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Abstract 

 

Remote Sensing is proven to be helpful in various ways, and for an agricultural country like the Philippines, mapping in farmlands is 

not that common. Using the Sentinel 1 Synthetic Aperture Radar (SAR) data, the study reveals rice paddy classification brought by 

supervised machine learning on the municipality of Guimba, in Nueva Ecija - the Rice Bowl Capital of the country. The study in 

Guimba, Nueva Ecija, addresses the absence of comprehensive rice classification studies, focusing on creating a classified rice paddy 

map and assessing spectral indices (NDMI, NDVI, NDWI) using synthetic aperture radar and optical imager. Results show successful 

differentiation between rice and non-rice paddies. Temporal analysis emphasizes monitoring water availability, soil moisture, and 

vegetation health. Despite signs of overprediction in the CART model, its effectiveness in mapping rice paddies is notable. The spatial 

distribution maps contribute to targeted monitoring, enabling efficient interventions and improved agricultural practices. This research 

highlights the inherent use of remote sensing in rice crop management, offering valuable insights for farmers and country's food 

security. 

 

 

1. Introduction 

1.1 Background of the Study 

About 90% of the world’s rice is produced in Asia, according to 

(Gutaker et al., 2020). As it is a staple crop in many regions, some 

countries produce rice for their supply and consumption, such as 

the Philippines. Out of 30 million hectares of agricultural land, 

about 4.81 million hectares are specified for rice production 

(Silva et al., 2017). In 2020, rice production in the Philippines 

reached 19.44 million metric tons, where the biggest 

contributions were the regions of Central Luzon, Cagayan 

Valley, and Ilocos (Agoot, 2020). The country’s biggest rice 

producer is Region 3, Central Luzon. Due to its capability to 

produce millions of metric tons of rice, it is known as the Rice 

Capital of the Philippines and comprises seven provinces namely 

Aurora, Nueva Ecija, Bulacan, Pampanga, Tarlac, Bataan, and 

Zambales. Rice is cultivated in the Philippines primarily during 

the wet season, from June to early October mostly in naturally 

irrigated areas. Cultivation continues during the dry, to hot-dry 

season (late October to May) for areas with specific irrigation 

facilities (Raviz et al., 2016). The researchers will specifically 

classify the rice paddies located in Guimba, a district in Nueva 

Ecija. To classify the rice paddies in this district, the researchers 

utilized the Sentinel 1 - Synthetic Aperture Radar (SAR) and 

Sentinel 2 - Multispectral Satellite Imagery (MSI) and accessed 

its open-sourced data from Google Earth Engine (GEE) 

geospatial platform from June to October 2021. In relation to this, 

the Municipality of Guimba was specifically decided for this 

study due to having the lowest cloud cover observed, therefore 

allowing the study to have an increased precision in the mapping 

process. This study aims to provide a specific and precise rice 

paddy mapping in the Nueva Ecija and Municipality of Guimba 

from remote sensing satellite images through a machine learning 

approach involving the following: (1) Random Forest Trees, (2) 

Classification and Regression Trees (CART), and (3) Gradient 

Tree Booster. Significantly, the researchers aim for the study to 

aid farmers in decision-making regarding water and moisture 

management, aiming to maximize harvests and minimize risks. 

 

1.2 Objectives of the Study 

1. Create a precise rice paddy map using supervised 

classification and utilize the use of cloud open-source 

platform for ease replication. 

 

2. Monitor and assess the change of rice paddy indices in 

municipality of Guimba on wet season planting. 

 

2. Materials and Methods 

2.1 The Study Area 

The study area of the rice mapping is Nueva Ecija Province, 

Philippines, located in the Central Luzon plains with an area of 

approximately 5,751.33 km² (Figure 1). The province 

experiences a humid subtropical climate, with mountainous 

terrain in the east, low hills in the north, and mainly plains in the 

central region. According to Global Forest Watch (2022), 

cropland is the main land use type in the study area, accounting 

for approximately 7.8%. And paddy rice is the main crop, 

accounting for 0.26%. A simple criterion was created upon 

choosing the district best for the rice paddy mapping. After 

gathering data from Sentinel 1 and Sentinel 2 Copernicus data 

catalogue through an open-access platform, the researchers set its 

data collection period from June to October 2021.Within the data 

gathered, Guimba had the lowest observed cloud cover. 

