
 

Improving the Accuracy of RPA Image Classification in Vegetation Mapping of Magsaysay, 

Occidental Mindoro using RGB Indices, Canopy Heights, and Feature Importance Weighting 

 

 
Francine Alaine Soriano1, Jeromalyn A. Palma1, Aquila Kristian B. Esmeralda1, Jonathan Christian F. Aceron1, John Harold B. 

Tabuzo1, Teresito C. Bacolcol1 

1Department of Science and Technology – Philippine Institute of Volcanology and Seismology (DOST-PHIVOLCS), C.P. Garcia 

Avenue, UP Campus, Diliman, Quezon City, Philippines 1101 – (fasoriano, japalma, akesmeralda, jcaceron).lupa@gmail.com, 

harold.tabuzo@phivolcs.dost.gov.ph, teresito.bacolcol@phivolcs.dost.gov.ph 

 

Keywords: vegetation cover, random forest, object-based image analysis, unmanned aerial vehicle (UAV) 

 

Abstract 

 

Mapping vegetation cover is an important step in generating baseline data for various purposes such as smart agriculture, disaster and 

hazard monitoring, as well as risk assessment and planning. For this purpose, the use of Remotely Piloted Aircraft (RPA) has become 

prevalent in recent years as an efficient and cost-effective way of obtaining very-high-resolution images. However, it is limited by its 

lack of spectral bands used for discriminating between land cover classes, especially vegetation. An object-based approach was used 

due to its suitability with high-resolution input datasets, as it can recognize complex shapes and patterns aside from spectral 

characteristics. The drone images were segmented using optimal parameters to produce image objects which were subsequently 

classified through supervised learning using the Random Forest (RF) algorithm. This study incorporated non-conventional spectral 

indices that use RGB bands only, such as Triangular Greenness Index (TGI), Excess Green (ExG), and Tree-Grass Differentiation 

Index (TGDI), as well as the canopy height data derived from RPA photogrammetry to improve classification accuracy. To further 

improve model performance, appropriate band weights for segmentation were determined by running a RF classifier to obtain band 

importance values. Accuracy assessments reveal that using additional indices and heights improved the accuracy resulting in a 20% 

increase in the average f1-score, with the vegetation classes improving by a 25% increase in their f1-scores (8-41% improvement per 

class). Using the integration of band importance values as weights to the object-based segmentation slightly decreased accuracy values 

for the vegetation classes by an average of 0.04 in the f-1 score. The methods developed to improve the accuracy of RPA image 

classification make it more suitable for mapping vegetation. 

 

1. Introduction 

With climate change exacerbating the intensity and occurence of 

natural hazards, there has been an increasing need to improve 

ways of monitoring the natural landscape for disaster risk 

reduction and management. Land cover information is 

significant for hazard and risk mapping, geographical and 

environmental analysis, socio-economic activities, and spatial 

planning approaches. Thus, it is important to generate accurate 

land cover maps which include reliable vegetation classes. These 

vegetation classes can be primarily used for but not limited to 

agriculture monitoring, soil erosion monitoring, sustainable 

forest management, reforestation efforts, monitoring of flora and 

fauna, and grassland encroachment. It can also be used to 

determine the potential loss of crops caused by natural disasters 

and its effect on the economy.  

Land cover mapping will also enhance the capacity building of 

the local government units for developing their land use plans 

for policy-making, risk assessments, and disaster preparedness 

and mitigation. Therefore, the availability of reliable and up-to-

date vegetation cover plays a vital role for effective monitoring, 

planning, and management approaches. 

