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Abstract

As dynamic accessibility depends on the interplay of opportunities and travel impedance, available General Transit Feed Specific-
ation data and mobile phone data offer new opportunities to enhance the temporal sensitivity of accessibility. This paper utilises a
mobile phone-based origin-destination matrix and dynamic travel time via public transport to explore spatial and temporal patterns
of accessibility measures. Four scenarios are constructed and compared to illustrate the relative accessibility. The results show that
the impact of the public transport system changes progressively depending on the cut-off time considered, and average accessibility
gains could vary four-fold between the city centre and suburban zones. Besides, the exploration of the relationship between land
use, mobile phone-based attractiveness, and dynamic accessibility underlines the time-dependent effect of land use. Future research
should focus on the development of advanced accessibility-based travel models.

1. Introduction

Accessibility is a key criterion for evaluating how well a trans-
port system serves different categories of users (Morris et al.,
1979). In the context of passenger transport, Geurs and van
Wee (2004) define accessibility as the extent to which land use
(LU) and transport systems enable (groups of) individuals to
reach activities or destinations via one or more transport modes.
Following this definition of accessibility, ideally, accessibil-
ity measures should incorporate all components of the urban
system: LU, transport networks, temporal dynamics, and indi-
vidual constraints. However, in practice, accessibility assess-
ments often focus on a subset of these components, depending
on the perspective taken. Hansen (1959) conceptualises access-
ibility as “the potential of opportunities for interaction”. Spe-
cifically, accessibility is defined as being directly proportional
to the size of the activity (e.g., number of jobs) at the destina-
tion and inversely proportional to some function of impedance
(e.g., distance or travel time) between origin and destination. A
common opportunity-based alternative is the cumulative oppor-
tunity measure, which counts the number of activity destina-
tions reachable within a specified travel time or distance from a
given origin (Chen et al., 2011). In essence, opportunity-based
accessibility captures the extent of the attractiveness of each
potential destination from a given location and has been extens-
ively adopted as location-based measures (also referred to as
activity-based or place-based) (Vandenbulcke et al., 2009; Hu
and Downs, 2019) at a macro level.

As spatial and temporal constraints significantly shape people’s
access to activity locations, person-based accessibility research
has emerged as a complementary perspective. Rooted in space-
time geography (Hégerstrand, 1989), this approach emphasises
individual space-time constraints (Kwan et al., 2003) and mod-
els how people plan and conduct flexible activities depending
on where, when, and with whom they engage in these activities
(Neutens et al., 2010). However, widespread adoption of this

approach has been limited due to the lack of high-resolution
individual travel data required for robust implementation (Neu-
tens et al., 2011). In comparison to person-based accessibility,
location-based models have traditionally struggled to account
for temporal constraints due to the limited availability of time-
sensitive spatial data (Jarv et al., 2018; Hu and Downs, 2019).
In recent years, however, the emergence of data such as Gen-
eral Transit Feed Specification (GTFS) data and mobile phone
data (MPD) has opened up new possibilities for incorporating
temporal dynamics into location-based accessibility analysis.

MPD used in travel behaviour research generally originate from
two sources: event-driven data from mobile network operators
and sensor-based data from smartphones (Wang et al., 2018).
The former data are generated during voice or data events, while
the latter are typically collected through third-party mobile ap-
plications that offer location-based services. MPD have been
increasingly applied in studies, ranging from travel demand
modelling to the analysis of human mobility patterns. For in-
stance, Bwambale et al. (2019) developed a demographic group
prediction model using call detail records (CDR) as part of a lat-
ent class model for trip generation. Although such models show
potential for creating synthetic populations, they often require
subsamples with known demographic characteristics, which are
rarely available. Moreover, MPD present limitations, including
coarse spatial granularity, uncertain demographic representa-
tion, and the absence of a clear ground truth (Chen et al., 2016).
Consequently, researchers have explored data fusion methods to
combine MPD with other sources in transport planning (Kuhn-
imhof et al., 2024). Notably, aggregated travel demand estim-
ates derived from MPD generally align well with results from
conventional travel surveys (Dypvik Landmark et al., 2021; Fe-
kih et al., 2022).

