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Abstract 

 

The leveraging of social media for citizen science is a powerful tool for generating large-scale records of wildlife observations and 

engaging the public in biodiversity conservation. However, the utility of observation records is adversely affected by their biases. In 

particular, understanding the drivers behind observation hotspots—locations where observation records are concentrated—is vital for 

interpreting data and optimizing project design. This study investigated the factors forming observation hotspots in the urban forests 

of Tsukuba Science City, Japan, assuming that accessibility by humans is as important as ecological factors. We analyzed 17,224 

observation records from a social media platform for citizen science across a 54-km2 study area and classified location accessibility 

into three levels (public wayside, public inland, or remote) based on road proximity and public access. Subsequently, models for five 

taxonomic groups were compared using (model 1) basic land-cover categories and (model 2) land-cover and accessibility categories. 

Model 2 consistently outperformed Model 1 in predicting hotspots and specific land-cover factors connected to species distributions. 

These findings highlighted the critical role of identifying biases that drive data patterns in citizen science, which is essential for 

interpreting data, designing effective engagement strategies, and planning biodiversity-friendly and accessible urban green spaces. 

 

 

1. Introduction 

Biodiversity conservation contributes to human well-being and 

sustainable development (Cardinale et al., 2012; Díaz et al., 

2018); however, biodiversity continues to be lost in the 2020s 

(Stephens, 2023). In December 2022, the Kunming–Montreal 

Global Biodiversity Framework (KM-GBF) was established to 

promote the Nature Positive concept, which aims to halt and 

reverse global biodiversity loss by 2030 (Stephens, 2023). KM-

GBF promotes engagement in biodiversity conservation–related 

activities and invites various stakeholders to support community-

based monitoring and citizen science (United Nations 

Conservation on Biological Diversity, 2022). Citizen science is 

defined as “scientific work undertaken by members of the general 

public” (Oxford English Dictionary, 2014) and is considered a 

positive force for biodiversity conservation (Bonney et al., 2009). 

For example, detailed information on local biodiversity is 

required to inform conservation policies (Kindsvater et al., 2018; 

Stephens, 2023). Researchers have generally relied on time-

consuming and costly surveys conducted by experts to collect 

information, but citizen science enables data collection at a scale 

that is inaccessible to scientists alone and helps citizens enhance 

their understanding of local nature and biodiversity (Amano et al., 

2016; Cohn, 2008; Kindsvater et al., 2018; Kobori et al., 2016). 

Scientists, public institutions, and companies can organize citizen 

science platforms to collect biodiversity information on a large 

scale in various regions and help societies understand the value 

of biodiversity. Promoting citizen science can help individuals 

consider biodiversity in their daily lives, resulting in social 

change through a virtuous cycle (Kobori et al., 2016) and is 

therefore critical for achieving a Nature Positive society 

(Costanza et al., 2017; United Nations Conservation on 

Biological Diversity, 2022). 

However, using citizen science to collect information for 

biodiversity conservation requires the participation of diverse 

members of the society (Schröter et al., 2017). Traditional citizen 

science participants include minorities, such as bird-watchers 

(Carlen et al., 2024; Cohn, 2008). Given that social media are 

essential for increasing the number of participants in citizen 

science (Ghermandi and Sinclair, 2019), multiple social media 

platforms have been developed to collect biodiversity 

information, e.g., eBird (Sullivan et al., 2009), iNaturalist 

(Nugent, 2018), and Biome (Atsumi et al., 2024). These 

platforms function as information-sharing websites where users 

are able to generate the necessary big data for biodiversity 

conservation (Jacobs and Zipf, 2017; Schröter et al., 2017). To 

motivate data collection, some platforms attract users using 

applications that incorporate gamification elements (Atsumi et al., 

2024; Costanza et al., 2017; Morschheuser et al., 2017). For 

example, Biome—a mobile application available in Japanese—

uses artificial intelligence–based species identification 

algorithms and gamification elements, which has collected more 

than six million observation records of organisms in the form of 

uploaded photos since its launch in 2019 (Atsumi et al., 2024). 