 
Over the years, remote sensing has a wide range of methods to 

effectively map land cover and land use. Various techniques 

have been introduced for land cover classification. Among these 

include pixel-based image classification and object-based (OB) 

image classification. A pixel-based supervised image 

classification analyzes the spectral properties of every pixel 

within the area of interest, without considering the spatial or 

contextual information related to the pixel of interest (Weih and 

Riggan, 2010). One of the most widely used pixel-based 

supervised classification methods is the Random Forest (RF) 

algorithm. According to Phan et al. (as cited in Mahdianpari et 

al., 2017 and Xia et al., 2017) (2020), RF receives considerable 

interest because it is good in handling outliers and noisier 

datasets. It provides higher accuracy than other popular 

classifiers. And it increases the processing speed by determining 

and selecting important features. However, applying pixel-based 

methods to high-resolution images often results in a “salt and 

pepper” effect (Feng et al., 2015) which contributed to the 

inaccuracy of the classification. Furthermore, when mapping 

imagery with pixel sizes less than 5m, greater spectral variability 

within land cover classes frequently results in inconsistency in 

pixel classification (Whiteside et al., 2011). 

 

On the contrary, OB image classification involves aggregation 

of image pixels into spectrally homogenous image objects using 

an image segmentation algorithm and then classifies the 

generated individual objects (Liu and Xia, 2010). The 

homogeneity of the segmented objects is based on either spectral 

or spatial characteristics. These objects have attributed 

geographical/geometrical features such as shape and length, and 

topological properties which provides significantly more 

information than that for individual pixels (Whiteside et al., 2011 

as cited in Baatz et al., 2004). The relationships of this 

information as parameters of which are assigned a certain 

weighing and it may provide a powerful tool for improving 

classification based on studies (Shahadan et al., 2022). The 

development of strong object-based image analysis (OBIA) 

methods that are capable of classifying satellite images with 

medium (10-30 m pixel size) to high (2-10 m pixel size) spatial 

resolution is a reliable alternative to the ‘traditional’ pixel-based 

(PB) methods of analyzing and categorizing remotely sensed 

data (Whiteside et al., 2011; Baatz et al., 2004; Benz et al., 2004). 

OBIA requires image segmentation, however, despite the 
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numerous techniques that are currently available for image 

segmentation, the key challenge is to select optimal parameters 

and algorithms that can general image objects matching with the 

meaningful geographic objects (Hossain and Chen, 2019) for 

accurate vegetation classification. Therefore, the possible 

solution is to use feature importance for setting the weights for 

OBIA to improve the classification performance. 

 

Remotely Piloted Aircraft (RPA) otherwise referred to as 

Unmanned Aerial Vehicle (UAV) has been extensively used for 

remote sensing and aerial photogrammetry. It is more readily and 

regularly deployed for quick monitoring, assessment and 

mapping of natural resources at a user-specific spatio-temporal 

scale in comparison with satellite images. It also provides a cost-

effective way for data collection. In addition, RPA can fly at 

lower altitude than other piloted aircraft, resulting in 

incomparable spatial resolution (Feng et al., 2015). Hence, RPA 

images are often used as validation data for satellite image 

classification. Pixel-based image classification and OBIA can 

utilize high resolution images derived from RPA for 

classification. However, the former treats each pixel as 

independent and can no longer capture the characteristics of 

high-resolution images required for classification, whereas the 

latter considered the spatial characteristics of the neighboring 

pixels rather than as single one (Feng et al., 2015). Therefore, 

this study will use the OB image classification to capture the 

characteristics of RPA images.  

 

The overall objective of this study is to improve the land cover 

classification of RPA images. More specifically, this study aims 

to determine the level of importance of input features and assess 

its reliability; to identify the effective indices using RGB bands 

for classification of vegetation; and to improve the OBIA 

techniques by integrating feature importance from RF, indices, 

and heights for classification.  

 

2. Study Area and Methods 

2.1 Study Area 

The area of the study is in the municipality of Magsaysay in 

Occidental Mindoro. Five sites (Figure 1) were selected from the 

land cover mapping survey using RPA with an average of 0.16 

square kilometers per site: CAG-01-01, CAG-01-02, POB-02-

01, POB-02-02, and POB-03-01. Two sites are located in 

Barangay Caguray and the rest are in Barangay Poblacion. The 

diversity of the land cover classes present in the municipality 

made it a good research study for land cover classification. 

