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Abstract

This paper presents the lessons learnt from the integration of open datasets in the Netherlands for the creation of a country-wide
enriched semantic 3D city model for urban building energy modelling. Although the Netherlands provides open access to building
data up to the dwelling level, several challenges still remain related to data fragmentation, inconsistency, and incompleteness. The
resulting dataset uses the CityGML with the Energy ADE data model since they offer a robust framework for integrating geospatial
and non-geospatial data for energy applications. Our research highlights the need for significant preprocessing, harmonisation
pipelines, and enrichment strategies to address gaps in data completeness and reliability. Finally, we identify critical missing data
(e.g., renovation history, thermal zoning, and detailed HVAC specifications) and propose directions for improvement.

1. Introduction

The current demographic trend of the planet’s population of
moving from rural to urban areas highlights the necessity to ac-
curately quantify both current and future trends in the energy
performance of buildings to support adequate energy supply
planning, and evidence-based policymaking. Urban Building
Energy Modelling (UBEM) provides a computational frame-
work to address these needs by enabling large-scale simula-
tion and analysis of building energy performance (Davila et al.,
2016).

UBEM refers to the techniques, methods, and software tools
used to simulate the energy performance of buildings at several
scales (from local to regional levels). UBEM follows two ap-
proaches: top-down and bottom-up. The top-down approach
treats the building sector as a single unit, offering aggregate es-
timates without capturing differences among individual build-
ings. In contrast, the bottom-up approach models the energy
performance of buildings based on their physical characterist-
ics. This results in more detailed energy modelling but also re-
quires a lot of data (on the buildings, but also on the energy
supply infrastructure, weather, etc.). As a result, bottom-up
UBEM often relies on building stock models and detailed rep-
resentations of individual structures, usually based on building
archetypes.

The practical application of bottom-up UBEM is heavily de-
pendent on data. Detailed information on construction methods,
materials, and occupancy patterns is essential, but such data are
often fragmented, incomplete, or unavailable. When accessible,
these data typically originate from multiple sources, necessitat-
ing harmonisation before they can be used in simulation work-
flows. Additionally, researchers have developed machine learn-
ing techniques to infer missing attributes and improve the com-
pleteness of building datasets (Seyedzadeh et al., 2019, Wang
et al., 2020).

Over the past 15 years, semantic 3D city models (s3DCMs)
have emerged as a key asset in supporting bottom-up UBEM.

These models represent both the geometry and semantic prop-
erties of city objects in a structured three-dimensional environ-
ment. By incorporating building 2D (or, better: 3D) geomet-
ries, volumes, usage types, and renewable energy availability,
s3DCMs can enhance the precision and scalability of energy
simulations.

This paper presents the lessons learnt from the integration of na-
tional open datasets in the Netherlands and evaluates the poten-
tial of the s3DCM data model as a unifying platform for UBEM.
Despite the availability of extensive open data, significant pre-
processing is required to align these resources with the require-
ments of simulation workflows. Therefore, the Dutch context
can serve as a useful case study to reflect on opportunities and
limitations in open data-driven energy modelling.

2. Open data and semantic 3D city models

UBEM requires a lot of coherent spatial and non-spatial data.
However, the characteristics of the data may vary depending on
the location, the scope, and the method used for their collection.
Ideally, UBEM applications would have access to complete in-
formation on building characteristics (e.g., cadastral, geomet-
ric, and physical properties), local climate data, energy con-
sumption records, and occupant behaviour. However, in prac-
tice, such ideal conditions are rarely met. As shown in figure 1,
data can be classified into 2 main groups: geospatial (build-
ing geometries and climate) and non-geospatial (construction
materials, energy-related data — systems, consumption, labels).
Figure 1 relies on a similar reasoning as in (Wang et al., 2022)
when it comes to the classification of the data acquisition meth-
ods for UBEM, although their review article does not look at
the implementation of UBEM at the national level.

2.1 Geospatial data

2.1.1 Building data Semantic 3D city models (s3DCMs)
have become one of the most prominent and convenient sources
of geospatial data of buildings for UBEM. These models, com-
ing from the ”GIS world”, are typically based on the boundary
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Figure 1. Hierarchical overview of UBEM data requirements. The darker the box, the more detailed and fine-grained the
corresponding data.

representation (BRep) for the geometries of all relevant urban
objects, therefore making buildings particularly well-suited for
applications such as solar potential studies or physics-based
energy performance simulations of buildings. Additionally,
s3DCM may include additional relevant data for UBEM. One
example is represented by the explicit geometrical modelling
of party walls (i.e. shared walls between adjacent buildings).
However, not all s3DCMs are a perfect fit for UBEM since
the detail of the geometrical modelling of the building (Level
of Detail, or, in short, LoD) might not represent relevant data.
That is the case for opaque and glazed areas of the thermal en-
velope of a building, the latter consisting of openings such as
windows and doors. In such a case, a window-to-wall surface
ratio is required instead to approximate an exact distinction.