Effectively using such voluntary observation records requires 

understanding the biases inherent to the collection location 

(Atsumi et al., 2024; Carlen et al., 2024). Numerous previous 

studies have used observation records as the indicators of the 

presence of a species and built models of its distribution based on 

biological and environmental factors, such as land cover. 

However, biological and environmental factors on their own are 

insufficient for building species distribution models (Fourcade et 
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al., 2014) as an observation record is generated only when the 

organism and observer are present (Carlen et al., 2024). This 

requirement leads to spatial (e.g., sampling related) and 

observation effort–related biases, in which the observation 

frequency of an organism is strongly influenced by its population 

density and its accessibility to human observers. For example, 

despite the excellent environmental conditions of an area, the 

observation records may be scarce if it is difficult to access or 

suitable paths are not maintained (You et al., 2022). Therefore, 

the effective utilization of citizen science for data collection 

requires the consideration of the ecological factors related to the 

habitats of local species and human factors that regulate the 

ability of observers to generate records (Carlen et al., 2024). In 

addition, observation records are influenced by areas visited by 

people and opportunities on detecting an organism (Carlen et al., 

2024). Herein, we focused on the first factor, namely, the spatial 

biases in observation records owing to accessibility to observers. 

This study aimed to clarify human factors shaping the formation 

of observation hotspots (i.e., locations where wildlife observation 

records are concentrated) in urban forests. The formation of these 

hotspots was hypothesized to depend on the ecological factors 

making urban forests a suitable habitat for target organisms (e.g., 

land cover, abundance of vegetation, and presence of water 

bodies) and the human factors facilitating access by potential 

observes (e.g., proximity to roads and openness of land to the 

general public). In particular, we investigated the influence of 

accessibility on observation hotspots to determine whether 

observation patterns are primarily determined by accessibility or 

the enhanced biodiversity of ecologically rich areas. 

2. Materials and Methods 

2.1 Study Area 

In Tsukuba Science City (Ibaraki Prefecture, Japan), forests have 

been maintained for nature conservation and use by urban 

residents through policy interventions. Tsukuba Science City, 

which lies ~50 km northeast of Tokyo and had a population of 

~260,000 in 2023 (Tsukuba City Government, 2024), was 

planned and developed as a science city in the late 1960s. In the 

design phase, policies mandating the preservation of parts of the 

original forest and grassland through integration into urban parks 

and green spaces accessible to residents were implemented 

(Grabska-Szwagrzyk et al., 2024; Jingu, 2020). This history 

makes Tsukuba Science City an appropriate area to test our 

hypothesis. 

The study area (Figure 1) was defined based on densely inhabited 

districts (DID), which are statistical areal units reflecting a high 

residential population and high daytime population density. 

Forests within or near DIDs are likely to be accessible to residents 

and visitors and were included in the study area when present 

within a walkable distance from a given DID. Owing to the 

irregular shapes of DIDs, we used the third-level mesh of the 

standard regional grid system for Japan, which has a resolution 

of approximately 1 km × 1 km, as a reference unit (e-Stat, 2024). 

All third-level meshes overlapping with DIDs of Tsukuba 

Science City were selected, which resulted in a study area of 54 

km2 (i.e., 54 meshes). 

2.2 Data Collection 

2.2.1 Citizen Science Data: We used anonymized wildlife 

observation records submitted by citizen scientists via Biome 

(Atsumi et al., 2024) within the study area from April 26, 2019 

(i.e., when Biome was launched) to May 24, 2024 (Figure 1). 

Each record contained a contributor-taken photo with sufficient 

characteristics for species identification, geographic coordinates 

(latitude and longitude), observation date, and taxonomic 

information (often to the species level, although higher 

taxonomic levels were also included). The data were filtered to 

include only observations resulting from wildlife watching, 

which involved manually removing records taken indoors, such 

as the photographs of organisms in indoor botanical gardens or 

pets. 