Urban LU, encompassing commercial, industrial, residential,
and transport categories, shapes local trip generation and attrac-
tion dynamics. Conventional four-step travel demand models
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use LU characteristics to estimate movement volumes between
traffic analysis zones (TAZs) (McNally, 2000). Numerous stud-
ies have examined the impact of LU on trip generation, dis-
tribution, and travel demand model sensitivity (Bernardin and
Conger, 2010; George and Kattor, 2013). Non-physical factors,
such as socioeconomic and demographic characteristics, also
influence destination choice and trip volume. Population dens-
ity, for example, is closely associated with LU mix, walkability,
transit service levels, and parking availability (Moudon et al.,
2005). Employment and population counts are sometimes used
as proxies for LU intensity (Shi and Zhu, 2019). Even modest
changes in LU mix can lead to significant shifts in mobility be-
haviour (Sarkar and Chunchu, 2016). Greater LU intensity typ-
ically increases the number of trips, congestion, and travel time
(Gao et al., 2021). Although improved accessibility, accom-
panying higher densities and mixed uses, may paradoxically
increase vehicle trips (Ewing et al., 1996). The LU-travel rela-
tionship remains complex, with studies yielding mixed findings.
Despite growing interest in the link between LU and transport,
the dynamic interplay between LU and time-varying accessib-
ility, especially via public transport, remains under-explored.
This study addresses that gap by combining GTFS-based travel
time data with a cumulative opportunity framework. Using the
province of Liege, Belgium, as a case study, we evaluate the
impact of LU and public transport scheduling on spatial and
temporal accessibility patterns. The proposed framework of-
fers planners a replicable method for analysing the trade-offs
between LU and transport policy decisions, supporting the de-
velopment of more equitable and time-sensitive urban mobility
strategies.

2. Related work

In recent years, time-varying location-based accessibility indic-
ators have been developed to account for dynamic demand, sup-
ply, and transport system changes. For example, Vandenbulcke
et al. (2009) examined accessibility by car along the Belgian
road network from each commune to two destination types:
major cities and railway stations. They calculated generalised
travel time by weighting network elements and station access-
ibility based on speed limits and service frequency, separately
for peak and off-peak periods. Hu and Downs (2019) proposed
a place-based space-time job accessibility measure based on a
modified gravity model, integrating the ratio between job sup-
ply and workforce demand. They discretised job and popula-
tion data at fine spatial and temporal resolution, and calculated
hourly travel times from Google Maps to derive dynamic job
accessibility. Their approach enables the analysis of spatio-
temporal job imbalances and the assessment of the impact of
policies such as flexible working hours and mixed LU develop-
ment. Similarly, Tenkanen et al. (2016) examined travel times
by car and public transport to the nearest open grocery store
offering healthy food. Cumulative accessibility curves, which
show the percentage of the population within a given travel
time, were used to analyse both modal and temporal effects on
accessibility. Jéarv et al. (2018) modelled location-based access-
ibility using travel times via public transport between people’s
locations and grocery stores. Unlike Tenkanen et al. (2016),
they used only public transport and incorporated mobile phone
CDR to estimate dynamic population presence. Their results
were compared with static accessibility models based on pop-
ulation register data. Lee et al. (2018) conducted an empirical
study of spatial accessibility using mobile phone-derived pop-
ulation data and real-time bus schedules during peak and late-

night periods. A distance-decay function was applied to reflect
varying perceptions of travel time depending on proximity to
bus stops. Accessibility scores were computed for each popu-
lation unit based on proximity and service availability.

Smart card data, too, provide valuable insights into the tem-
poral variability of public transport accessibility. For instance,
Arbex and Cunha (2020) used smart card transactions, GTFS
schedules, and GPS-based automatic vehicle location (AVL)
data to estimate boarding and alighting points and analyse how
crowding and travel time variability affect job accessibility via
cumulative opportunities. Garcia-Albertos et al. (2019) com-
bined Google Maps travel time estimates with mobile phone-
based origin-destination (OD) matrices to construct dynamic
accessibility scenarios. They isolated the influence of two com-
ponents: (i) the attraction mass, based on the number of mobile
phone trips, and (i7) variable travel times by car across the day.

