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Abstract 

 
Potholes on roads affect traffic safety and the overall quality of infrastructure. If left unrepaired, they can lead to increased maintenance 
costs and broader community impacts. Traditional inspection methods, such as visual surveys by human observers, still have limitations 
in terms of efficiency, accuracy, and safety. To facilitate manual inspection process, a pothole detection and dimension estimation 
technique combining deep learning and image processing techniques is presented in this study. The method employs the YOLOv8n-
seg model, which performs instance segmentation to outline pothole boundaries. Model training was conducted using a combination 
of open-source and Thai roads pothole dataset to enhance contextual relevance. Inverse Perspective Mapping (IPM) was applied to 

estimate pothole dimensions and convert front-view images into bird's-eye views. The segmentation masks predicted by the model 
were then used to calculate the real size of each pothole. The presented method requires single camera calibration for each camera 
installation. The results highlight the potential of integrating deep learning with image processing techniques to support road condition 

monitoring, as evidenced by a precision of 0.745, mAP@0.5 of 0.708 and an average dimension estimation error of 11.30%.  
 

1. Introduction 

Road networks are one of the most crucial components of road 

infrastructure that facilitate economic development by enabling 
resource mobility, increased productivity, and connecting social 
activities at the local and regional levels. A sufficiently efficient 
road network contributes to better access to essential services, 
including education, public health, and employment 
opportunities, and additionally helps decrease time and transport-
related expenses. In economic research, road length is frequently 
used as a proxy for transportation capacity and regional 
connectivity, key factors influencing economic growth (Ng et al., 

2019; Xueliang, 2013). 
 

Nevertheless, road infrastructure can deteriorate due to cracks 
and potholes without proper maintenance. These problems may 

result from the erosion of surface materials (Khan et al., 2024) or 
extreme weather conditions, such as heavy rainfall, cyclones, or 
the excessive use of de-icing chemicals in winter (Liu et al., 
2021; Yang et al., 2021). Such factors significantly accelerate the 
deterioration of road surfaces, compromise road safety, and 
increase long-term maintenance costs.  

Potholes are among the most common and hazardous forms of 
road surface damage. They contribute to traffic accidents, 

congestion, and the accumulation of stagnant water, which can 
encourage the spread of mosquito-borne diseases such as dengue 
fever and malaria (Gupta et al., 2020; Kombe, 2025; Yang et al., 
2021). These road defects pose a direct threat to drivers. They 
may also have broader consequences for nearby communities, 
especially when encountered at night or under poor weather 
conditions that impair visibility (Setyawan and Sari, 2024). In 
addition, potholes can cause significant damage to vehicles, 

increasing repair and maintenance costs. Therefore, regular 
inspection and maintenance of road infrastructure are essential to 

ensure travel quality, public safety, and sustainable economic 
development. 

Transportation authorities in many countries have traditionally 
used manual inspection techniques to address road surface 
deterioration, such as visual surveys conducted by field personnel 
using standardized reporting forms (Federal Highway 

Administration, 2003). Although this method can observe certain 
surface conditions with the naked eye, it presents several 
limitations. These include high labor intensity, safety risks for 
on-site inspectors, operational delays, and elevated inspection 
costs (Radopoulou and Brilakis, 2016). Visual inspection is 
inappropriate for long-term proactive road maintenance planning 
(Asad et al., 2022). Due to these constraints, many countries are 
now emphasizing the application of technology to improve road 
conditions and efficiency and reduce labor burdens. 

Due to the limitations of traditional road inspection methods, 
transportation departments and researchers in many countries are 
currently developing real-time detection systems for monitoring 
road surface conditions. A common approach involves equipping 
vehicles with sensors or cameras to collect real-time surface data 
while in motion. For instance, GPS or accelerometers can 
automatically identify road deterioration indications (Ranyal et 
al., 2022). These approaches represent an initial step toward 

replacing manual inspections with automated systems, saving 
labor expenses and enabling continuous monitoring without 
disrupting traffic flow. Nonetheless, these techniques have 
limitations in terms of accuracy, particularly in distinguishing 
between different types of road damage, highlighting the ongoing 
need for more precise detection methods. 