2.2.2 Ecological Factors: Geospatial data representing 

potential ecological factors for the presence of a species were 

compiled primarily from land-cover data. We used the high-

resolution land-use land-cover (LULC) map provided by the 

Japan Aerospace Exploration Agency (JAXA, 2023), combining 

satellite imagery with multiple information sources and machine 

learning to ensure classification accuracy (Takahashi et al., 2013; 

Figure 1. Study area and spatial distribution of citizen science 

data in Tsukuba Science City. Black points show the photos 

taken spots for each species. The heat map displays the 

hotspots of contribution. The more photos posted, the darker 

the red. 
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Tsutsumida et al., 2019). The latest available version (LULC 

v23.12), reflecting land-cover conditions as of 2022, was used. 

The map was provided in a raster format with a resolution of 

approximately 10 m × 10 m per cell. Each cell was classified into 

1 of 14 land-cover types. These types were aggregated into seven 

broader categories: built-up areas (i.e., urban areas, buildings, 

and roads), croplands (i.e., cultivated fields excluding rice 

paddies), forests of various types, grassland (including bare land), 

rice paddies, water bodies (including wetlands), and others (i.e., 

solar panels and greenhouses). 

2.2.3 Human Factors: Geospatial data representing 

accessibility were compiled with a focus on the forest land-cover 

category. The following factors majorly influence the distribution 

of species: water bodies, cultivated land, grasslands, and forests. 

In urban and suburban settings, forests are often subjected to 

diverse management approaches ranging from active recreational 

use to strict protection with restricted entry. Therefore, forest 

accessibility depends on regulations (i.e., land ownership and 

protection status) and proximity to access routes (paths and 

roads). This variation in accessibility could have a stronger 

influence on the distribution of observation records within forests 

than within other land-cover categories. For example, croplands 

are largely private with limited variation in accessibility. Water 

bodies and grasslands are often open to the public; however, their 

accessibility often depends solely on the availability of means of 

access (e.g., boats for water bodies and free movement across 

managed grasslands). Thus, we established three additional 

categories for the forest land-cover category based on 

accessibility. 

1. A public wayside forest (PWF) is open to the public and 

adjacent to publicly maintained and accessible roads or 

paths. This category was delineated by identifying overlaps 

between forest land-cover cells and the buffer zone around 

officially maintained roads, which we defined using road 

edge data from the Fundamental Geospatial Data (FGD) 

provided by the Geospatial Information Authority of Japan 

(GSI, 2024a). A road edge was defined as the outer 

boundary of a road with a width of ≥1.0 m, which allowed 

us to identify roads used by pedestrians, even along wide 

multilane highways. A forest within a 5-m road edge was 

defined as adjacent to a road because landscape elements 

within a 5-m road edge are subjected to ecological factors 

influenced by edge effects (Watkins et al., 2003) and 

perceptual factors related to the human scale (Simpson et al., 

2019). Thus, we used spatial analysis functions in the GIS 

software (R package sf, st_buffer function) to generate an 

~5-m buffer around road edges and identified forest cells 

overlapping with this buffer. 

2. A public inland forest (PIF) is open to the public but not 

adjacent to officially maintained roads. Forests open to the 

public were identified based on land ownership, lacking 

fencing, or fencing coupled with permissive entry policies. 

PIFs include forests within urban parks as defined under the 

Urban Green Space Act, university campuses without access 

restrictions, government facility grounds open to the public, 

and the precincts of Shinto shrines and Buddhist temples. 

The delineation involved visual inspection and cross-

referencing of the forest land-cover category with FGD (GSI, 

2017), aerial photographs (GSI, 2024b), OpenStreetMap 

(OSM) (OpenStreetMap Foundation, 2024), and cadastral 

maps (G Space Information Center, 2023). In some areas, 

public access restrictions were confirmed through publicly 

available information from facility managers or site visits. 