Furthermore, in this chosen study area, 40 hectares is considered 

as croplands (primarily used for farming), where about 18 

hectares is known to be the rice paddies. Specifically, the 

researchers utilized remote sensing data, specifically the 

polarization and create a temporal logic color composite bands 

from Sentinel 1 data. From June to October 2021, there were a 

total of 12 images acquired. These underwent geometric 
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correction before applying the temporal logic color composite, 

which involved the vertical/horizontal polarization of the 

interferometric wide swath, providing 66 total annotated 

samples. This number accounts for 49 rice paddies and 17 non-

rice paddies.

 

Figure 1. Study area. 

 

No. Date No. Date 

1 08 June 2021 7 07 August 2021 

2 20 June 2021 8 12 September 2021 

3 02 July 2021 9 24 September 2021 

4 14 July 2021 10 06 October 2021 

5 20 July 2021 11 18 October 2021 

6 26 July 26 12 30 October 2021 

 

Table 1. The acquisition dates of Sentinel-1 images. 

 

2.2 Supervised Classifications Models 

This section presents the different model approach for the rice 

classification using supervised machine learning in Sentinel -1 

SAR temporal images that are captured during the wet season 

planting window in Nueva Ecija.  

 

2.2.1 Random Forest Trees 

 

The random forest classifier employed in this study consisted of 

an ensemble of tree classifiers. Each classifier was constructed 

by sampling a random vector independently from the input vector 

(Breiman, 2001). The decision-making process involved each 

tree casting a unit vote for the most prevalent class to classify an 

input vector, as outlined by (Gislason et al., 2006). In this study, 

we used the random forest classifier which utilized a method of 

growing trees with randomly selected features at each node. To 

ensure consistency and reproducibility, hyperparameters were 

set. Specifically, the number of decision trees was set to 100, and 

a random seed of 42 was applied.  

 

2.2.2 Classification and Regression Trees 

 

Classification and regression trees (CART) are powerful machine 

learning methods that build predictive models by dividing data 

into smaller subgroups and fitting simple models within each. 

The flexibility of CART has drawn considerable attention in 

remote-sensing radar image classification. A hierarchical copula-

based method for multisensory and multiresolution images, 

demonstrate a robustness against noise and speckle (Voisin et al., 

2014). Using a decision tree based on remote sensing images, 

even outperformed the traditional maximum likelihood 

classification method in terms of accuracy (Qi et al., 2011). 

 

2.2.3 Gradient Tree Booster  

 

Gradient Tree Boosting, a powerful ensemble learning algorithm, 

leverages complex base learners like piecewise linear regression 

trees to build robust models (Shi et al., 2018). Its effectiveness 

extends beyond binary classification, tackling multi-label and 

multi-output regression through novel random output projections 

(Joly et al., 2019). This versatility makes it particularly well-

suited for analyzing radar satellite images. For instance, a 

research study demonstrated its effectiveness in crop 

classification using PolSAR imagery, where tree and DART 

boosters significantly outperformed the simpler linear booster 

(Ustuner et al., 2019). 

 

2.3 Land Cover and Land Use 

 

The study utilized Sentinel 2 Multispectral Satellite Imager 

(MSI) to generate the study area's Land Use and Land Cover 

(LULC) data. The LULC distribution was categorized into 

various groups: (1) water, (2) trees, (3) grass, (4) flooded 

vegetation, (5) crops, (6) scrub or shrub, (7) built area, (8) bare 

ground and (9) clouds (see Figure 2). This helped aid the 

classification of rice paddies, given that the datasets were derived 

from data catalogue project of ESRI LULC 2021 data (Karra et 

al., 2021). As observed that majority of the study area are 

surrounded of main croplands.
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Figure 2.  Land Cover Map. 

 

2.4 Image Classification and Accuracy Assessment 

 

The researchers conducted supervised classification of the 

images through Sentinel 1’s Interferometric Wide Swatch (IW) 

mode and Vertical/Horizontal (VH) polarization in the Ground 

Range Detected (GRD) raw images products from the 

COPERNICUS/S1_GRD collections.  To create individual VH 

color composites, researchers set 15-day intervals for the images, 

while for generating logic color composite bands, multi-temporal 

images were used. Upon generating band combinations, the color 

magenta was represented sensitive to rice paddies. In addition, 

the image classification was based on the color characteristics 

and signatures (Saadat et al., 2019; Verma et al., 2019). 

 

 
 

Figure 3. Date composite logic of colors. 

 

Fig. 3 shows the image logic of temporal composite stands as our 

image combination to classify the rice paddy in the study area 

(Bourgeau et al., 2009). The blue color range is quite sensitive in 

other types of crops in the study area which is classified as non-

rice. The classified non-rice areas were removed, and the 

classified areas only remained in the map results. We used the 

model that showed good accuracy in training and validation with 

low overprediction results. Temporal changes in the indices 

clarify the overall well-being of the rice paddies, therefore, the 

researchers utilized the combined Sentinel 1 and Sentinel 2 

images. The specific data from Sentinel 2 goes as follows: 

Normalized Difference Vegetation Index, Normalized 

Difference Moisture Index, and Normalized Difference Water 

Index. 