Deep learning is one of the most recent developments in road 
condition monitoring, particularly Convolutional Neural 

Networks (CNNs). These models have presented high accuracy 
in detecting and categorizing road surface damage, even in cases 
with diversity in damage types and lighting intensity (Asad et al., 
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2022; Safyari et al., 2024). These approaches have been 

practically implemented in automated road inspection systems to 
support real-time processing and reduce the reliance on manual 
inspection methods. 

Although these methods show great potential in pothole 
detection, they are still limited in estimating the size of the 
damage which is an essential factor in pavement deterioration 
analysis. Therefore, this study presents the process of pothole 
detection and size estimation using deep learning and image 

processing techniques to facilitate manual inspection process.  

 
2.    Literature Review 

2.1    Deep Learning Approaches for Pothole Detection 

In recent years, deep learning has become a vital technique for 

road surface damage detection, particularly when damage must 
be identified from image or video data, which often exhibit 
complexity and lighting variability. The convolutional neural 
network (CNN) is a widely used model that can autonomously 
learn and recognize image features without the need for manual 
feature extraction. Furthermore, a variety of CNN architectures 
have been developed, such as 

1. R-CNN (Region-based CNN): divides the image into 

multiple regions before performing classification. 

2. Faster R-CNN: developed to improve processing 

speed by using a Region Proposal Network (RPN) to 

generate regions of interest more efficiently, replacing 

the slower Selective Search method. 

Although these models provide high accuracy, they are 
challenging to deploy on systems with limited resources due to 
their high computational load on lightweight devices. Therefore, 
to overcome these limitations, the Single Shot MultiBox Detector 
(SSD) was offered as a single-stage detection model that 

performs object localization and classification in a single forward 
pass, enabling fast and efficient object detection. In addition, the 
YOLO model (You Only Look Once) has also gained significant 
popularity due to its ability to perform real-time object detection 
while maintaining high accuracy. In addition, Arya (2021) 
developed an automatic damage detection system optimized for 
devices with limited computational capacity, such as 
smartphones.  
 
Deep learning-based approaches to pothole detection have been 
more thoroughly studied regarding detection accuracy, 
computational efficiency, and their practicality in real-time 
system applications. As reported in Dhanreeshkar et al. (2020), a 
comparative analysis of YOLOv2, YOLOv3, and YOLOv3-tiny 
was conducted based on 1,500 images captured using an iPhone 
7 in India. The results showed that YOLOv3-tiny offered the 

most appropriate in a real-time context. This point is attributed to 
its balance between fast inference time and reliable pothole 
detection performance. 
 
Another study (Safyari et al., 2024) presented a comparative 
inspection of road damage detection techniques classified into 
four main categories. With traditional 2D image processing, 3D 
point cloud analysis, machine learning, and deep learning 

approaches. Additionally, the hybrid approach integrates 
multiple techniques mentioned above. The study concluded that 
hybrid methods demonstrated performance in terms of accuracy, 
efficiency, and practical flexibility in real scenarios. 
 
Meanwhile, the study presented by Asad et al. (2022) emphasized 
the development of a pothole detection system on compact, low-

cost hardware platforms such as the Raspberry Pi to attempt to 

reduce reliance on large-scale servers or cloud-based systems 
while maintaining real-time processing efficiency. This reflects 
the pothole detection technology's development toward edge 
computing solutions that are practical for real deployment. 
 
2.2 Pothole Size Estimation Using Image Processing 

Recent research has focused on achieving high-accuracy pothole 
detection; estimating the actual size of the damage remains a 
significant challenge. Various approaches have been proposed to 
address this issue, involving differences in both the models used 

and the techniques for area computation. 
 