3. A remote forest (RF) is neither open to the public (i.e., 

private or restricted access) nor adjacent to officially 

maintained roads. RFs include forests within restricted 

public facilities (e.g., water management areas), private 

facilities with limited user access (e.g., golf courses), 

backyard forests associated with private residences, and 

commercial timber plantations. 

2.3 Data Analysis 

The Maximum Entropy Modeling (MaxEnt) software (version 

3.4.4) was used to build models for explaining and predicting the 

distribution of observation records from citizen scientists. 

MaxEnt, widely used for modeling species distributions and 

habitat suitability (Phillips et al., 2006), was used to estimate the 

probability distribution of suitable observing points using 

presence-only data and environmental variables. The modeling 

process was as follows. 

The observation records from Biome were used to identify 

presence points for each of the five target taxonomic groups 

(reptiles, amphibians, insects, plants, and birds). To prevent over-

prediction in MaxEnt models, multiple occurrence records falling 

within the same analysis cell for a given taxonomic group were 

treated as a single data point, with duplicate records removed 

prior to analysis. For each taxonomic group, the environmental 

conditions across the study area were sampled by the random 

selection of 10,000 background points and the occurrence data 

were randomly partitioned into a 75% training set and a 25% test 

set. LULC data were analyzed at a resolution of 10 m, which is 

consistent with the prediction unit of MaxEnt. The focal function 

in the R raster package (v. 3.6.20) was used to calculate the 

number of cells of each land-cover category within its 

neighborhood, thus accounting for the influence of the 

surrounding environment on the presence and observation 

probabilities for a given cell. Two neighborhood sizes were 

considered, each centered on the target cell: a 3 × 3 cell 

neighborhood with 9 cells and a ~15-m radius and a 9 × 9 cell 

neighborhood with 81 cells and a ~45-m radius. The smaller 

neighborhood was selected to account for potential global 

positioning system inaccuracies in the Biome records observed in 

previous studies (Asari and Fujiki 2020) and represented the 

immediate vicinity. The larger neighborhood was selected to 

represent a broad environmental context and the spatial scales 

often considered in habitat buffer analyses. The obtained focal 

statistics (e.g., count of built-up cells in a 3 × 3 cell neighborhood 

or count of PWF cells in a 9 × 9 cell neighborhood) were used as 

environmental variables. To adjust the model complexity and 

prevent overfitting, we set the regularization multiplier 

(betamultiplier) to 2.0. The model included linear, product, and 

hinge features. The algorithm was terminated after 500 iterations 

or convergence. 

To test our hypothesis, we compared two models for each of the 

five taxonomic groups. Model 1 considered only environmental 

variables derived from the seven land-cover categories (see 

Section 2.2.2). Model 2 considered nine categories where the 

forest land-cover category was replaced by the three accessibility 

categories (PWF, PIF, and RF). Model performances were 

evaluated using the area under the receiver operating 

characteristics curve (AUC) by test data, measuring the ability of 

a model to discriminate between presence and background points. 

Higher values indicate improved performance. We compared the 

average AUCs of Models 1 and 2 across the five taxonomic 

groups and performed a variable importance analysis for Model 

2 to determine the contribution (%) of each environmental 

variable. Permutation importance was used to measure the AUC 

drop owing to a random change in the value of a specific variable, 
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and variables causing large drops were classified as more 

important. The jackknife test using AUC on test data was used to 

evaluate the model gain when each variable was used in isolation 

versus when each variable was excluded from the full model, 

which indicated whether a variable was redundant or made 

unique contributions. Finally, response curves were plotted to 

visualize the change in the predicted probability of a species’ 

presence (i.e., observation probability) along the range of each 

environmental variable when other variables were fixed to their 

average values. Data preparation and spatial analysis were 

performed using R (v. 4.3.1, The R Foundation for Statistical 

Computing, 2023) with the raster (v. 3.6.20) and sf (v. 1.0.13) 

packages and QGIS (v. 3.28.11). Models were constructed using 

the standalone MaxEnt software (Phillips et al., 2020). 