2.2 Climate data

When it comes to climate data, two main climate parameters are
crucial for UBEM: the incident solar irradiation on the thermal
envelope surfaces and the outside temperature, which influence
the heating and cooling loads. These data can be obtained from
weather stations and local sensors. Usually, national meteorolo-
gical agencies offer these data based on observations collected
through ground-based weather stations. When performing sim-
ulations, long-term averaged datasets such as typical meteoro-
logical year (TMY) files can be used. These datasets provide
standardised climate values based on multi-year observations
and are suitable for building energy simulation (BES) tools. An
example of this type of dataset is the climate.onebuilding.org
repository (Lawrie and Crawley, 2023).

2.3 Non-geospatial data
2.3.1 Building data Non-geometric building data include

characteristics that are independent or do not vary based on the
geometric representation of buildings. These include:

e Building function (e.g., residential, office) influences in-
ternal heat gains and operational schedules of a building.

e Occupancy profiles reflect human activity patterns, such as
working or opening hours in offices or schools.

e Heating, ventilation, and air conditioning (HVAC) sys-
tems, including types of heating and cooling technologies.

e Number of storeys, number of living units, building type
(e.g., single-family home, apartment block), and year of
construction, which strongly influence energy perform-
ance due to evolving construction practices and regulatory
standards (Neufert et al., 2021, Rijksoverheid, 2024).

2.3.2 Physics-related data Understanding the thermal be-
haviour of buildings requires detailed knowledge of construc-
tion techniques and material properties. Relevant parameters
include:

e Thermal transmittance (U-value) of walls, roofs, and
ground floors.

e Solar energy transmittance (g-value) of windows.

e Air infiltration rates, surface reflectance, and material col-
our.

These attributes directly affect heating and cooling demands
and are fundamental to accurate energy modelling.

2.3.3 Energy data Energy-related data serve two promin-
ent roles: as input for data-driven UBEM approaches and as
validation for simulation results. These data may be theoretical
(e.g., energy performance certificate EPC values) or measured
(e.g., electricity and gas consumption). The main difference is
that the former tries to exclude the influence of human beha-
viour by using standard values per m?, while the latter is dir-
ectly dependent on it. Due to privacy regulations, detailed con-
sumption records are, however, rarely available at the building
level (or at finer resolution, e.g. at dwelling level), prompting
the use of aggregated data at the postcode or municipal level.
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2.4 Data availability

In the case of the Netherlands, key open datasets include:
2.4.1 Building data

e BAG (Basisregistratie Adressen en Gebouwen): the Dutch
building and address registry. It provides the year of con-
struction, number of living units, and building identifiers.
Available as open data from Kadaster (Kadaster, 2024).

e BAG-plus is an enhanced version that is currently available
as open data only in Amsterdam. It adds attributes such
as building type (single vs. multi-family) and number of
storeys (Gemeente Amsterdam, 2022) to the existing data
model of the BAG. As of April 2025, it includes data on
197,808 buildings and 568,843 dwellings.

e 3DBAG, a country-wide LoD2 semantic 3D model of all
buildings in the Netherlands (Peters et al., 2022), is gen-
erated periodically by combining BAG with the national
elevation model (AHN) (Rijkswaterstaat, 2024). An ex-
ample of all geometric representations available in the
3DBAG for the Faculty of Architecture and the Built En-
vironment of the Delft University of Technology is shown
in figure 2.