 

No. Class 
Band 

Combination 
Color 

1 Rice VH2, VH3, VH9 Blue 

2 Rice VH3, VH4, VH9 Magenta 

3 Rice VH3, VH4, VH9 Magenta 

4 Rice VH4, VH5, VH9 Magenta 

5 Rice VH5, VH6, VH9 Magenta 

6 Urban VH2, VH4, VH9 White 

7 Water VH2, VH4, VH9 Black 

8 Others VH6, VH7, VH9 Gray 

 

Table 3. Band color composite combinations. 

 

The appearance of the rice paddies was based on the changes of 

color in temporal images. By setting each image in every 15 days 

as an individual band image, we were able to create a temporal 

color composite. In the early stages of rice crop growth, the 

sensitivity to color was in the range of blue, and after 30 days, 

rice began to exhibit sensitivity to colors resembling magenta. 

Other colors were classified as water, urban, and vegetation (see 

Table 3). The accuracy assessment is conducted to verify the 

reliability of the spatial information from the satellite images for 

the image classification (Lin et al., 2015). In this assessment, 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-5-2024 
ISPRS TC V Mid-term Symposium “Insight to Foresight via Geospatial Technologies”, 6–8 August 2024, Manila, Philippines

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-5-2024-41-2024 | © Author(s) 2024. CC BY 4.0 License.

 
43



 

ground control points are essential to ensure the trustworthiness 

and precision of the spatial data. This accuracy assessment was 

conducted through producer’s accuracy, user’s accuracy, overall 

accuracy, proportion, and kappa coefficient (Naikoo et al., 2020). 
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2.5 Vegetation Indices 

Normalize Difference Vegetation Index (NDVI) of the 

reflectance image was also generated. The NDVI was generated 

for use in the estimation of thermal emissivity of the rice paddy 

classification. This was carried out using Equation 6 (Campbell 

and Wynne, 2011). 

                        NDVI = NIR - Red / NIR + Red                   (6) 

Normalize Difference Moisture Index and Normalize Difference 

Water Index of the reflectance image collection are calculated 

using the Equation 7 and 8 (Strashok et al., 2022).  

                  NDMI = (NIR – SWIR) / (NIR + SWIR)    (7) 

                  NDWI = (Green – NIR) / (Green + NIR)    (8) 

 

No. Date No. Date 

1 26 June 2021 6 04 September 2021 

2 01 July 2021 7 24 September 2021 

3 06 July 2021 8 14 October 2021 

4 05 August 2021 9 24 October 2021 

5 10 August 2021   

 

Table 4. Sentinel-2 date acquisition. 

 

The NDVI, NDMI and values were obtained for the rice paddy 

class. The observed mean NDVI, NDMI and NDWI values for 

the chosen study area are shown in Figure 8. The sentinel – 2 

images used are the data collection in Engine Data Catalog 

Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-

2A as presented in Table 4. We create a flow chart that outlines 

the scientific procedure for creating the rice paddy and assessing 

the rice crop health in classified rice paddies within our study 

area (see Figure 4). It begins with satellite data acquisition, 

followed by preprocessing steps to enhance data quality. The next 

phase involves classifying rice paddies.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure  4. Methodology flow of the project.

3. Results and Discussion 

Both microwave data and optical remote sensing images have 

advantages. Integrating both approaches into the study is 

essential for increasing the accuracy of the data. The accuracy of 

the results is higher than that of a single data source when using 

the integration methods, which are primarily as well (Zhu et al., 

2021a). The obtained results showed that all three models 

achieved high overall accuracy and kappa statistics for rice paddy 

and non-rice paddy classification. However, the high accuracy of 

the CART model may indicate overprediction. The classification 

accuracy met the criterion of at least 80% for the sensor data, with 

overall rice paddy accuracy ranging from 97% to 99% (Tilahun 

et al., 2015a). However, the surprisingly high percentage 

suggests it may be useful to explore further. Further investigation 

may also be needed to assess the Kappa coefficient values, this 

will indicate the criterion for good to very good agreement in 

which the results of the models ranged from 0.96 to 0.99 (see 

Table 5). These findings demonstrate the high capacity of the 

decision tree classifier approach in integrating with different 

Polygons/Raster Data (Earth 

Engine, Philippine Rice 

Institute) 

Sampling 

polygons/training Data 

Train and test 

split data 
- Python Colab 

- Google Earth Engine 

- QGIS 

-Develop rice paddy 

mask in interactive 

platform 

-assess crop health 

management 

-open-access program 

codes for ease 

replication 

Input Data Processing and Preparation Data Analysis 

Define Variables 

 

-Indices: NDVI, NDWI, NDMI 

(Sentinel-2 MSI) 

- False color 

- Sar Polarization Indices (Sentinel-1 

C band)  

Generate Random Forest, 

CART, and GBT classifier 

Results 
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remote sensing-derived indices to produce multi-temporal land 

use/land cover (LULC) maps (Tilahun et al., 2015b).  