From the literature, several common approaches to location-
based accessibility emerge. First, network-based metrics are
used to evaluate travel time or distance to specific destinations.
Second, opportunity-based accessibility combines a measure of
attraction (e.g. number of jobs, service, or arrivals), with travel
cost. Third, dynamic (time-varying) accessibility extends these
measures by incorporating temporal variations in demand, sup-
ply, or network performance, typically via public transport or
road networks. Opportunity data can be drawn from a range of
sources, including (i) activity-specific trip counts from surveys;
(if) open datasets, such as the number of jobs, services, or facil-
ities; and (iii) population presence or trip arrivals derived from
MPD. As data availability and computational capacity increase,
accessibility modelling has shifted toward higher resolution and
more temporally sensitive indicators. In addition, competitive
factors, such as demand pressure or crowding, are increasingly
incorporated into accessibility metrics through mechanisms like
supply—demand ratios.

Despite these advances, challenges persist in capturing intraday
dynamics of both travel time and demand. This study builds on
recent work by integrating mobile phone-derived OD matrices,
GTFS-derived public transport travel times, and LU data from
a web mapping portal. Although proprietary MPD is used, the
framework is adaptable to open mobility datasets, increasing
its broader applicability. We estimate and map time-sensitive
accessibility in Liege using mobile phone-derived trips and dy-
namic public transport travel times. In addition, we investigate
the relationship between LU and both mobility demand and ac-
cessibility outcomes. The analysis supports the use of dynamic,
location-based accessibility measures to enhance the respons-
iveness of travel demand models, particularly by incorporating
feedback in mode and location choice components. This study
also serves as a foundation for the development of accessibility-
based transport models with reduced data requirements and im-
proved temporal realism.

3. Methodology

3.1 Data

The overall methodological framework for this research is
presented in Figure 1. The province of Liege, located in the
easternmost part of Wallonia, Belgium, borders the Nether-
lands, Germany, Luxembourg, and five other Belgian provinces.
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It consists of four administrative districts, comprising 84 mu-
nicipalities, with the city of Liege as the capital (Figure 2).
Hourly mobile phone-based OD matrices are available for an
average weekday (7 days x 24 hours), aggregated from observa-
tions collected between 15 January 2018 and 8 February 2018.
The MPD originate from network operator Proximus, which
holds approximately 40% of the Belgian telecom market. The
signalling data provided by Proximus to Service public de Wal-
lonie (SPW) Mobilité et Infrastructures were aggregated into
310 mobile phone cells within the province. Each OD matrix
captures the number of trips originating from and arriving at
each cell, aggregated by hour.

Mobile phone OD, { Centroids’ mordinales} %IS-FI\‘/[S
| l
attractiveness | A ibili }‘—[ Travel time ‘
Regression model JL Land use _( M

Figure 1. The research framework.

In this study, mobile phone cells are spatially represented by
their centroids. To understand spatial variation in destination
attractiveness, we compute and map the average daily trip rate
by dividing the daily mean number of arrivals by the popula-
tion present at midnight. As shown in Figure 3, the zone cor-
responding to central Liege exhibits the highest trip rate (4.41),
indicating strong spatial centrality.

Next, we use the r5r package to compute public transport
travel times for each hour on weekdays, aligning with the tem-
poral resolution of the MPD. The r5r framework constructs a
multimodal network based on OpenStreetMap (OSM) for the
street network and GTFS data for scheduled public transport
services (Pereira et al., 2021). Travel times are calculated from
each OD pair at each departure hour, considering all minute-
level departures within a one-hour time window. Median travel
times are retained by default, and walking time is capped at
30 minutes. Note that the Lieége province spans a large area
(3,857 km?) and is served by two independent public transport
agencies: the SNCB (national railway) and TEC (regional bus).
As SNCB mainly provides intercity connections, some intra-
provincial OD pairs may lack feasible public transport routes.
In such cases, where no route can be identified or travel cannot
be completed within a reasonable time window, the travel time
is marked as infinite, indicating that the destination cannot be
reached within a day with the given origin.

To assess the influence of LU data on accessibility, we integ-
rate LU and land cover (LC) data provided via the Walloon
geoportal WalOnMap. These data follow the Hierarchical IN-
SPIRE Land USE Classification System (HILUCS), which of-
fers a multi-level nomenclature of LU and LC based on nat-
ural, infrastructural, and economic attributes (Beaumont et al.,
2021). At Level 1, the nomenclature includes (i) Primary pro-
duction, (ii) Secondary production, (iii) Tertiary production,
(iv) Transport Networks logistics and utilities, (v) Residential
use, (vi) Other uses, and (vii) Natural areas. The province
of Liege is predominantly characterised by Primary produc-
tion (about 77.74%), including Agriculture (about 49.73%),
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Figure 2. Location of Liege in Belgium.
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Figure 3. Daily mean number of arrivals per inhabitant in the
province of Liége.