(d) 3DBAG LoD2.2

(c) 3DBAG LoD1.3

Figure 2. Several 3D representations of the TU Delft
Architecture Faculty building (BK)

2.4.2 Physics-related data No open dataset currently
provides building-level physical properties. Instead, archetype-
based datasets are used. That is the case of TABULA (EPI-
SCOPE Project, 2017) and the “Report on example buildings”
(in Dutch, “Voorbeeldwoningen”) (RVO, 2023). One of the
products of the TABULA project was the definition of build-
ing typologies across Europe. The four main building types
defined for the participant countries are Single-Family House
(SFH), Terraced House (TH), Multi-Family House (MFH), and

Apartment Block (in Dutch “Flatwoning”) (FW).
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Figure 3. Dutch building types according to TABULA. Blue
boxes indicate generic types; Orange boxes indicate the Dutch
specific types

This classification was further extended in the case of the
Netherlands with six additional types: detached (in Dutch
”Vrijstaand”, VW), semi-detached house (in Dutch “Twee-
onder-één-kap”, TOEK), middle-row (in Dutch “Tussenwon-
ing”, TW), end-row (in Dutch "Hoekwoning”, HW), common
staircase without galleries (in Dutch “’Portiek”, PW), and com-
mon staircase with galleries (in Dutch “Galerij”, GW), and
mansionnette (MW). The hierarchy of the building types in the
Netherlands is shown in figure 3. Further details of each of the
building types are available in the above-mentioned references.

Both TABULA and “Report on example buildings” provide
standardised heat transmittance coefficient values (u-values) of
the different elements that compose the building’s thermal en-
velope, such as walls, roofs and ground surfaces, as well as the
solar energy transmittance of windows (g-value).

2.4.3 Energydata EP-online is the official EPC database in
the Netherlands (Rijksoverheid, 2025). It provides energy per-
formance indicators of building units through APIs and down-
loadable files (XML, CSV, XLSX). As of March 2025, it con-
tains 5.5 million records representing 1,200,000 buildings.
The dataset includes 42 attributes, but the available data vary
based on the computation method used. Therefore, some at-
tributes may be empty when not required by the computation
method. For example, the Energielndex is not used in the
Dutch Technical Agreement (in Dutch: “Nederlands Technis-
che Afspraak” or, in short, NTA8800), which is the current of-
ficial method to compute the energy performance in the Neth-
erlands. Although the main purpose of this dataset is to store
EPC-related data, it offers an additional second purpose as it
contains the building type and the building subtype in the case
of apartment blocks based on the living unit.

2.4.4 Weather data The KNMI (Royal Netherlands Met-
eorological Institute) operates 48 automatic weather stations
distributed over the whole Netherlands (KNMI, 2024a). These
stations record hourly observations for temperature, wind, hu-
midity, and global solar radiation (KNMI, 2024b). For more
detailed radiation modelling (diffuse, direct, solar angles), it of-
fers typical meteorological year (TMY) datasets for each of the
weather stations, which are based on at least 30 years of ob-
served data (Klement, 2024). The two datasets (hourly records
and typical values) are offered as open datasets.

A summary of the open datasets available in the Netherlands
and used in this research is shown in figure 4, the figure fol-
lows the same colour scheme as in figure 1. The lowest level
(the darkest colour) indicates the attribute used from the corres-
ponding dataset (mentioned at the fourth level).

2.5 Data model

We use the CityGML standard when referring to a s3DCM from
the geospatial perspective. In this standard, all concepts are
based on the ontological definition of a city. Therefore, there is
spatio-semantic consistency across all elements defined by the
data model. In our research, we use CityGML 2.0 (Groger et al.,
2012) due to the software support and the feasibility of extend-
ing the data model of the standard by means of Application Do-
main Extensions (ADE). In our case, we use the Energy ADE
to support energy-related data. The implemented data pipeline
is shown in figure 5.
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Figure 5. Data pipeline for the creation of the output dataset

The Energy ADE provides a standardised data model to al-
low single-building energy simulations and country-wide en-
ergy assessments focused on the building sector (Agugiaro et
al., 2018). However, we are currently testing the updated data
model of the Energy ADE 2.0 (Agugiaro and Padsala, 2025).
The Energy ADE 2.0 builds upon the Energy ADE, it incor-
porates the know-how gathered from experiences and feedback
collected since 2018 when the Energy ADE was first released.

3. Challenges in using open data for energy modelling

Despite the availability of extensive open data in the Neth-
erlands, several challenges hinder their direct application in
UBEM. As discussed in Section 2, relevant datasets are dis-
tributed across multiple sources, each one using distinct data
schemas. For instance, the 3DBAG dataset uses a variety of
data formats (CityJSON, OBJ, GPKG), and it does not have a
fixed schema, which has evolved since its first release in 2021
with the addition or modification of attributes. For example,
the first version of the 3DBAG has 30 attributes while version
2024.04 has 45 attributes. Similarly, ep-online for energy labels
adopts its data formats and model, resulting in a fragmented
landscape that requires harmonisation prior to use.