 

2.2 Methods 

The general workflow of the study is shown in Figure 2.  Photos 

taken by the RPA are processed to generate orthomosaics, 

spectral indices, and canopy height models (CHMs). Both pixel-

based and object-based methods will be used for classification. 

In improving the initial RGB bands available from the RPA 

images, the addition of the indices, heights and the incorporation 

of feature importance from random forest as weights will be 

tested. Lastly, comparison of accuracy assessment for every 

method will be done. 

 

 

 

       
Figure 1. Location map of the study area. 

 

 
Figure 2. Flowchart of Methodology. 
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2.2.1 Data Acquisition and Pre-processing: The images were 

acquired using a small RPA called DJI Phantom 4 RTK. It 

weighs 1.40 kg and has a built-in camera with 20 MP 1-inch 

CMOS Sensor that acquires RGB images. The flight altitude was 

100 m resulting in an average of 0.34 m pixel size. During the 

flight mission planning, the horizontal and vertical overlap was 

set to 70% and 80%, respectively.  

Preprocessing of images was done using Agisoft Metashape Pro. 

The images were ortho mosaicked and georeferenced. Digital 

Surface Model (DSM) and Digital Terrain Model (DTM) were 

also generated to produce CHM that were considered as a 

parameter for classification as shown in Figure 3.  

 

Images were captured at different times; thus, cloud shadows and 

inconsistent brightness were observed. Hence, for this study, 

images with minimal cloud shadows and with consistent 

brightness were utilized based on the optical inspection. 

However, different illumination conditions and terrains were not 

considered in this study. 

 

Aside from the RGB bands of the RPA images, additional 

features were also integrated into the datasets for land cover 

classification, namely: elevation through a canopy height model, 

three spectral indices, specifically the (1) Triangular Greenness 

Index (TGI), (2) Excess Green Index (ExG), and the (3) Tree-

Grass Differentiation Index (TGDI), as well as the canopy 

heights. The generation of the additional features are discussed 

in the following subsections. 

 

2.2.2 Generation of Spectral Indices: Three spectral indices 

were integrated into the dataset for classification: (1) TGI, (2) 

ExG, and the (3) TGDI (Equations 1-3), as these indices only 

require the red, green, and blue bands (Hunt et al., 2011; Qian et 

al., 2020; Woebbecke et al., 1995). The equations are shown 

below: 

  𝑇𝐺𝐼 = [(650 − 450)(𝑅 − 𝐺) − (650 − 560)(𝑅 − 𝐵)] ÷ 2     (1) 

                      𝐸𝑥𝐺 = 2 ∗ (𝐺 − 𝑅 − 𝐵)  ÷ (𝐺 + 𝑅 + 𝐵)               (2) 

         𝑇𝐺𝐷𝐼 =  −𝑙𝑜𝑔10(𝐶𝑎𝑛𝑛𝑦 𝑣𝑎𝑙𝑢𝑒𝑠)  ∗ (𝑅 + 𝐺 + 𝐵) ÷ 3,    (3) 
 

where R, G, B are the red, green, and blue bands of the RPA 

images and 650, 450, and 560 are the respective wavelengths of 

the red, green, and blue bands. 
 

As shown in Figure 4b, the TGI highlights differences between 

green vegetation and bare land and is highest in bright green 

vegetation (Hunt et al., 2011). Meanwhile, the ExG also uses the 

RGB bands to increase contrast between vegetation and non-

vegetation classes (Woebbecke et al., 1995). Compared to TGI, 

ExG shows a higher contrast between vegetation and non-

vegetation pixels; higher values were also correlated with darker 

green vegetation, specifically perennial crops and tall shrubs, 

while negative values were observed in non-vegetation pixels 

(Figure 4c).  