Forestry (about 27.65%), and Other primaries (about 0.36%)
at Level 2 (Figure 4). However, the LU profile around the dis-
trict of Liege is dominated by residential use and tertiary ser-
vices. Therefore, we further divide LU into Level 3 and derive
48 types of LU. Notably, the district of Li¢ge, our primary fo-
cus, accommodates approximately 56.5% of the province’s 1.1
million residents and contains all Level 3 LU types (see orange
area in Figure 2).

To link LU with MPD, we first convert the LU feature to raster
data with a spatial resolution of one meter by one meter. As
a result, each square of the raster map has a unique LU type.
Thereafter, we overlay the raster map over the vector map of
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Figure 4. Land Use of the province of Liege at Level 1 and
Level 2.
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mobile phone networked areas (cells) and apply the GIS zonal
statistics tool to aggregate the number of each type of LU raster
parcel to each cell. Thus, we obtain parcel counts of different
LU in each mobile phone cell.

3.2 Regression analysis

To explore how LU influences travel demand, we conduct mul-
tiple linear regression analysis, using MPD-derived arrivals as
the dependent variable and LU variables as predictors. Before
estimation, we test for multicollinearity using the variance infla-
tion factor (VIF) using the R package “car”, with a conservative
exclusion threshold of VIF > 5. This results in the removal of
14 highly collinear LU categories. This means that 14 categor-
ies of LU (land use) that are highly correlated with each other
have been removed to reduce redundancy. The remaining 34
categories will be used in the next step of the regression ana-
lysis to ensure more reliable and interpretable results.

As hourly mobile phone-based OD matrices are available,
we first aggregate the five weekday (Monday to Friday) OD
matrices to a one-day matrix (1 average weekday x 24 hours).
To examine temporal effects, we define three time periods of
departure times: (i) morning peak (06:00-09:00), (ii) midday
oft-peak (11:00-14:00), and (iii) afternoon peak (15:00-18:00).
The dependent variable in each regression model is the total
number of arrivals within a given time window. After apply-
ing VIF-based variable reduction, we fit ordinary least squares
models for each time period and perform stepwise regression
to retain only statistically significant LU predictors, ensuring
parsimony and interpretability.

3.3 Measuring accessibility

Accessibility is modelled using a cumulative opportunities
framework. A simple cumulative opportunities measure from
one origin ¢ to a set (n) of destinations at time ¢ is defined by
Equation 1 and Equation 2 (Garcia-Albertos et al., 2019; Wessel
and Farber, 2019)

Ain =Y Wi f(Tin) e
J
L1, Ty <0
F(Tign) = {O, otherwise @

where A; ;, is the accessibility of origin point ¢ calculated as the
mean value across five consecutive weekdays for one-hour de-
parture windows at departure time h; W; is the attraction mass
of destination point j, which in our study is the mobile phone-
based total number of arrivals, and f(T;;) is an impedance
function that denotes a binary measure of whether a destination
Jj is accessible within a given time threshold 6. Cumulative ac-
cessibility is widely embraced by transport and urban planners
or policy-makers as it is easy to compute and interpret (Kelo-
bonye et al., 2020). To analyse temporal variation in accessibil-
ity,we compute accessibility scores for three representative time
windows—morning peak (08:00-09:00), off-peak (13:00-14:00),
and afternoon peak (17:00-18:00), using thresholds of 30, 60,
and 90 minutes. In line with Pereira (2019), this allows us to
test whether threshold selection significantly alters accessibil-

ity patterns and policy implications. To evaluate the temporal
dynamics of accessibility, we compare four distinct scenarios:
(i) mean arrivals and off-peak (midday) travel time (reference);
(i) mean arrivals and hour-specific travel time (dynamic con-
gestion); (iif) hour-specific arrivals and off-peak travel time (dy-
namic attraction); and (iv) hour-specific arrivals and travel times
(fully dynamic). Finally, we apply regression analysis to ex-
plore the relationship between LU and dynamic accessibility as
defined in the fourth scenario. This provides insight into how
spatial land use patterns shape time-sensitive accessibility out-
comes.