The Netherlands has done remarkable work in the context of
open access data and the standardisation of unique identifiers
for buildings, living units, addresses, and the links between
them. However, issues and ambiguities persist. For example,
several living units are registered in multiple buildings—46,257
out of 10,928,296 units in the BAG dataset are registered in
multiple buildings, with cases of living units registered in up to
eleven buildings. A related issue arises from ep-online, where
3,743,762 of the 5,605,189 EPC records lack a corresponding
building ID. These problematic cases require therefore addi-
tional spatial processing steps, such as spatial joins, to establish
accurate relationships between datasets.

3.1 Missing or incomplete data

Currently, ep-online covers approximately 11% of the national
building stock (1,250,078 out of 10,928,296), and many entries
are already outdated. In the Netherlands, the energy perform-
ance certification (EPC) of buildings is not automatically gen-
erated, but manually computed during specific cases, such as
property sales or rentals. Several records were generated us-
ing former official methods that were replaced by the NTA8800
standard in 2020 (NEN, 2020). Since all records are stored
within a unified data model, newer attributes have been simply
appended as additional columns rather than creating separate
datasets. For example, older records include the “energy index”
attribute. In contrast, more recent records include calculated
energy demand values and heating and cooling demand values
in detail. Regardless of the computation method, all entries in-
clude an energy label and the dwelling id. These examples limit
the consistency and usability of the data, affecting its reliability.
Additionally, due to privacy regulations in the Netherlands, ac-
tual energy consumption data are only available in aggregated
form at the postcode level (CBS, 2023), which restricts access
to detailed building-level information.
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In the case of geometrical representation of buildings in the
3DBAG, this dataset does not provide detailed facade-level in-
formation of buildings such as window and door size and loca-
tion (essentially, a LoD3 according to CityGML), leading to as-
sumptions such as window-to-wall ratios to overcome this data
gap. Another example of incomplete data in the BAGis the liv-
ings unit information, where 41% of the buildings do not con-
tain records about it and, therefore, no data are available about
their function. This issue limits the applicability of our dataset
on UBEM workflows which depend on building usage, such as
the computation of the energy demand of buildings based on the
energy balance method according to the NTA8800. The spatial
distribution of this case is shown in figure 6.

O Provinces
% Processed
Buildings

® 0%-10%
® 10% - 20%
® 20% - 30%
® 30% - 40%
® 40% - 50%
® 50% - 60%
® 60%-70%
® 70% - 100%
No Data

Figure 6. Spatial distribution of buildings without living units
information

3.2 Data quality issues

Another challenge corresponds to data quality issues. Each
dataset requires independent data cleaning before it can be
used as input for UBEM, followed by consistency checks
after integration. Since some attributes are present in mul-
tiple datasets—sometimes with differing values—prioritisation
rules must be defined. For example, both 3DBAG and BAG-
Plus (in Amsterdam) provide the number of storeys. How-
ever, 3DBAG’s values are generated through a machine learn-
ing model (Roy et al., 2023), whereas BAG-Plus is based on
municipality records. For this case, during the data fusion pro-
cess, we assign BAG-Plus higher precedence due to its likely
higher reliability, however, this applies only to the buildings of
Amsterdam, as the BAG-Plus is not available elsewhere.

Furthermore, the machine learning method used in the 3DBAG
to infer the number of storeys per building achieves an accur-
acy of 94.5% for buildings up to five storeys but drops to 52.3%
for taller buildings (Roy et al., 2023). Therefore, the 3DBAG
does not include this attribute for buildings with more than five
storeys. However, in our data analyses we have found high dis-
crepancy errors regarding this attribute, as shown in figure 7,
complemented by table 1:the building is assigned 1 storey, but,
in reality, it has 5. Additional checks should be implemented to
highlight possible errors in the input datasets. Another limita-
tion of the implemented model to infer the number of storeys is

the partial ones, such as mezzanines or "half-floors” which are
common in the Netherlands.

Figure 7. Google street view for building with Pand ID
0599100000672213

Table 1. Summary data for Pand ID 0599100000756485

Footprint Number 3DBAG 3DBAG
area storeys height volume
58.8m> 1 15.56m 977.3m*?