 

The TGDI considers the texture and spectral characteristics of 

vegetation classes and has been shown to reduce 

misclassification between trees and grass.  For the TGDI, the 

green band was used as the basis for the computation of the 

Canny edges and brightness. The Canny values were computed 

by getting the Canny edges of the image using skimage’s 

feature.canny function and then getting the percentage of edge 

pixels within a 33 x 33 sliding window per pixel. Parameters for 

the Canny edges and the brightness values were based on Qian 

et al. (2020). TGDI also highlighted differences between 

vegetation and non-vegetation pixels, although not as well as the 

previously discussed ExG.  Since all edges were included in the 

index computation, many texture features in the original green 

band were still observed in the TGDI values (Figure 4d). 

 

 
Figure 3. Generated DSM, DTM, and CHM for POB-02-01. 

 

2.2.3 Selection of Training and Validation Data: Seven 

classes were used for the land cover classification: (1) grass, (2) 

crops, (3) trees, (4) brush, (5) bare soil. (6) built-up, and (7) 

water. The classes were based on the relevant land cover types 

monitored during disaster risk reduction and management. Built-

up areas are used to denote populated areas and different types 

of vegetation (crops and trees) also indicate different agricultural 

practices. Apart from the monitoring aspect, vegetation land 

covers were also separated into three classes since they are 

difficult to distinguish from each other (Ayhan & Kwan, 2020; 

Qian et al., 2020). Trees were not divided into forests and 

perennial crops since the forests are not present in the selected 

AOIs. Training and testing data were first obtained from each 

AOI using stratified random sampling, with each land cover class 

having 15 3m x 3m samples. They were distributed to the whole 

area of each image, ensuring that each class varies in 

representation. This was done to ensure that training for each 

land cover class was adequately populated. The labeled data was 

then rasterized so that it could be used in the classifier. 

 

2.2.4 Pixel-based Image Classification: The random forest 

classifier has been shown to have the highest accuracy among 

other machine learning methods for land cover classification 

(Talukdar et al., 2020). It also shows the importance of each band 
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in the dataset in determining the class of each pixel, making the 

resulting feature importance a good baseline for the weights each 

band should have in other classification techniques. The random 

forest (RF) function from the scikit-learn module was used, with 

the number of trees set to 175 and the max depth to 20 (Holden, 

2017). Optimization of the RF parameters was done by 

comparing incremental improvements of the out-of-bag 

prediction of accuracy. Acceptable overall accuracy values were 

set to 77% to 90% (Pelletier et al, 2016). Land cover maps for 

each AOI were then generated by exporting the predicted land 

cover for the entire image as a raster. Feature importance was 

also derived from the RF classification results. 
 

2.2.5 Object-Based Image Classification: Multi-resolution 

segmentation was conducted for the prepared RPA imagery with 

stacked indices using Trimble eCognition. For the initial 

analysis, all bands were assigned a weight of 1. The general 

parameters used for the segmentation are: 150 for the scale, 0.3 

for the shape, and 0.7 for compactness. The scale parameter was 

determined through trial and error until the segments were 

deemed sufficiently homogeneous and representative of the 

selected classes. A considerably low value was used for the 

shape criterion in order to prioritize the color parameter which 

corresponds to the band values in segmentation. A high value 

was assigned to the compactness parameter in order to ensure 

that neighboring objects have comparable sizes as well as avoid 

the generation of objects with convoluted shapes. 

After segmentation, sampling was conducted by first creating a 

class hierarchy similar to the one used in the RF model, depicting 

the possible classes that can be identified in the image. The 

training data was then imported in shapefile format and 

intersected with the produced image objects. Image objects that 

overlap with training polygons were assigned to the latter’s land 

cover class. These samples were then used in a Random Forest 

model in order to train and classify the image. These were then 

exported as raster data for accuracy assessment. 