3. Results 

3.1 Observation Hotspots 

The Biome data were manually filtered to obtain a dataset with 

17,224 valid observation records across various taxonomic 

groups. The records were classified according to species into nine 

initial groups: reptiles (n = 225), amphibians (n = 111), mammals 

(n = 30), insects and spiders (n = 5,328), plants (n = 10,161), 

crustaceans (n = 89), fish (n = 63), birds (n = 1,029), and others 

(n = 188). Owing to insufficient sample size, the mammal, 

crustacean, fish, and “other” groups were excluded, and five 

groups, namely, reptiles, amphibians, insects, plants, and birds 

therefore remained. The spatial distributions of the observation 

records for each taxonomic group were highly heterogeneous 

(Figure 1), with observation hotspots primarily occurring within 

the specific zones (e.g., inside the large public parks) and lines 

(e.g., pedestrian decks connecting the north and south parts) of 

DIDs. Visually, these hotspots were confirmed to be strongly 

associated with high human activity areas. 

3.2 Model Comparison 

Model 2 outperformed Model 1 in predicting the distributions of 

all taxonomic groups (Table 1). The largest and smallest 

differences were observed for amphibians (AUC 0.05 higher for 

Model 2) and reptiles (AUC 0.01 higher for Model 2). These 

results demonstrate that incorporating accessibility improved the 

explanatory power of the model. 

Taxon AUC for Model 1 AUC for Model 2 

Reptiles 0.76 0.77 

Amphibians 0.58 0.63 

Insects 0.68 0.71 

Plants 0.66 0.68 

Birds 0.78 0.82 

Table 1. Performance comparison between Models 1 and 2. 

3.3 Variable Importance Analysis 

Table 2 presents the results of variable importance analysis for 

Model 2, revealing the importance of human and ecological 

factors. Although ecological factors were important, human 

factors (in terms of accessibility) were crucial for explaining the 

observation hotspots. 

3.3.1 Percent Contribution: Across the five taxonomic 

groups, environmental variables reflecting human-dominated 

landscapes or accessibility (e.g., cropland and forest-related 

categories) often had high percent contributions. The taxonomic 

groups differed in the percent contributions of the accessibility 

categories. 

3.3.2 Permutation Importance: PWF consistently ranked 

among the six most important variables for all taxonomic groups, 

which indicated the importance of accessibility. The predictive 

performance substantially degraded when PWF was scrambled. 

3.3.3 Jackknife Test: The jackknife test was used to compare 

the learning gains when each variable was excluded or used alone 

to evaluate the uniqueness of its information. The uniqueness of 

the variables depended on the taxonomic group. Interestingly, the 

forest-related variables were consistently one of the three most 

important variables for all taxonomic groups. This suggests that 

accessibility was an important factor for predicting the 

distributions of all taxonomic groups. 

3.4 Response Curves 

Figure 2 shows the response curves generated to visualize the 

effect of each environmental variable on the observation 

probability predicted by Model 2, revealing that changing a 

single environmental variable while keeping all other 

environmental variables fixed at their average sample values had 

a marginal effect on the predicted probability. The response 

curves for the accessibility categories generally remained similar 

across taxonomic groups. Increasing the PWF proportion steeply 

increased the observation probability of all taxonomic groups, 

strongly suggesting that observation records were more likely to 

occur along forests adjacent to public roads, which offered the 

easiest access. Increasing the proportion of PIF also generally 

increased the observation probability, although the slope was less 

steep or saturated at lower values for some taxonomic groups. 

This phenomenon may reflect the more restricted access. 

Increasing the RF proportion decreased the observation 

probability or kept it low for most taxonomic groups. These 

results support the hypothesis that observation records are less 

likely to be generated within forests more difficult to access. 

