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Abstract 

 

Orthophoto imaging of the Earth's surface using unmanned aerial systems have in recent years become a common and efficient method 

for acquiring highly detailed orthophoto maps. These are widely used in transportation and civil engineering fields. In the context of 

traffic accidents and technical documentation, such imagery can be applied for accurate reconstruction of the scene. However, this 

process often requires manual vectorization of selected road infrastructure features. This task is time-consuming and demanding, 

especially in more complex scenarios. The presented paper introduces a newly proposed method for semi-automatic vectorization of 

road infrastructure features from raster imagery. The method was implemented in MATLAB and consists of several sequential steps. 

These include selection of the area of interest, colour identification, noise reduction, clustering, and generation of vector contours. The 

entire process emphasizes simplicity, computational efficiency, and ease of use without the need for machine learning or extensive 

training data. Statistical evaluation using a paired t-test (p = 0.0022) confirmed that the automated approach is significantly faster than 

manual processing. On average, the proposed semi-automatic vectorization process was 2.15 times faster. In realistic scenarios, such 

as entire intersection areas, a speed increase of up to 3.1 times was achieved. These results confirm the practical benefit of the proposed 

method for efficient and rapid processing of traffic infrastructure image documentation. 

 

 

1. Introduction 

Imaging of the Earth's surface represents one of the fundamental 

methods for collecting geospatial data. Obtaining these image 

data is not only dependent on satellite images or aerial 

photography, but increasingly also on unmanned aerial vehicles 

(Svatý et al., 2023). Low-altitude image capture enables the 

acquisition of very high-resolution surface information 

(McGlone et al., 2004). Another undeniable advantage of UASs 

is the speed of data collection and the timeliness of the results. 

Using image correlation techniques, orthographic images can be 

generated (Knyaz et al., 2016) and subsequently used for further 

analysis. 

 

Orthophotos are commonly applied in transportation engineering 

and construction-related disciplines. For example, sections of 

road networks can be mapped to provide up-to-date visual 

overviews of specific locations (Pinto et al., 2020). Aerial image 

documentation can also be captured during traffic accident 

investigations. These image materials can then serve as a base for 

situational plans in design studies or as a mapping background 

for graphical reconstruction of accident events. 

 

Reconstruction of such sites is typically carried out by manually 

redrawing selected road infrastructure objects into vector form, 

while the raster image continues to serve only as a background 

layer. These objects usually include road markings, road edges, 

and, in some cases, roadside barriers. Manual vectorization can 

become increasingly time-consuming with the growing 

complexity or size of the site, requiring users to spend 

considerable time redrawing existing features that add little value 

to the analytical phase of the work. However, this step is essential 

for most subsequent processes. 

 

The aim of this paper is to present the individual steps of a newly 

proposed method for identifying and vectorizing selected 

elements of road infrastructure with minimal user input. 

Emphasis is placed on process automation, user-friendly control, 

and computational speed. By simplifying the user’s workload, 

more time can be devoted to the actual problem analysis of the 

given site. Additionally, the method allows for the generation of 

quick image-processing outputs even by users with limited 

technical skills, such as police officers preparing investigation 

report of a traffic accident. 

 

The proposed method does not rely on machine learning 

techniques and thus does not require large volumes of training or 

testing data. The outcomes of the method will be demonstrated 

through sample use cases and compared with traditional 

approaches based on manual vectorization of selected road 

infrastructure features. This comparison aims to determine 

whether the use of automated processes provides a more efficient 

approach to processing image-based documentation. 

 

2. Related work 

The review section is primarily focused on methods currently 

used for image processing, as this aspect is fundamental to the 

present work. 

 

The initial detection of information from images began in the 

1980s (Zhang and Suen, 1984). At that stage, the process could 

not yet be described as vectorization of raster images. However, 

methods were introduced for identifying the skeletal structure of 

a graphical representation, i.e., image skeletonization. The 

principle of the method was based on iterative cycles in which 

unnecessary points were eliminated in each iteration. 
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These methods were gradually improved, and by the 1990s, 

actual image vectorization could be observed in the processing of 

cadastral map documentation (Janssen and Vossepoel, 1997). 