Arjapure (2021) proposes Mask R-CNN for detecting and 
estimating the area of potholes from road surface images. This 
model performs object detection and instance segmentation, 
allowing it to generate masks for individual potholes. Then, the 

actual pothole dimension is estimated using road width as a 
reference.  
 
In another approach, Chitale (2020) employed YOLOv3 and 
YOLOv4 models to develop a pothole detection system with the 
triangular similarity technique, a geometric method used to 
convert pixel dimensions in images into real-world dimensions. 
However, this method requires the camera to be positioned at a 

fixed height and tilt angle, as these parameters directly affect the 

accuracy of the pre-calibrated values.  
 

In another line of research, Putri (2024) proposed a hybrid system 
that integrates pothole detection using the YOLOv5 model with 
a smartphone equipped with a LiDAR sensor to obtain 3D 
information of the potholes and includes a GNSS system to 
geotag each pothole location for mapping and analysis purposes. 
 
Additionally, Ruseruka (2024) has focused on using images from 
built-in vehicle cameras implemented with YOLOv5 to develop 

a pothole detection system based on a front-view perspective, 
which is subsequently transformed into a bird’s-eye view using 
the camera’s intrinsic parameters as part of the Inverse 
Perspective Mapping (IPM) technique. As a result, the actual size 
of a pothole can be estimated from its pixel dimensions by 
referencing the real lane width obtained from a Lane Keeping 
Assistance (LKA) system. Nevertheless, this method is subject to 
a key limitation: the camera must be installed in a fixed position, 

and the accuracy of the estimated pothole size depends largely on 
the precision of the lane detection process.  
 
This study emphasizes estimating pothole dimensions on road 
surfaces, primarily based on camera images. A recent lightweight 
instance segmentation model, YOLOv8n-seg, is applied to detect 
potholes of roads in Thailand. The detected images are further 
processed using the Inverse Perspective Mapping (IPM) 

technique by applying the Four-Point Perspective 
Transformation method to convert the image perspective into a 
top-down view to estimate the potholes size. This combination, 
to our knowledge, has not yet been applied in this domain, 
especially in the context of Thailand roads. Subsequently, the 
pothole dimensions are estimated through pre-calibration using a 
reference object with a clear scale to approximate the actual size. 
These estimations are intended to support the assessment of 
damage severity and facilitate planning for future road 

maintenance. 
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3. Methodology 

3.1    Overview 

This study framework is structured into two main stages: (1) 
pothole detection model training and (2) pothole dimension 
estimation method. The overall workflow of the proposed 
methodology is presented in the flow chart in Figure 1. 
 
In pothole detection, the process begins with collecting images 
from two sources: images collected in the context of Thailand 

and images from publicly available datasets to serve as training 
data for the YOLOv8n-seg model, which is an instance 
segmentation model. 
 
The trained model is used to detect and apply mask to the 
potholes from videos recorded by a smartphone mounted on the 
vehicle dashboard. Appropriate frames are selected (see section 
3.3.2) to estimate the dimension of detected potholes using the 
Inverse Perspective Mapping (IPM) technique which transform 

images into a bird's-eye view. A pre-calibrated homography 
matrix is used in IPM method (see section 3.3.1).  
 
In the final stage, the transformed images with segmentation 
mask obtained are used to estimate the real-world dimensions of 
the potholes using the pixel-to-millimeter ratio obtained during 
the initial calibration (see section 3.3.3).  
 

 
 

Figure 1. The overall workflow of the proposed. 
 

3.2 Pothole detection model training 

3.2.1 Data Sources: Acquisition of pothole image the datasets 
of pothole detection in this study were collected from two 
sources: (1) self-collected datasets and (2) publicly available 
open-source datasets. 

 
Pothole images were captured using an iPhone 14 Pro Max 
smartphone camera, which has a resolution of 12 MP 

(4032×3024 pixels). The data was collected on roads within 
Chiang Mai University and surrounding urban areas in Chiang 
Mai, Thailand, covering concrete and asphalt surfaces. All 
images were taken during the daytime under sunny and clear 
weather conditions. A total of 22 images were collected, with no 
augmentation. 
 