4. Results and Discussion

4.1 Accessibility by public transport

Accessibility is estimated using a cumulative opportunity ap-
proach, reflecting the number of destinations reachable within a
specified travel time via public transport. The level of accessib-
ility depends on the destination attractiveness, congestion, and
the defined travel time threshold. Figure 5 visualises the spa-
tial distribution of dynamic accessibility under various public
transport time thresholds. The resulting patterns reveal a typ-
ical centre-periphery structure: central areas exhibit the highest
accessibility, while peripheral areas are progressively less ac-
cessible via public transport.

As shown earlier (Figure 3), some peripheral zones in the dis-
trict of Liege exhibit high trip rates (3-4 trips per day) despite
their distance from the city centre. These areas are often located
near major road exits and have a relatively high proportion of
residential or tertiary areas. However, as the level of accessib-
ility depends on travel time, apart from the opportunity feature,
accessibility has an obvious centre-periphery pattern, especially
in scenarios with a lower travel time threshold. Accessibility
clearly improves as the travel time threshold increases. For
example, the percentage of TAZs with accessibility measures
below 10,000 decreases from 94% with a 30-minute threshold
(Figure 5a), to 61% at 60 minutes (Figure 5b), and 28% at 90
minutes (Figure 5c¢).

Moreover, time-sensitive accessibility can be evaluated by ap-
plying a travel time cut-off and adjusting both the attraction
mass and public transport travel times. During the morning
peak (08:00-09:00), accessibility levels are at their highest, fol-
lowed by the afternoon peak and then off-peak periods. The
zones with the greatest accessibility tend to be located around
the Liege city centre, where the most important bus termin-
als are concentrated. These zones also feature a diverse LU
mix, combining dense residential areas and commercial ser-
vices. When applying a 30-minute travel time threshold, the
proportion of TAZs with accessibility scores above 10,000 re-
mains relatively stable across time slots, with only a few notable
exceptions. One such exception is an enclave in the northern
part of the district, which, despite being located in a peripheral
area, demonstrates unexpectedly high accessibility(Figure 5a).
Its favourable accessibility can be attributed to its proximity to
a neighbouring city in the southeastern Netherlands, which en-
hances its connectivity. Conversely, some zones situated close
to the urban core or with high trip-attraction rates display relat-
ively low accessibility during peak hours due to extended travel
times. In practice, this means that reaching key urban amenities
such as universities or hospitals from these zones may require
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Figure 5. Temporal variation in accessibility with various time
thresholds at 8 AM in the morning for the district of Liege.

as much time as travelling from more distant peripheral muni-
cipalities. These findings suggest that low cut-off thresholds,
such as 30 minutes, may inadequately reflect the average travel
time required for residents in peripheral zones to access cent-
ral urban opportunities (Arbex and Cunha, 2020). In contrast, a
longer travel time threshold , such as 90 minutes, enables over
70% TAZs to reach an accesibility value above 10,000, regard-
less of the time of day. This outcome is intuitive, as longer time
windows allow access to a broader set of destinations. Not-
withstanding, the selection of a cut-off value should be context-
specific and guided by normative assumptions regarding accept-
able commute durations (Pereira et al., 2021).

4.2 Comparison between accessibility scenarios

Zonal relative accessibility allows policy-makers to assess the
geographic distribution of opportunities and transport services
(Boisjoly and El-Geneidy, 2016). In this study, we compare
accessibility across different times of the day by evaluating
how accessibility is shaped by the joint effects of variations in
travel time and attraction mass. To isolate the influence of each

component, we define four accessibility scenarios in which one
factor is held constant while the other varies. To facilitate com-
parisons between scenarios, we apply a fixed travel time cut-
off of 60 minutes. However, in some instances, there are OD
pairs that are either not served by public transport during certain
hours or cannot be reached within a reasonable time frame, par-
ticularly for peripheral zones at night. Therefore, their public
travel times cannot be derived from OSM and schedule-based
GTFS. In such cases, travel time will be treated as infinite, and
the OD pair is excluded from the calculation. The alternative
option for average travel time, as a fixed factor, is the time at
off-peak (12:00-13:00).