In the Netherlands, during the computation of the EPC of build-
ings, specialists assign the energy labels along with the corres-
ponding building type class. However, for certain classes, the
classification rules are vague and lead to misclassification. That
is the case of multi-family buildings, which have multiple pos-
sibilities based on factors such as the number of storeys of the
living unit, the type of entrance to the building or the access
corridors to the living units. Therefore, in the ep-online dataset,
a single building may contain multiple living units with differ-
ent categories assigned to each unit. That is the case shown in
figure 8, where units within the same building are labelled with
different building types.

Malsonnette / N
Appartement Port'lekwonlng FIatwonlng (overig)

\ AN s“f
%Ajpar\tement ,Portiekwoning,Maisonnette

Maisonnette,Flatwoning (overig)
Malsonnette Appartement, Flatwonlng (overig)

Ll ] = &

Figure 8. Examples of buildings in Rotterdam being assigned
multiple, different classes of building type

To overcome the issue with the building type data from ep-
online, (Poon, 2024) investigated the use of 3DBAG as an input
dataset to classify the Dutch building stock into the building
types according to TABULA. Poon’s method involves attribute
extraction from the BAG and 3DBAG while using ep-online
as the ground truth. The classification algorithms selected are
support vector machine (SVM) (Cristianini and Shawe-Taylor,
2000) and random forest (RF) (Breiman, 2001). The results are
not accurate enough to be used to classify apartment blocks into
the subcategories: common staircase galleries (galerij), com-
mon staircase without galleries (portiek) and Mansionnettes.
For the modelling and prediction part, 80% of the data are used
for training the classifiers, and the remaining 20% serves for
model evaluation. The method was applied to eight case stud-
ies; the first two correspond to the municipalities of Rijssen-
Holten and Delft. However, there is a severe class imbalance
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with four classes representing each of them less than 1% of the
dataset: flatwoning 0.38%, maisonnette 0.02%, portiek 0.05%
and galerij 0.03%. The additional six case studies focus on spe-
cific building types. In most of the cases, RF performs better
than SVM; however, the accuracy of the classifiers varies from
51.6% to 92% based on the class and the case study. There-
fore, we did not replicate these models to classify whole Dutch
building stock available in the 3DBAG.

Usable area data also shows significant inconsistencies. In the
BAG, 3,578 buildings have a reported usable area of just 1 m?,
while their footprint is at least 48% larger. To address this,
we implemented a checker that estimates a theoretical usable
area based on 80% of the footprint multiplied by the number of
storeys. The 20% reduction of the footprint area accounts for
non-heated spaces like stairwells or storage areas, in line with
(Dochev et al., 2020, Johari et al., 2023). Buildings where the
reported usable area deviates by more than 30% from the estim-
ated value were tagged for further inspection. This tag resulted
in 1,726,288 buildings (16.6%) identified as potentially incon-
sistent. The spatial distribution of the flagged buildings in the
Netherlands is shown in figure 9.
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® 10% - 20%
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40% - 50%
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[ J >70%
No Data

Figure 9. Spatial distribution of flagged buildings in the
Netherlands

Additional inconsistencies arise when comparing values
across datasets.  One example is the building with ID
1742100000006419, for which the BAG lists a usable area of
5,835 m*—27 times greater than its footprint extracted from its
geometric representation in the 3DBAG. Table 2 presents the
conflicting values. Such discrepancy indicates potential data
entry errors across registries. Another common issue relates to
function ambiguity. In BAG, 2.6% of living units (273,118 out
of 10,234,487) have multiple registered functions. Without in-
formation on how usable area is distributed among functions,
assumptions are required during analysis—introducing further
uncertainty.

Finally, discrepancies in temporal resolution might contribute
to data misalignments. For example, the 3DBAG is generated
from AHN (aerial LiDAR) data collected over multi-year peri-
ods—AHNS will span 2023-2025. In contrast, the BAG is up-
dated on a daily basis. This temporal mismatch can lead to in-

consistencies when comparing building geometry and attributes
derived from these sources.