The primary dataset used for model training was obtained from 
an open-source resource (Nekouei, 2024) containing 780 pothole 

images. These images were augmented through rotation, 
flipping, brightness adjustment, and resizing to 640×640 pixels 
to increase data diversity and reduce the risk of overfitting during 
the training process. 
 
3.2.2 Data preparation: Raw pothole images collected from  
Thailand were uploaded to the Roboflow platform for annotation 
using the polygon tool. The annotation format applied was 

instance segmentation, which enables the identification of 
individual object locations. However, one drawback of the 
polygon tool in Roboflow is its dependence on manual 
annotation, which can be particularly time-consuming for large 
datasets. The original 22 annotated images were further 
augmented using flipping, blurring, rotation, and resizing to 640 
× 640 pixels to enhance data diversity and improve model 
training efficiency. As a result, the dataset was expanded to 127 

images. These annotated and augmented images were combined 
with an open-source dataset containing 780 pothole images, 
resulting in 907 images. The complete dataset was exported in 
YOLO format to train the object detection model. 
 
3.2.3     Pothole Detection training: In this study, the YOLOv8n-
seg model was selected for pothole detection due to its support 
segmentation and precise object boundary detection at the pixel 

level. This technique is appropriate for potholes, which often 
have irregular and undefined shapes. Therefore, the use of 
segmentation enables more accurate size estimation than using 
bounding boxes. This study adopted the full implementation from 
the publicly available (Nekouei, 2024), including model 
configuration, training pipeline, and 780 road images dataset. 
The original codebase and dataset were modified to fit the 
objectives of this study. 

 
The final dataset of 907 images was split into 837 images for 
training and 70 for validation. The model was trained for 150 
epochs with an initial learning rate 0.0001 and a batch size of 16. 
An automatic optimizer was used, with a dropout rate of 0.25. 
Early stopping was not applied to allow the model to learn 
through all specified training epochs.  
 
The intersection over union (IoU) was used to assess the overlap 

between the predicted segmentation mask and the ground truth 
annotation to evaluate the performance of pothole detection. For 
the calculation of mean Average Precision (mAP), an IoU 
threshold of 0.5 was applied, meaning that detection is deemed 
correct if the IoU reaches 0.5 or higher. The model accuracy 
presented in the following sections is based on mAP@0.5, a 
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widely used benchmark for evaluating model performance in 

object detection and instance segmentation. 
 
3.3 Pothole Dimension Estimation 

 

3.3.1   Inverse Perspective Mapping (IPM): Images captured 
by a smartphone camera mounted on the vehicle dashboard are 
in a perspective view, where objects closer to the camera appear 
larger than those farther away, as the object dimensions in the 
image do not correspond proportionally to real-world distances. 
To correct this distortion, the inverse Perspective Mapping (IPM) 
technique can be implemented using two approaches: (1) 

utilizing the intrinsic parameters of the camera, which is suitable 
for moving cameras where detailed knowledge of the camera's 
internal properties is required; and (2) applying a four-point 
perspective transformation, which is more appropriate for static 
images or fixed camera setups (Ahmed and Kharel, 2021). This 
study adopts the second approach by computing a homography 
matrix for image calibration using the four-point method from a 
standard reference image captured before recording the video. In 
this image, a clearly scaled object was placed to assist in selecting 

the four points and to serve as a reference for converting pixel 
values into real-world measurements in millimeters. This 
approach is consistent with the homography principle described 
in (Vazquez Guevara, 2021), where the relationship between 
corresponding points in two planes is modeled as a projective 
transformation using a 3×3 homography matrix, which is 
estimated by solving the set of linear equations derived from 
these four point correspondences, such that: 
 

[
𝑥′

𝑦′

1

] = 𝐻 [
𝑥
𝑦
1
] 

 

(1) 

where (x, y) are coordinates in the source image, (x′, y′) are the 
corresponding points in the destination, and H is the homography 
matrix. This transformation assumes a fixed camera position and 

a flat scene geometry, which ensures that it remains valid 
throughout the process. 
 