 

Class 

Machine Learning Model 

RF CART GBT 

PA UA PA UA PA UA 

% 

Rice Paddy 95 99.4 99 99.8 73.8 88.8 

Non-Rice Paddy 66 66 87.7 99.3 66.2 84 

Accuracy 97 99 98 

Kappa 

Coefficient 
96.2 99 96 

 

Table 5. Accuracy Assessment of the three model. 
 

Uncertainties and limitation are due to the infrequent use of 

optical image data in the growing season, which results in 

features that contribute less to rice identification. This is more 

prominent during the growing season, as the Philippines is a 

tropical country that experiences extreme clouds most of the 

time. Relying primarily on optical data for classification without 

cloud-polluted time windows can result in lower classification 

accuracy to a certain extent. On the other hand, microwave data 

is not restricted by missing images caused by cloud effects (Jiang 

et al., 2023a). Therefore, SAR data can be applied to reinforce 

optical data in enhancing the temporal frequency of high-quality 

observations. Optical and SAR images, when combined, can 

capture different aspects of rice phenological characteristics. 

Consolidating images from multiple sensors strengthens both, 

and moderates the constraints of using a single source. This 

increases the results of the computational accuracy of the 

algorithm to an extent (Zhu et al., 2021b; Jiang, et al., 2023b). 

Integrating images from different bands leverages the strengths 

of both data sources and mitigates the limitations of a single data 

source, meanwhile increases the computational results’ accuracy 

of the algorithm to some extent (Zhu et al., 2021c; Jiang et al., 

2023c). By employing three different band combination s for rice 

identification, we found that combining Sentinel-1 and Sentinel-

2 images yields greater accuracy than using either image alone. 

 

 

3.1 The Spatial Distribution Maps of the Three Models 

The results of the supervised classification represented the rice 

paddies in green pixels, as gathered from Sentinel 1. On the other 

hand, the CART method identifies more rice paddies which leads 

to significantly higher user’s and overall accuracy. However, it 

can be possible due to overprediction. This is being closely 

resembled by the Random Forest Classification method, where it 

shows that there are more rice paddies in the eastern region 

compared to the northern and western regions (see Figure 5.) 

Furthermore, the results show that temporal signatures reveal 

changes in band signatures overtime. This indicates that rice 

planting changes in the area, possibly explaining the downward 

trend and suggests continuous water flooding.

 

 

Figure 5. Rice paddy distribution in Nueva Ecija classified by the models from left image (random forest model); middle image 

(classification regression model) and right image (gradient booster model). 

 

The intensity of backscattering shows the distinct patterns in rice 

growth phases; specifically noting that high intensity shows the 

early growing season as it corresponds to water-covered surfaces 

of young rice paddies. Therefore, as the rice matures, the 

intensity gradually decreases. It only increases again during the 

ripening and harvesting periods due to the coinciding situations 

with satellite imagery observations. It fully decreases after 

harvesting, as the rice paddies become bare. Results showed that 
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the NDWI distribution in Guimba is an indication for having 

well-balanced water availability as reflected from the stable time-

series data without excessive flooding. In addition, the NDMI is 

high over the planting season, specifically in south-eastern areas.

 

Figure 6. Backscatter signature. 

 

The average soil moisture index is also consistently high, 

indicating good moisture content, likely caused by the wet 

season. The NDVI showed gradual increase from June to October 

(with October having the peak vegetation), suggesting healthy 

vegetation growth and photosynthetic activity (see Figure 7). The 

backscatter signature profile of the graph also reveals distinct 

patterns that align with the rice phenology stages as followed by 

farmers (Gutierrez et al., 2019a). 

 

 
 

Figure 7. Rice paddy indices distribution in Guimba: upper left (NDWI); bottom left (NDMI) and in the right plot (NDVI). 