The first reference accessibility scenario is derived based on the
mean attraction mass and the travel time during off-peak hours.
Although both automobile and transit travel times fluctuate reg-
ularly due to congestion, transit travel times are uniquely af-
fected by service provision variables such as vehicle headways,
scheduling, and the synchronization of transfers (Farber et al.,
2014). Therefore, the accessibility provided by a public trans-
port system can differ from that provided by the road network
with historical speed profiles such as the one given in Moya-
Goémez et al. (2018). Nevertheless, a gap remains in evaluating
the effect of congestion on accessibility by public transport. To
answer this question, we map spatial and temporal patterns of
relative accessibility measures for the morning peak (8:00-9:00
am) and afternoon peak (17:00-18:00 pm).

The second scenario (dynamic congestion) is constructed by
fixing the attraction mass as the mean number of arrivals while
varying the public transport travel time. The third scenario is
called the dynamic attraction, which is defined by using the ref-
erencing travel time and the varying attraction mass. If vari-
ations in both public transport travel time and destination attrac-
tion mass are considered, this scenario is regarded as a fourth
fully dynamic scenario. Lastly, the average accessibility meas-
ures from different scenarios are compared with those from the
reference scenario. As a result, each transport zone has its
own relative accessibility profile. The comparison presents very
marked differences for some zones. To better interpret the tem-
poral pattern of accessibility measures, we plot the curves of
average accessibility values across the day for four scenarios
at once (Figure 6a) suggested in Moya-Gomez et al. (2018).
Meanwhile, we select three TAZs that are representative of the
internal discrepancies in the district of Liege (with 123 zones)
from the centre to the south, including 1) one of the Liege
centres (Figure 6b); 2) a close outer part of the city called Sart-
Tilman with a mix of land use of most important university edu-
cation facilities and low residential density area (Figure 6c¢); 3)
a suburban area called Esneux (Figure 6d).

In general, the average values of each scenario reveal that the
variation in destination attractiveness outweighs the variation in
congestion detected by public transport. The curve of the fully
dynamic accessibility scenario is located closer to the attraction
scenario than the congestion scenario and substantially higher
than the average reference value during the daytime. In con-
trast, the negative influence of congestion on accessibility com-
pared with the reference scenario happens particularly around
9:00 to 11:00 am and after 18:00 pm. Differences in the pro-
files of the different transport zones can be seen from Figure 6b
to 6d. The central transport zone is affected by congestion start-
ing from 8:00 am. This area contains economic activities and is
more sensitive to congestion at 16:00 pm due to the outbound
journeys. The second transport zone with educational facilities
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Figure 6. Profile for changes in average accessibility and
accessibility of three representative zones according to scenarios

Table 1. The estimated coefficients of land use for arrivals from
6:00 to 9:00 AM

Dependent variable: number of arrivals

variable coefficient std.error t value
Light industry —0.003* 0.002 -1.693
Heavy industry 0.001"** 0.0004 2.834
Commercial agricultural production 0.008"** 0.002 3.290
Energy production 0.003* 0.001 1.952
Health and social action services —0.107"** 0.035 -3.013
Education services 0.004™* 0.001 4.564
Rail transport —0.009"** 0.003 -2.744
Other compatible residential uses at medium population density 0.001*** 0.0003 4.668
Other compatible residential uses with undefined housing density 0.073*** 0.003 27.449
Permanent residential use with undefined housing density —0.035*** 0.008 -4.396
Permanent residential use with medium population density 0.018"** 0.003 6.009
Constant —173.020 92.409 -0.790
Number of Observations 123
R?/ Adjusted R? 0.907/0.898
Residual Std. Error (df = 111) 624.158
F Statistic (df = 11; 111) 98.199*

Note:*p<0.1; **p<0.05; **p<0.01

has the most inbound trips at 8:00 am. However, its dynamic
accessibility is significantly affected by congestion from 9:00
to 11:00 am. In the afternoon, it is much less attractive than
the morning peak, and the accessibility obviously declines. The
suburban zone has distinct fluctuations of dynamic accessibil-
ity predominantly caused by congestion. In particular, at 8:00
am, the population concentration is relatively high but the dy-
namic accessibility drops due to outbound journeys for work. In
the reference scenario, the accessibility value for the third zone
(suburban) is substantially lower than the average value (7,540)
and far below the central area (29,255).

4.3 Land use and accessibility

Table 1, Table A.3 and Table A.4 present the final regression
results analyzing relationships between Level 3 LU classific-
ations and mobile phone-derived arrivals across different time
periods. The results reveal distinct LU types that exhibit stat-
istically significant influence on arrival patterns at the cellular
level, with varying impacts observed throughout the day.