The response curves for the other land-cover categories showed 

highly pronounced differences among the taxonomic groups. 

Increasing the water related proportion increased the 

observation probability of reptiles, amphibians, and birds. 

Insects and plants generally exhibited weaker responses to the 

various natural land-cover categories. However, all taxonomic 

groups showed interesting responses to built-up areas and 

croplands. Increasing the built-up area proportion tended to 

increase the observation probability for all taxonomic groups, 

whereas the opposite trend was observed for cropland. These 

results suggested that human factors (i.e., accessibility) 

dominated the observation probability of a given species.  

4. Discussion 

Model 2 consistently outperformed Model 1 in predicting the 

observations of all five taxonomic groups, indicating that 

accounting for human accessibility remarkably enhances our 

ability to explain the localization of observation records. This 

result supported our recognition that when MaxEnt models are 

applied to citizen science data, they predict the environment 

where observers are present rather than the true distribution of 

species. This behavior also reflects a distinct spatial bias 

(sampling bias and observation efforts) that is inherent to citizen 
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science data (Carlen et al., 2024) and primarily related to where 

observers visit (You et al., 2022), which should be distinguished 

from species detectability itself. The dominant influence of 

human factors was most evident in the responses to the different 

accessibility categories. The steep positive response curves for 

PWF demonstrate that observation records are concentrated 

along easily accessible roads and probably reflect records taken 

opportunistically during walks or commutes. The high 

permutation importance of PWF further highlights the reliance of 

the model on this category for accurate predictions. PIF also had 

a positive association with observation records albeit generally 

weaker than PWF. This suggests that PIF serves as a destination 

for wildlife observation but may experience less incidental traffic. 

Conversely, the negative or flat response curves for RF strongly 

agree with the hypothesis that areas with difficult or restricted 

access receive far fewer observations regardless of their 

ecological value (Sarmento and Berger, 2017) and reflect the 

biases inherent to observation records, which are primarily 

obtained in locations that people can and do visit (Carlen et al., 

2024). This result strongly suggested that numerous observations 

Taxon 

Group 

Variable 

Importance 

Environments PIF PWF RF Built-

up 

Cropland Grassland Rice 

paddies 

Water 

bodies 

Others 

Reptiles Percent Contribution taken point 0.45 1.34 3.02 4.62 3.80 2.24 2.35 10.06 0.47 

surrounding 12.04 8.27 8.71 1.51 19.93 1.80 6.46 12.80 0.12 

Permutation 
Importance 

taken point 0.08 2.26 0.00 21.45 0.63 5.38 0.00 3.02 0.08 

surrounding 1.68 14.01 9.49 5.22 8.12 3.65 8.07 16.73 0.15 

Jackknife Test: 

without  

taken point 0.76 0.76 0.77 0.76 0.76 0.77 0.76 0.77 0.76 

surrounding 0.77 0.75 0.78 0.76 0.77 0.74 0.77 0.76 0.77 

Jackknife Test: only taken point 0.53 0.52 0.55 0.58 0.57 0.55 0.54 0.60 0.51 

surrounding 0.59 0.61 0.56 0.57 0.63 0.50 0.56 0.62 0.52 

Amphibians Percent Contribution taken point 2.19 16.84 5.22 14.66 0.13 2.05 6.24 1.38 0.44 

surrounding 1.27 13.88 2.17 8.34 4.59 3.86 13.92 2.62 0.21 

Permutation 
Importance 

taken point 0.91 2.51 7.29 3.93 0.35 8.24 16.54 4.00 4.55 

surrounding 1.32 6.01 4.15 1.75 8.71 5.47 17.69 5.35 1.24 

Jackknife Test: 
without  

taken point 0.65 0.63 0.59 0.64 0.61 0.63 0.63 0.63 0.63 

surrounding 0.63 0.60 0.61 0.64 0.62 0.62 0.58 0.62 0.63 

Jackknife Test: only taken point 0.54 0.61 0.51 0.45 0.53 0.52 0.53 0.42 0.47 

surrounding 0.62 0.67 0.51 0.47 0.54 0.51 0.55 0.62 0.46 

Insects Percent Contribution taken point 0.01 1.53 4.93 2.21 1.66 0.11 7.54 0.30 0.29 