 

The high backscatter intensity observed during the early growing 

season (June 1-15) corresponds to the smooth, water-covered 

surface of young rice paddies. As the rice plants mature, the 

backscatter intensity gradually decreases (June 16-30 to July 1-

15) due to the increasing roughness of the canopy. This 

decreasing trend continues until the plants reach full maturity 

(July 16-31), when the backscatter intensity stabilizes. During the 

ripening and harvesting phases (August 1-15 to September 1-15), 

the backscatter intensity increases again as the rice plants dry and 

the stubble becomes more reflective. The rice planting window 

in Nueva Ecija, Philippines, is based on the study by (Gutierrez 

et al., 2019b). The temporal signatures of the radar data match 

the typical planting season of the area, as most farmers plant 

during this period when rainfall is most prevalent, providing the 

essential water source for rice plants. We hypothesized that the 

sudden drop of the signatures is due to adaptation of farmers in 

Nueva Ecija in continuous flooding, while as observed that some 

part of the study area adapts alternating wetting and drying 

method (Sibayan, 2018). Results in classification of rice paddy 

areas shows promising results, with approximately 85% of the 

rice fields in the study area are accurately mapped. However, 

some limitations persist, particularly regarding temporal 

mapping due to variations in rice transplanting schedules across 

different municipalities in Nueva Ecija. Additionally, many rice 

farmers still rely on natural rainwater for irrigation, while others 

use artificial irrigation systems, leading to variations in rice 
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planting windows. Our study found that Random Forest (RF) 

classification yielded reliable results, accurately mapping 

labelled areas, unlike Classification and Regression Trees 

(CART) and Gradient Boosting Trees (GBT), which exhibited 

misclassifications and overprediction issues. The ground image 

validation was conducted using a mobile phone GPS coordinate 

tracker (My GPS Coordinates). The coordinates of the classified 

pixel in Guimba were extracted and used as reference coordinates 

(latitude: 120.803551, longitude: 15.673251) to validate the 

presence of rice fields in the study area. During the ground 

validation visit, the researcher took photographs to confirm the 

rice paddy plantations, as seen in Figure 8. In the middle box of 

Figure 8, which was taken near the Coop Rice Mill, the rice plants 

were observed to be in the generative stage. The left bottom 

image in the same figure showed rice plants in the ripening stage. 

Farmers confirmed the stages and status of the rice plants during 

the ground validation visit. The approximate rice extent areas in 

each municipality boundary are shown in table 6 appendix.

 

Figure 8. Ground validation in the study area; upper right box (the reference pixel coordinate); middle box (image taken pointing to 

north) and bottom right box (image taken in east side of the reference coordinates). 

 

4. Conclusion 

The present study effectively utilized the Sentinel-1 images for 

the supervised rice classification and mapping in Guimba, Nueva 

Ecija. Upon the evaluation of results, the generated classification 

and map closely aligns with the actual coverage in the area which 

can be access on the web application platform that we created for 

ease visualization and replication of codes for further analysis 

(https://code.earthengine.google.com/2ce5292112782f0e62a018

04b3c1a0a3). While the results appeared to be promising, the 

researchers recommend improvements in classification accuracy 

by incorporating more annotated samples and exploring 

alternative machine learning models. Subsequently, the 

researchers integrated Sentinel-2 data indices to facilitate the 

monitoring of rice paddy health and growth throughout the rice 

cultivation period. Through the study’s approach in utilizing 

remote sensing data for spatial and temporal monitoring, the 

results will be able to provide valuable insights for farmers in 

Guimba to optimize water management and enhance rice 

production. Furthermore, it will also assist in estimating crop 

yields from the rice paddies, land use planning, and assessing 

potential environmental impacts. 
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7. Appendix 

Municipality Area 

(km2) 

Municipality Area 

(km2) 

Municipality Area 

(km2) 

Municipality Area 

(km2) 

Guimba 9.656 Licab 1.916 Gapan City 4.598 Gabaldon 0.363 

Munoz 4.022 Santo Domingo 3.153 Jaen 4.817 Bongabon 0.535 

Talugtug 2.391 Aliaga 4.480 San Leonardo 1.432 General Mamerto  2.769 

Cuyapo 3.349 Zaragoza 2.716 Penaranda 0.976 Llanera 2.893 

Nampicuan 2.149 Talavera 3.322 Santa Rosa 4.064 Rizal 4.115 

San Jose City 2.361 San Antonio 4.421 General Tinio 0.897 Pantabangan 0.280 

Lupao 0.963 San Isidro 2.113 Cabanatuan 3.881 Quezon 2.729 

Carranglan 1.656 Cabiao 2.549 Palayan City 0.196 Laur 0.947 

 

Table 6. Estimated  rice paddy area per municipal boundary. 
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