 

2.2.6 Integration of Feature Importance: The band 

importance derived from the initial RF algorithm was integrated 

into the OBIA workflow by incorporating the values as weights 

during the segmentation of the images into image objects. Higher 

weights were subsequently assigned to bands considered more 

important in order to prioritize their values when grouping pixels 

into objects. The same workflow in the initial OBIA approach 

was used for the creation of samples and classification of land 

cover classes. 
 

2.2.7 Accuracy Assessment: Testing data was separated from 

the training data by sampling 20% of the labeled tiles. 

Assessment of the RF classifier was done by inspecting the 

confusion matrix of each AOI’s land cover classes. The overall 

accuracy scores as well as the classification report containing the 

precision, recall, and f1-score were also generated for each AOI. 

These metrics were all computed using the scikit-learn module.  
 

 
Figure 4. Vegetation indices of POB-02-01. 

 

3. Results and Discussion 
 

3.1 Accuracy Assessment of RF LC Classification: 

Classification of all five AOIs using the dataset with vegetation 

indices and canopy heights had overall accuracies ranging from 

70% to 82%. The bare, built-up, and water classes consistently 

had high f1-scores, with an average of 0.89. In the vegetation 

classes, trees had the highest f1-scores (0.73 average) while 

brush had the lowest (0.59 average), with the crops and grass 

generally in the middle. These outputs were remarkably better 

than when only the RGB bands were used, which had overall 

accuracy values ranging from only 65% to 79%. 

 

AOI 
Band 

R G B TGI ExG TGDI CHM 
CAG-01-01 0.13 0.08 0.18 0.15 0.17 0.08 0.20 
CAG-01-02 0.15 0.07 0.17 0.13 0.15 0.09 0.24 
POB-02-01 0.11 0.06 0.14 0.16 0.19 0.08 0.26 
POB-02-02 0.12 0.07 0.21 0.13 0.16 0.10 0.20 
POB-03-01 0.11 0.06 0.14 0.19 0.19 0.08 0.23 

Table 1. RF feature importance per AOI. 
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Based on the confusion matrices, the brush class had the highest 

incidence of misclassification with the other vegetation classes 

while trees had only minimal confusion with brush and grass. 

There was also some confusion between grass and crops. Heights 

made a large contribution in the classification among vegetation 

classes, greatly influencing the differentiation of trees from 

brush and grass. In primarily brush areas, pixels classified as 

trees had a significant height difference from the surrounding 

pixels and vice versa. For vegetation classes with similar heights, 

visual color affected the classification, as classified crop pixels 

tended to be lighter in color (e.g. yellow, light green) while 

classified grass pixels tended to be darker (e.g. brown, dark 

green). 

 

The ratio of the feature importance was also consistent for all 

images, with the canopy heights having the highest importance 

and the ExG having the highest importance among the indices. 

The green band had the lowest contribution although this may be 

due to the inclusion of the excess green and triangular greenness 

indices, making spectral differences more distinct than in the 

green band.  Resulting feature importance of an RF classification 

indicates which bands or features had the highest contribution in 

the resulting classification, making them a good basis for weights 

when implementing OBIA (Saarela & Jauhiainen, 2021). Since 

all AOIs had acceptable accuracy values, the ratios of each band 

based on the evaluated feature importance may be used for 

further analysis. 

 

3.2 Object-based LC Classification using RGB bands: 
Object-based segmentation was conducted on orthophotos with 

only RGB bands. Equal weights were assigned to each band 

while the general segmentation parameters were used. Generated 

objects showed a broad grouping for spectrally heterogeneous 

areas such as crops and trees. This was also the case for built-up 

areas, occasionally including adjacent bare areas in the objects. 

Grouping was heavily influenced by brightness levels, resulting 

in multiple objects within the same class. 

Accuracy assessment was conducted for land cover maps 

generated using the OBIA workflow on RGB bands. The results 

depicted relatively low overall accuracies for the study areas 

ranging from 57% to 71%. The model found it particularly 

difficult to differentiate between the various vegetation classes. 