3.3 Testing the new dataset

The resulting enriched s3DCM has been used to compute the
net heat demand of buildings based on the NTA8800 (NEN,
2024). Due to the data requirements of the method, among them
the building’s function, only 40% (4,164,949 buildings) of the
Dutch building stock could be processed. The computation uses
the physics-related data from the corresponding archetype cat-
egories. However, we can only assume an as-built simulation
scenario since we lack information on the history of the build-
ings or the renovation processes that might have taken place
already. This decision leads to the overestimation of the energy
demand of older buildings. This problem is indeed well-known
in literature (Buckley et al., 2021, Lin et al., 2023). Basic stat-
istical metrics of the computed net heat demand are presented in
table 2. Additional details are provided in table 3, which shows
the mean annual net heat demand by building type. These data
are complemented by figure 10, which displays a letter-value
plot of the computed net heat demand.
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Figure 10. Letter-value plot of the computed net heat demand by
building type and construction period in the Netherlands

Table 2. Computed annual net heat demand basic statistics in the
Netherlands, all values are expressed in KWh/(m?-a)

Std Dev.
125.5

Max.
2,461.1

Mode
194.9

Min.
0.7 260.9

Median
238.6

Mean

Table 3. Mean annual net heat demand per building type class in

the Netherlands
Building No. Building kWh
type class’ Buildings  Stock % (m*-a)
SFH 773,048 18.16% 222.4
TOEK 670,009 15.74% 289.2
TH 2,696,494 63.34% 265.8
FW 117,658 2.76% 241.5

“Following the classes defined in section 2.4.2

The results indicate that Terraced House category shows the
highest variability of the computation results in all classes based
on the period of construction of the building. This behaviour is
higher for buildings built before 1945. The spatial distribution
in the Netherlands of the average net heat demand is shown in
figure 11.
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Figure 11. Computed mean net heat demand

4. Conclusion

This paper has presented the lessons learned from the integ-
ration of multiple open spatial and non-spatial datasets in the
Netherlands, with the purpose of creating a national database
to be used for Urban Building Energy Modelling (UBEM). Al-
though the availability of open datasets in the country is re-
latively high, their direct application in UBEM is still lim-
ited by challenges related to fragmentation, inconsistent stand-
ards, and data incompleteness. Addressing some of these chal-
lenges still requires significant preprocessing pipelines and data
enrichment strategies to ensure completeness and consistency,
while some issues still remain unresolved. For example 40.2%
of buildings in the BAG lack information on registered living
units. As a result, their function cannot be determined, which
prevents their inclusion in applications such as net heat demand
calculations based on the NTA8800 method.

UBEM depends on a clear and coherent spatial and semantic
representation of the built environment. A critical component of
this is the hierarchical decomposition of space, where elements
such as doors belong to walls, walls to buildings, and buildings
to broader urban contexts. This hierarchy enables structured re-
lationships between geometry and semantics, which are essen-
tial to link spatial entities with their physical and operational
attributes. Without a formal data model, such as that offered
by CityGML, it would neither feasible to connect geometric
components to energy-related properties—nor to interpret ele-
ments unambiguously, such as recognising a wall as part of the
thermal envelope.

In this regard, s3DCMs provide a strong foundation for en-
ergy modelling. When enhanced with additional data, they of-
fer the structure and flexibility required to support bottom-up
approaches to UBEM. The CityGML data model, and partic-
ularly the Energy ADE, provides a semantically rich and geo-
metrically explicit framework tailored to UBEM requirements.
Its use of unique identifiers and object hierarchies ensures con-
sistency, for example, by indicating that a BuildingPart cannot
exist without a corresponding Building and by linking geometry
to attributes such as usage type or energy demand.

However, the creation of s3DCM suitable for UBEM requires
rigorous data quality management throughout the data pipeline.
This includes input control, intermediate consistency checks
during the integration and, when possible, verification against
other sources to detect conflicts. Data heterogeneity across
formats and scales further influences the importance of harmon-
isation mechanisms and error detection protocols.

The data requirement analysis conducted in this research also
highlighted areas where currently available datasets remain in-
sufficient. For example, energy simulations involving solar ir-
radiance require an additional 3D context, including vegetation,
terrain morphology, and surface reflectivity (albedo). Heating
demand simulations depend on detailed properties of the build-
ing envelope (construction materials, thicknesses, U-values, g-
values), specifications of HVAC systems, occupancy patterns,
and information on energy sources. Crucially, the absence of
open data on building renovation history constrains the ability
to model both the current performance of the building stock
and future refurbishment scenarios at a high level of accuracy.
Future efforts should focus on enhancing the semantic and tem-
poral granularity of open data and improving standardisation
across datasets. This research could be further extended in sev-
eral ways. One possibility is the development of robust methods
for identifying of data inconsistencies. Other possibility refers
to the use of other datasets; for instance, Building Information
Modelling (BIM) which might provide indoor information, al-
though, only available for a limited number of buildings. Fi-
nally, the use of remote sensing methods to extract information
of elements of the building such as materials or shape and size
of doors and windows.
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