In this research, attractiveness is found to have a predominant
positive effect on dynamic accessibility. To filter out essential
LU variables for mobile phone-based arrivals, we performed
a stepwise regression based on the outcome of VIF analysis.
From Table 1 to Table A.4, we see the influential LU changed
in different time slots, including the variation in the signific-
ance of the same LU or the change of LU type, for instance,
from education services in the morning to commercial services
in the afternoon rush hours. Permanent residential use with me-
dium population density represents residential areas where the
number of inhabitants within a radius of 200 meters is between
250 and 499. Low population density is set as between 80 and
249. Other compatible residential uses with undefined hous-
ing density mean residential areas where other non-conflicting
uses coexist where the number of inhabitants within a radius of
200 m is undefined. From Table 1, it is found that, on aver-
age, each additional permanent residential use with undefined
housing density is associated with a decrease of 0.035 arrivals
in the morning, assuming other independent variables are held
constant, while in the afternoon, its effect is insignificant.

In addition, the other public services and sports infrastructures
show a significant effect in the afternoon. It is noted that rail
transport has a significant negative effect on the attractiveness
of the destination, which is counterintuitive. One of the poten-
tial reasons is that the LU value approximated from the vector
map is the area of a parcel with possible mixed uses instead of
the number of railway stations. Nevertheless, with R? scores of
0.907 in the morning peak, 0.902 during off-peak, and 0.932 in
the afternoon peak, we see an excellent goodness-of-fit of the
regression model based on attraction mass and LU. The find-
ing is helpful for researchers to calibrate the destination choice
model better using influential LU variables across the day when
facing a limit of travel demand data.

Similarly, we perform a stepwise regression for LU and the
dynamic accessibility from the interplay of public transport
travel time and attraction mass for two periods with rush hours
(Table 2). Apart from agricultural infrastructure, other compat-
ible residential uses at medium population density, and other
compatible residential uses with undefined housing density,
other LU variables described in the regression model for mo-
bile phone-based trips have no significant influence on dynamic
accessibility. Besides, the other residential use has a significant
negative effect on accessibility. However, the goodness-of-fit is
worse than the regression model between mobile phone-based
arrivals and LU, which implies a more complicated relationship
between LU and dynamic accessibility than destination attract-
iveness. Apart from attractiveness, the travel cost and the com-
petition for opportunities demanded play a role in accessibility
measures.

5. Conclusion and Future Research

Big data sources such as MPD offer new opportunities for the
analysis of time-sensitive accessibility. The openly available
GTFS makes it possible to derive dynamic travel time and rein-
forces the study of dynamic accessibility. This research utilizes
mobile phone-based attractiveness and public transport travel
time to explore spatial and temporal patterns of dynamic ac-
cessibility measures. Instead of using traditional LU examples,
such as the static number of jobs as the opportunity variable,
we approximated mobile phone-based arrivals as opportunit-
ies, as they are time-sensitive. Besides, the mobile phone-based
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Table 2. The estimated coefficients of land use for dynamic
accessibility

AM Peak (6:00 to 9:00 am)

variable coefficient std.error  t value

Dependent variable: A

Other residential uses ~03047°" 0.056 -5.167
Agricultural infrastructure 0.179"* 0.057 3.137
Other i idential uses at medium density  0.226"" 0.058 3.887
Other compatible residential uses with undefined housing density ~ 0.519"** 0.058 8.909
Constant 0.000 0.055 0.000
Number of Observations 123
R?/Adjusted R? 0.6328/0.6204
Residual Std. Error (df = 118) 0.6161
F Statistic (df = 4; 118) 50.847°

PM Peak (15:00 to 18:00 pm)
Other residential uses ~0.292°*" 0.058 -5.007
Agricultural infrastructure 0.167* 0.057 2957
Other i idential uses at medium fon density  0.225°** 0.058 3.892
Other compatible residential uses with undefined housing density ~ 0.536"** 0.058 9.258
Constant 0.000 0.055 0.000
Number of Observations 123
R?/Adjusted R? 0.6370/0.6247
Residual Std. Error (df = 118) 0.6126

F Statistic (df =4;118) 5177

Note: **p<0.05; ***p<0.01

traffic analysis zones have relatively small spatial sizes (6.5 km
squares on average of 123 zones), especially for the conurba-
tion area. The impact of the public transport system changes
progressively depending on the cut-off time considered, and the
size of average accessibility gains could vary fourfold between
the city center and suburban transport zones. If these results
are incorporated into a cost-benefit analysis or multi-criteria
analysis, important implications can be derived for informed
decision-making.