surrounding 9.39 6.37 14.23 7.80 40.16 1.92 1.30 0.24 0.01 

Permutation 

Importance 

taken point 0.19 2.23 2.94 2.72 2.95 4.52 0.83 2.17 0.23 

surrounding 6.51 25.91 9.87 10.80 13.18 5.83 3.35 5.77 0.00 

Jackknife Test: 

without  

taken point 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 

surrounding 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 

Jackknife Test: only taken point 0.53 0.54 0.54 0.59 0.56 0.53 0.53 0.52 0.51 

surrounding 0.58 0.55 0.57 0.61 0.61 0.54 0.55 0.53 0.51 

Plants Percent Contribution taken point 0.00 2.31 5.91 9.54 2.68 2.39 5.26 0.41 0.00 

surrounding 8.04 2.08 9.67 3.22 42.65 1.85 2.72 0.66 0.60 

Permutation 

Importance 

taken point 0.00 3.17 2.96 0.00 0.97 0.00 1.60 2.54 0.00 

surrounding 6.65 31.80 4.62 19.61 7.76 3.31 2.69 11.86 0.44 

Jackknife Test: 

without  

taken point 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

surrounding 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

Jackknife Test: only taken point 0.53 0.54 0.53 0.57 0.56 0.52 0.53 0.52 0.51 

surrounding 0.57 0.55 0.56 0.59 0.60 0.53 0.54 0.53 0.51 

Birds Percent Contribution taken point 0.00 0.84 0.53 1.50 0.00 0.06 1.30 3.09 0.05 

surrounding 19.42 4.60 11.29 0.96 16.08 2.84 0.83 36.59 0.00 

Permutation 
Importance 

taken point 0.01 1.26 4.09 7.62 0.00 0.67 0.73 0.09 0.07 

surrounding 0.09 10.41 16.14 3.22 22.59 2.58 2.36 28.06 0.00 

Jackknife Test: 

without  

taken point 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 

surrounding 0.82 0.82 0.81 0.82 0.81 0.81 0.82 0.81 0.82 

Jackknife Test: only taken point 0.53 0.58 0.55 0.52 0.58 0.53 0.53 0.62 0.51 

surrounding 0.66 0.66 0.60 0.54 0.65 0.57 0.56 0.69 0.52 

 Table 2. Variable importance metrics for Model 2 across taxonomic groups. In the Environment column, “taken point” represents 

the 3 × 3 cell neighborhood while “surrounding” represents the 9 × 9 cell neighborhood. Darker colors indicate that the selected 

environmental variable has a higher importance value according to the selected metric for the selected taxonomic group (rows). 
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are likely to be reported in accessible areas, even if they are not 

ecologically rich, whereas fewer observations may be reported in 

ecologically rich but difficult-to-access areas. 

Despite the dominance of accessibility, the ecological factors also 

demonstrated relevance. Water related environments were 

important for the observation of reptiles, amphibians, and birds, 

aligning with their known habitat requirements and the ecological 

importance of riparian zones within urban landscapes (Riis et al., 

2020). This finding indicated that ecologically suitable 

environments can form more prominent observation hotspots 

when combined with accessibility. However, the responses to 

human-dominated land-cover categories revealed intriguing 

patterns that potentially indicate human factors overriding simple 

ecological constraints. The positive responses of all taxonomic 

groups to an increase in built-up areas contradicted the typical 

expectation of urbanization limiting biodiversity. This trend does 

not necessarily imply that built-up areas are superior habitats for 

diverse species but rather reflects a high observer density near 

residential areas, the increased use of small green patches within 

built-up zones, or specific features associated with built-up edges 

that attract observers. Similarly, the negative response to 

cropland across all taxonomic groups may be related more to 

restricted access or observers preferring forests and parks rather 

than cropland being an inherently poor habitat for the taxonomic 

groups. These findings indicated that calibrating models with 

citizen science data strongly reflects human presence and 

observation opportunities (Carlen et al., 2024; Sarmento and 

Berger, 2017; You et al., 2022). 