This method remains accurate in practice and offers a 
straightforward way to convert perspective images into a bird’s-
eye view, without requiring camera calibration. It is particularly 
suitable for field applications where intrinsic camera parameters 
are unavailable or where full camera calibration is impractical.  
 
3.3.2 Frame Selection and Preprocessing: To ensure accurate 
size estimation, potholes in the recorded video consistently 
appear near a fixed region of the frame, close to a red reference 
line, which helps maintain a constant distance between the 
camera and the object (Figure 2). This setup enables a fairly 
accurate pixel-to-millimeter conversion and minimizes 
perspective distortion. 

A pre-trained detection model is used to identify suitable frames 
in which potholes align with the reference line. The selection 
process is semi-automated and manually verified. Each selected 
frame is then transformed using a calibrated homography matrix, 
followed by brightness and contrast enhancement to improve the 
visibility of pothole features for accurate size estimation. 

This method is practical for field use; however, it requires that 
both the reference image and the video frames be captured using 
the same camera, with consistent resolution and viewing angle. 

 

Figure 2. Pothole Approaching Reference Line. 

 
 
3.3.3     Size Calculation from Segmentation Masks: Following 
transformation and contrast adjustment, each image is 
subsequently processed by the pre-trained YOLOv8n-seg model, 

which segments pothole areas from the background. The 
resulting segmentation mask is then used to estimate each 
pothole's area, width, and length in pixel units. These 
measurements are converted into millimeters using the pixel-to-
millimeter ratio obtained during the initial calibration. This 
method enables pothole size estimation directly from images, 
eliminating the need for field measurements. 
 

4.    Result 

4.1    Pothole Detection Results 

The model achieved a mAP@0.5 of 0.694 for bounding box 
detection and 0.708 for segmentation mask detection (Table 1), 
which can be considered satisfactory, particularly given that 
YOLOv8n-seg is a lightweight model designed for speed and 
efficiency. Additionally, model behavior during training was 
analyzed using training plots, which visualize the loss and 

evaluation metrics across epochs. From the Precision-Recall 
curves (Figures 3 and 4), it was observed that the model 
maintained high precision at high confidence levels and achieved 
good recall at mid-range confidence levels. The F1–Confidence 
curves (Figures 5 and 6) further revealed that the optimal 
confidence threshold was approximately 0.48, at which point the 
F1-score peaked at around 0.70 for both bounding box and 
segmentation mask results. Based on the analysis, it can be 

concluded that the model demonstrates reasonably accurate and 
consistent pothole detection performance, making it suitable for 
application in the subsequent step of size estimation. 
 

Metric Bounding 
Box  

Segmentation 
Mask 

Precision 0.725 0.745 

Recall 0.601 0.610 

mAP@0.5 0.694  0.708 

mAP@0.5–0.95 0.397 0.396 

Table 1. Performance comparison between bounding box and 

segmentation mask using standard evaluation metrics. 
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Figure 3. Precision-Recall curve for bounding box prediction. 

 

 

Figure 4. Precision-Recall curve for segmentation mask. 

 

 

Figure 5. F1-Confidence Curve (Bounding Box)  

 

 

Figure 6. F1-Confidence Curve (segmentation mask). 

4.2 Pothole Dimension Estimation Results 

Following pothole detection using the YOLOv8n-seg model, the 
segmentation masks were used to estimate their dimensions in 
millimeters via the IPM process. This point was achieved using 
a homography matrix because the camera position remained 

fixed, and the viewpoint did not change throughout the data 
collection process. As a result, the same matrix could be applied 
to other images captured by the same camera setup without 
recalculation. The potholes' dimensions (width and height) were 
estimated from segmentation masks in six images and compared 
with the actual measured values. The percentage error in the 
results is shown in Table 2.  
 