Furthermore, the relationship between LU and accessibility is
complex, and different conurbations around the world exhibit
unique city characteristics. It is challenging to directly categor-
ize patterns of dynamic accessibility based on types of LU and
find a universal relation applied to different urban areas. Spe-
cifically, we see the significant impact of compatible residential
use on destination attractiveness and location-based accessibil-
ity in the district of Liege, which implies the necessity of further
exploring mixed LU effects.

In terms of limitations of this research, first, origins with lower
scheduled access from schedule-based GTFS data tend to pro-
duce less reliable estimates and are therefore typically overes-
timated compared to what is realized in practice, for instance,
from AVL data mentioned in Wessel and Farber (2019). Ac-
cordingly, they can report only the effects of planned change
caused by public transport on accessibility, not what actually
occurs. Second, MPD have its own bias and were determ-
ined by the data provider using an undisclosed algorithm based
on population statistics and the most probable place of resid-
ence. The granularity of the data, while sufficient for identi-
fying broad mobility patterns, limits more detailed behavioral
interpretations. Finally, although validation of the observed
mobility evolution was beyond the scope of this project, future
studies could build on this foundation to conduct more compre-
hensive validations.

Consequently, we introduce the LU data from a web map portal
to explain the relationship between LU and location-based ac-
cessibility. While this study offers valuable insights, certain
considerations should be noted to inform future research. The
LU value here refers to the area value of a parcel with pos-
sible mixed uses, which is not as intuitive as the opportunities
explained by traditional data on various jobs or services. This
gives us the future direction of integrating building-based land
use data or points of interest to enhance the study of land use’s
effect on dynamic accessibility. Moreover, incorporating dy-

namic travel times across various transport modes to make ac-
cessibility scenarios more reflective of real-world conditions is
a crucial step in the advancement of sophisticated accessibility-
based travel models.
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Appendix

A. Additional Tables of Regression Results

Table A.3. The estimated coefficients of land use for arrivals
from 11:00 to 14:00 PM

Dependent variable: number of arrivals

Ind dent variable coefficient std.error  t value
Agriculture 0.012% 0.006 1.864

Light industry —0.004" 0.002 -1.861
Commercial agricultural production 0.013*** 0.003 5.024

Health and social action services —0.095" 0.044 -2.181
Education services 0.003*** 0.001 3.244

Rail transport —0.018"** 0.004 -4.351
Other compatible residential uses at medium population density 0.002*** 0.0004 4.612

Other compatible residential uses with undefined housing density 0.092*** 0.003 27.475
Permanent residential use with undefined housing density —0.041"* 0.010 -4.058
Permanent residential use with medium population density 0.021*** 0.004 5513

Constant —54.883 126.858 -0.433
Number of Observations 123

R?/Adjusted R? 0.902/0.893

Residual Std. Error (df = 112) 782.053

F Statistic(df = 10; 112) 103.180"*"

Note:*p<0.1; **p<0.05; ***p<0.01

Table A.4. The estimated coefficients of land use for arrivals
from 15:00 to 18:00 PM

Dependent variable: number of arrivals

Independent variable coefficient std.error t value
Other public services 0.001** 0.0003 2.539
Heavy industry 0.001** 0.0003 2.183
Agricultural infrastructure —0.006"* 0.003 -2.253
Sports infrastructures 0.002** 0.001 2.401
Commercial services 0.008™* 0.002 4.075
Electricity gas thermal energy distribution services 0.005" 0.003 1.722
Health and social action services —0.096""" 0.031 -3.819
Rail transport —0.011"" 0.003 7.455
Other compatible residential uses at medium population density 0.0027** 0.0002 29.522
Other compatible residential uses with undefined housing density 0.068** 0.002 4.483
Permanent residential use with medium population density 0.0127** 0.003 1.803
Permanent residential use with low population density 0.004™ 0.002 2.438
Aquatic natural areas 0.001** 0.0003 -0.433
Constant 44.745 92.586 0.483
Number of Observations 123

R?/Adjusted R* 0.932/0.924

Residual Std. Error(df = 109) 556.394

F Statistic (df = 13; 109) 115.3217"

Note:*p<0.1; **p<0.05; ***p<0.01
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