These results have several implications for the use of citizen 

science data. First, interpreting the raw data as a direct proxy for 

biodiversity richness in urban areas is clearly problematic, and 

biases owing to accessibility must be accounted for. Second, the 

accessibility categories (i.e., PWF, PIF, and RF) offer a practical 

approach for incorporating human factors into distribution 

models or survey designs based on LULC data. Third, for urban 

planning aimed at fostering human–nature connections and 

supporting Nature Positive goals, our findings advocated the 

network creation of highly accessible green spaces (PWFs and 

PIFs) and the strategic management of less accessible areas (RFs) 

for core habitat functions. The proposed forest classification 

provides urban planners and managers with concrete design 

guidelines for securing green spaces and encouraging citizens to 

regularly engage with nature, recognize biodiversity value, and 

ultimately foster behavioral changes toward nature conservation. 

Furthermore, as the societal awareness of contributing to data 

expansion grows, our methodology, leveraging open data and 

citizen science, enables the quantification of the relative value of 

urban forests.  

The limitations of this study include its focus on a single city, 

reliance on a single social media platform (Biome), the possible 

misidentification of observation records (Bonney et al., 2009; 

Dickinson et al., 2010), and the proxy nature of the selected 

accessibility categories. Further limitations inherent to citizen 

science data, such as the potential biases stemming from the 

demographics and varying behavioral patterns of the observers, 

seasonality in observations and corresponding target 

species/frequencies, visual attractiveness of certain species, and 

interface design of citizen science applications (Atsumi et al., 

2024; Carlen et al., 2024; Jacobs and Zipf, 2017), should be 

considered. Future work may involve comparing observation 

records across cities and platforms and integrating finer-scale 

data on human movement. In particular, the model can be 

improved by considering the biases estimated from participation 

behavior using citizen science applications. 

5. Conclusion 

Human accessibility was demonstrated to be a critical and often 

dominant factor shaping the distribution of biodiversity 

observations within the urban forests of Tsukuba Science City. 

By explicitly dividing the forest land cover into categories based 

on accessibility (PWF, PIF, and RF), we improved the ability of 

the developed model to predict observation locations compared 

with using basic land-cover categories alone. The observations of 

five diverse taxonomic groups were concentrated in easily 

accessible areas, highlighting the bias of accessibility inherent to 

data obtained by citizen science. Although ecological factors, 

such as proximity to water, remained important for specific 

taxonomic groups (Riis et al., 2020), the influence of accessibility 

underscores the need to integrate human behavioral patterns 

when interpreting citizen science data derived from urban 

environments. We elucidated the drivers of data submission 

Figure 2. Response curves for Model 2 showing the marginal effect of environmental variables on the observation probability. The 

x-axis represents the cell count for each land-cover category within the 9 × 9 cell neighborhood whereas the y-axis shows the 

predicted observation probability (logistic output). The curves illustrate the relationship when only the selected variable is varied 

while the other variables are fixed at their average values. 
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patterns for citizen science and thus facilitated its application to 

biodiversity conservation. These findings are crucial for 

accurately assessing biodiversity patterns, designing effective 

citizen science projects that account for spatial biases, and 

informing urban planning strategies that aim to enhance 

biodiversity and human engagement with nature. Ultimately, 

recognizing and incorporating the human dimension is essential 

for effectively leveraging citizen science to achieve conservation 

objectives and foster Nature Positive societies in an increasingly 

urbanized world. 
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