This is highlighted by the low mean f-scores, with 0.39 for grass, 

0.47 for trees, and 0.62 for brushes. 

 

The model performed well in classifying water and crops classes, 

likely due to their homogeneous spectral characteristics. 

Classification of vegetation classes such as grasslands, brushes, 

and trees were inconsistent due to the differences in green values 

from varying brightness levels. Bare areas showed mediocre to 

relatively good classification accuracies. This is largely affected 

by the wide range of spectral values between different built-up 

objects such as roofs and roads. 

 

 

 

 
grass   crops   trees   brush   bare   built up   water 

Figure 5. Land Cover Maps for POB-02-01. 
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3.3 Object-based LC Classification using RGB with 

Vegetation Indices and Height: The orthophotos stacked with 

additional vegetation indices and height map were segmented 

using OBIA. Equal weights and parameters were used similar to 

the previous workflow. Segmentation yielded more objects of 

smaller scales, likely due to the increased number of bands for 

consideration. Heterogeneous classes such as trees and crops 

were segmented more precisely, resulting in less variation within 

image objects. Built-up areas were also well-defined. 

Land cover classification using the OBIA workflow on the 

images with stacked vegetation indices and height maps yielded 

good accuracies, with a mean overall value measured at 84%. 

The model was particularly good in classifying water, built-up 

areas, and bare, as shown by the high mean f1-scores of 0.93, 

0.92, and 0.91, respectively. The classification of vegetation 

showed improved consistency compared to the RGB-only 

model.  

Upon visual inspection, some cases of misclassification occurred 

between built-up areas and bare soil due to comparable values 

between sections of roads and roofs, with light-colored bare 

areas such as fallow lands and dirt and sand/gravel roads. 

Misclassification was also observed in inland waters as sections 

of rivers were sometimes classified as crops or forms of 

vegetation such as trees or shrubs. This is likely due to the wide 

range of spectral values in inland waters resulting from 

differences in water depth, composition, and other 

environmental factors.  

 

Errors in classification are suspected to have stemmed from the 

sampling phase of the workflow. The datasets used to train the 

RF model were also used in the OBIA workflow to ensure 

comparability between the two algorithms. In the case of OBIA 

however, each square polygon of the training shapefiles 

contained multiple objects with distinct spectral values. This 

resulted in the assignment of similar classes to image objects 

with varying mean spectral values which may have led to 

misrepresentation of land cover classes. 

 

Overall, this method of using object-based classification with 

vegetation indices and heights showed significant improvements 

in accuracy from the previous method of using RGB bands only 

due to the additional bands which helped distinguish between 

classes which have similar aspects of spectral values. This is 

especially apparent in the differentiation between the vegetation 

classes as height and greenness were taken into consideration. 

 

3.4 Object-based LC Classification using RGB with 

Vegetation Indices, Height, and Feature Importance: For the 

integration of feature importance derived from the Random 

Forest Classification, the input data and workflow followed was 

like the previous, with the difference being the use of the feature 

importance values as weights for the corresponding bands. A 

large number of objects were produced and were significantly 

finer in size, similar to the results of the previous segmentation 

progress. 

The use of band importance as weights in the segmentation phase 

of the OBIA workflow showed an overall accuracy of 82% minor 

decrease in classification accuracy compared to only using 

default weights. F1-score slightly dipped for all classes 

compared to the previous model, most notably for the grass and 

crop classes which went from 0.77 to 0.68, and 0.83 to 0.67 mean 

f-1 score, yet still performed significantly better than the RGB-

only workflow. The slight decrease in performance may be 

related to the shape and color parameters, as the pixel values 

were prioritized during segmentation when feature importance 

was incorporated in order to maximize the use of the additional 

indices. 

 

Misclassification can be observed between water, bare soil, and 

crop areas. This likely originates from their similarity in some 

spectral aspects, as bare soil, crop, and some sections of the water 

area exhibit comparable RGB values and low height profiles.  

