remained below 30 kWh/(m2 ·a) for most
buildings, consistent with Rotterdam’s temperate maritime cli-
mate (Rotterdam Partners, 2025). However, modern glass-
facade commercial buildings showed elevated cooling demand
values (>60 kWh/(m2 ·a)), underscoring the need for optimized
shading and natural ventilation. These findings corroborate the
urgency of refurbishing older buildings while balancing passive
design strategies in new constructions.

4.2 Comparative analysis

Due to fundamental differences in the data granularity and geo-
metric approximation between the two methods, results from
Rotterdam’s previous study and SimStadt should be compared

with caution, especially given the high prevalence of outliers in
the former’s data at the building unit level. Values of heating
and cooling demand from Rotterdam’s previous studyNieman
(2023) are computed using the Dutch NTA8800 (2024) stand-
ard. For each building unit, averaged or estimated input data
such as area, orientation, compactness, envelope thermal prop-
erties (Rc/Uw values for walls, roofs, windows), ventilation
airtightness (infiltration rates, system types), and construction
periods (pre-1945 vs. post-1945) are used. Its semi-static model
calculates the heating demand via NTA8800 (in kWh/(m2 ·
a)) and cooling demand using the TOjuli index (RVO, 2025)
to assess the risk of overheating in summer. Buildings are
categorized by type (apartments, row houses, detached) and
age, with pre-1945 buildings prioritized for upgrades like HR++
glazing (AA Glas, 2025) and internal insulation, while post-
1945 buildings focus on comprehensive insulation. Functional
distinctions (e.g., apartments vs. detached homes) influence
heating demand, as shared structures in apartments reduce
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per-unit consumption. Unlike SimStadt, which emphasizes
city-scale dynamic energy system optimization, Rotterdam’s
previous study prioritizes compliance with single-building re-
furbishment policies (see Table 1).

Energy reference area comparison. The two approaches
diverge significantly in energy reference area (ERA) modeling.
Rotterdam’s method, operating at the building unit level with
aggregated results for whole buildings, relies on simplified geo-
metric approximations (e.g., averaged dimensions and generic
thermal properties), which introduce uncertainties—especially
evident in the high frequency of zero or near-zero ERA values
(see Fig. 6, left). In contrast, SimStadt leverages validated 3D
building models with corrected geometries and outlier-adjusted
parameters, yielding a right-skewed ERA distribution (peaking
at 50–400 m2) that better reflects the actual diversity in building
size. Relative difference analyses reveal polarization: 18.3% of
buildings show <20% deviation (Group 1), while 58.4% exhibit
>100% deviation (Group 6), likely driven by unresolved data
gaps or input errors in the previous study’s approximations at
the building unit level. These discrepancies underscore the need
for rigorous data cleaning—such as the geometric repairs and
attribute corrections applied in SimStadt—before meaningful
cross-method comparisons can be conducted.

Heating demand analysis. Significant differences exist
between SimStadt and Rotterdam’s values in heating demand
simulations (see Fig. 6 middle, and Fig. 7 top). For specific
space heating demand, SimStadt’s results cluster within 0–200
kWh/(m2 · a), consistent with Rotterdam’s typical insula-
tion performance, whereas the values from Rotterdam exhibit
scattered values, including values exceeding 1000 kWh/(m2 ·a),
probably due to data anomalies or area calculation errors. In
the yearly heating demand, SimStadt’s distribution (≤60,000
kWh/a) corresponds to small-to-medium buildings, while Rot-
terdam’s method includes implausible records (>1,000,000
kWh/a), possibly reflecting unsegmented industrial complexes
or parameter errors. SimStadt’s reliance on our (corrected) 3D
model appears to ensure higher physical consistency, whereas
Rotterdam’s results require further validation or additional
checks on data quality, consistency, and accuracy.

Cooling demand analysis. As shown in Fig. 6 (right)
and Fig. 7 (bottom), cooling demand simulations diverge
markedly between the two models. SimStadt’s specific cooling
demand peaks at 20–40 kWh/(m2 · a), reflecting Rotterdam’s
climate-driven passive cooling potential. Rotterdam’s values,
however, show polarization: 88.3% of buildings fall below 20
kWh/(m2 · a), yet some exhibit high values (>100 kWh/(m2 ·
a)), possibly due to input errors or oversimplified assump-
tions. Yearly cooling demand distributions further highlight
differences: SimStadt spans 0–10,000 kWh/a, capturing diverse
building scales and functions, while Rotterdam’s values are
concentrated (0–2000 kWh/a), suggesting systemic underes-
timation or exclusion of non-residential spaces (e.g., glass-
facade commercial buildings). Again, it seems that SimStadt
and (corrected) 3D models ensure a better reliability, whereas
anomalies in Rotterdam’s values necessitate further checks.

5. Summary

This study describes how semantic 3D city models, if prop-
erly checked for data inconsistencies and geometrical errors,
can be used as a source of integrated spatial and non-spatial
information to perform energy analyses at the urban scale. In

particular, our work focuses on the simulation of the heating
and cooling demand of buildings for two test areas in the
municipality of Rotterdam, in the Netherlands. The simulation
tool using the s3DCM as input is SimStadt. We defined pre-
and post-processing procedures to enhance input data quality
(improving simulations) while automating result integration
and visualization. Empirical validation in Rotterdam shows that
the repaired CityGML models effectively mitigate geometric
errors, reducing average discrepancies in energy reference area
and heating demand calculations. Refined mapping of building
functions and types minimizes parameter assumption biases.
Comparative analysis with results obtained from a previous
study commissioned by the municipality of Rotterdam high-
lights the advantages of our method in terms of characterization
of spatial heterogeneity and prediction of peak loads, offering a
reliable tool that can support urban energy system planning.

Limitations and future work. This work has limitations:
microclimate influences (vegetation shading, urban infrastruc-
ture) are neglected, potentially underestimating cooling loads;
LoD2 models lack detailed architectural features (openings,
sunshades) affecting energy balance; meteorological data rely
solely on suburban station records without urban canopy valid-
ation; and TABULA’s coarse building classes combined with
German DIN standards may introduce local applicability bi-
ases. Future work should prioritize integrating urban micro-
climate measurements and refining typologies with local para-
meters, while exploring LoD3 models and vegetation coupling
to address these constraints.
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