Image name % Error 
(Width)  

% Error 
(Height) 

Image1 7.79 7.83 
Image2 0.20 3.90 
Image3 3.33  4.10 
Image4 23.54 20.13 
Image5 16.53 21.01 

Image6 19.05 8.16 

Table 2. Percentage error of  estimated vs. actual pothole  

 
The comparison results indicate that the average overall error in 

width and height estimation was approximately 11.30%, which 
is considered acceptable in field applications. Various factors, 
such as shadows, road surface conditions, the irregular shapes of 
potholes, instability of the camera mount during driving, the 
selection of four reference points in the IPM process, and the 
calibration reference equipment, may contribute to these 
deviations. Examples of pothole detection and real-size 
estimation are illustrated in Figure 7 and Figure 8. Each example 

shows the detection results from a video frame (left) and the 
image after inverse perspective transformation (right), where the 
segmentation mask was applied to estimate the pothole size in 
pixel units. It is also observed that in the last three samples, the 
percentage error increases noticeably. A potential cause is the 
minor displacement of the camera caused by vehicle-induced 
vibration, which affects the consistency of the viewing angle 
during video recording. Consequently, the dimension estimation 
from these frames may introduce greater error due to geometric 

distortion. 

 

 
 Detected Pothole Image                        Image after IPM process  
  

Figure 7. Example of Pothole No.1 (Image1). 
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Detected Pothole Image                        Image after IPM process  

 
Figure 8. Example of Pothole No.4 (Image4). 

  
5. Conclusion 

This study aims to develop an approach for detecting and 
estimating the dimensions of potholes on road surfaces by 
integrating image processing techniques with deep learning. The 
proposed method employs the YOLOv8n-seg model, which 
enables efficient instance segmentation for accurate pothole 
localization and size estimation. 

The results indicate that the model can detect potholes with a 
reliable level of accuracy. The mAP@0.5 for segmentation 
masks was 0.708, and the precision was 0.745, which is sufficient 
for implementation in preliminary road surface condition 
assessment systems. 

 
Segmentation masks were combined with the Inverse Perspective 
Mapping (IPM) technique to estimate pothole dimensions based 
on a homography matrix. The results show that the estimated 
dimensions were reasonably accurate compared to the actual 
measurements, with an average percentage error  is 11.30%. This 
level of accuracy is considered sufficient for practical use in field 
applications, enabling automated assessment of road conditions, 

which can significantly aid in prioritizing repairs and allocating 
resources for maintenance.  
 

6. Study Limitations and Suggestions for Future 

Improvements 

6.1 Research Limitations 

Although the results of this study are promising, several 
limitations remain, as outlined below: 

1. In some cases, the segmentation output from the model 
did not fully cover the damaged area, particularly when 
the pothole edges were indistinct or affected by 
shadows and surface irregularities. The mask produced 
in these cases was unreliable for accurate size 

estimation. 
2. The effectiveness of the Inverse Perspective Mapping 

(IPM) process depends on the quality of the reference 
image used for calibration. In this study, the image 
contained areas that were not clearly defined due to the 
limitations of the mobile phone camera. This point may 
have led to errors in selecting reference points for 
constructing the homography matrix, affecting the 

precision of converting pixel values into real 
measurements. 

3. Data collection was conducted using a fixed camera 

position, which limited the method's adaptability to 
camera angle or height changes. Any change in camera 
setup requires repeating the same calibration 
procedure. 

4. The pothole image data collected from Thailand for 
training the model remains limited. If a larger and more 
diverse dataset representing various road conditions 
were available, the model could potentially be trained 

more effectively and achieve improved performance. 
 

6.2 Recommendations for Future Research 

1. Increasing the quantity and diversity of the dataset, 
particularly by including images from various 

locations with different road surface conditions. This 
point would help reduce bias and improve the model's 
generalization capability. 

2. Develop the system to be applicable in real-world 
settings, such as deploying it for real-time road 
monitoring and integrating it with GIS platforms to 
automatically generate road condition maps, enabling 
future pothole localization. 
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