 

3.5 Comparison between different OBIA workflows: 
 

The resultant objects from multi-resolution segmentation were 

compared between the different workflows. The objects 

produced from the raw orthophotos were significantly larger and 

undersegmented, with several objects containing multiple 

classes. In contrast, the two workflows that used stacked 

orthophotos for segmentation produced finer objects that were 

able to precisely delineate boundaries between different classes. 

This was largely due to the additional bands for the latter 

workflows that assisted in further distinguishing between land 

cover types. 

The accuracies were likewise compared between the three OBIA 

workflows. The most consistent and accurate of the three 

conducted workflows was the second method which used 

orthophotos stacked with vegetation indices and height map 

without integrating feature importance. The least accurate model 

was with only the raw RGB bands as input for classification.  

For the land cover classes, the bare soil, built-up, and water 

classes were consistently classified well for all workflows. This 

is due to their homogeneity and relatively constant spectral 

characteristics. The vegetation classes showed considerable 

improvement when incorporating vegetation indices and heights, 

with an f1-score improvement ranging from 0.12 to 0.42. 

Classification 

Type 

Mean 

Overall 

Accuracy 

Class 
Mean 

Precision 

Mean 

Recall 

Mean f-

1 score 

OBIA-RGB 0.65 

Grass 0.59 0.56 0.39 

Crops 0.67 0.65 0.75 

Trees 0.58 0.54 0.47 

Brush 0.46 0.50 0.62 

Bare 0.74 0.65 0.67 

Built-up 0.81 0.70 0.73 

Water 0.93 0.95 0.93 

OBIA-RGB, 

VIs, CHM 
0.84 

Grass 0.83 0.73 0.77 

Crops 0.88 0.81 0.83 

Trees 0.85 0.93 0.88 

Brush 0.68 0.81 0.74 

Bare 0.99 0.85 0.91 

Built-up 0.94 0.91 0.92 

Water 0.93 0.94 0.93 

OBIA-RGB, 

VIs, CHM w. 

FI 

0.82 

Grass 0.71 0.67 0.68 

Crops 0.76 0.61 0.67 

Trees 0.85 0.95 0.89 

Brush 0.69 0.81 0.74 

Bare 0.90 0.87 0.88 

Built-up 0.94 0.91 0.92 

Water 0.92 0.92 0.92 

Table 2. Comparison of accuracy metrics per classification 

method. 
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4. Conclusion and Recommendations 

4.1 Conclusion 

The study attempted to improve the land cover classification of 

RPA imagery using vegetation indices and canopy heights, as 

well as the integration of RF feature importance as weights in 

object-based classification. Feature importance from RF 

revealed that canopy heights had the highest contribution in the 

final classification. It was followed by the ExG, which amongst 

the vegetation classes showed the greatest visual contrast 

between vegetation classes.  

Object-based image analysis proved to be an effective approach 

for land cover classification with RPA orthophotos when 

supplemented with additional vegetation indices and height data 

to assist in distinguishing between cover types. Incorporating the 

additional bands resulted in a noticeable increase in classification 

accuracy compared to only using the default RGB bands from 

the drone imagery. This is most noticeable in the f1-scores for 

the vegetation classes. For the integration of RF feature 

importance as band weights for segmentation, the results showed 

a minor decrease in classification accuracy compared to using 

equal band weights. This may have stemmed from the 

prioritization of pixel values of the image for segmentation and 

giving less weight to the shape parameter. 

 

4.2 Recommendations 

Improvements can be made to the general OBIA workflow by 

adjusting in the sampling phase. More appropriate training data 

dimensions should be selected to avoid misassignment of classes 

to samples, which may result in overlaps between the spectral 

values of different classes. Adjustments in segmentation 

parameters can also improve the model performance, particularly 

with regards to the shape and color, as well as the smoothness 

and compactness parameters. The use of texture features could 

also be explored. For classification, other algorithms for object 

segmentation can also be tested for classifying land cover types. 
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