This involved progressive line smoothing and guiding curves 

through areas with dark pixels. A binary mask was applied, which 

could be efficiently handled computationally and 

programmatically, as working with matrices reduced 

computational demands. In this way, it was possible to generate 

an editable image. 

Over the years, a large number of publications have focused 

primarily on sketch analysis and the vectorization of hand-drawn 

illustrations. For example, methods have been proposed for raster 

image vectorization based on simple lines and the detection of 

node points (Guo et al., 2019), as well as techniques for 

evaluating the quality of extracted paths within an image (Yan et 

al., 2020). 

 

In the context of road analysis, it is then possible to present, for 

example (Chaudhuri et al., 2012). In this study, the authors 

focused on the extraction of roads, rivers, and buildings from 

satellite imagery using semi-automatic methods. Noise is 

reduced, followed by the extraction of the image skeleton. 

Similarly, (Wang et al., 2025) presented a method aimed at 

improving the quality of road segmentation from satellite images. 

 

Satellite imagery is also used by (Dey and Aithal, 2024), who 

introduced more advanced methods employing machine learning 

and deep learning. The development of urban databases was 

supported, and contributions were made to sustainable 

transportation planning. 

 

Vectorization of road markings was addressed by (Xia et al., 

2024), who introduced a sophisticated machine learning 

approach for generating standardized vector map features, 

particularly for lane prediction. Similarly, advanced techniques 

were also presented by (Chen et al., 2024). 

 

Feature identification and vectorization are also performed on 

point clouds, which, although inherently different from raster 

imagery, can serve as a valuable source of methodological 

inspiration. One such approach involves the analysis of RGB 

colour intensity (Gao et al., 2017). In the case of point clouds, 

feature identification can be further refined using laser return 

intensity or point density (Rastiveis et al., 2020). Additional 

methods for assessing point clouds include height-based analysis 

(Pu et al., 2011) or feature extraction within cross-sectional slices 

(Yan et al., 2016). 

 

Identified features within point clouds may also be subjected to 

techniques such as the alpha shape method. In a later stage, 

shortest path algorithms can be applied to define object 

trajectories or envelopes, thus enabling subsequent vectorization 

(Prochazka et al., 2018). 

 

Several publications can also be mentioned that deal more 

generally with image processing methods. These methods can be 

universally applied beyond the domain of road infrastructure. 

These include educational materials e.g., (Hájkovský et al., 

2012). Similarly, there are also important algorithms that have 

not yet been mentioned, e.g., (Douglas and Peucker, 1973), 

which focuses on point reduction and curve simplification. 

Finally, bitmap adjustments can also be mentioned (Stanko et al., 

2020; Shen et al., 2021). 

 

Based on the reviewed literature, it was possible to understand 

the principles of various processing techniques and draw 

inspiration from them for the present work. This research differs 

from existing approaches primarily in its direct adaptation to the 

generation of schematic site plans, which are applicable in 

transport practice. Moreover, it is specifically focused on inputs 

derived from orthographic images captured by UASs. 

 

3. Object identification and vectorization method 

The process of vectorizing elements in an image is designed in 

the MATLAB software environment and is divided into several 

modular parts, which are further divided by their own functions. 

It is possible to return to these cycles at any time and repeat the 

given part of the calculation if necessary. In general, the method 

can be summarized in several consecutive steps:  

The first step involves defining the area of interest and 

identifying the relevant colour. Colour is the only visual indicator 

that users can reliably interpret from a standard raster image. 

 

This is followed by steps focused on defining specific colour 

shades, as well as detecting and removing unwanted noise. Noise 

presents a major challenge in the process and tends to increase 

proportionally with broader tolerance ranges for the selected 

colour shades. 

 

Subsequent steps involve refining selected regions of interest by 

clustering and grouping relevant points.  After identifying 

complete objects, it is possible to proceed to the creation of 

envelopes and final vectorization of the image. 

 

As the method is still being optimized to achieve the most 

accurate results for identifying road infrastructure features, minor 

changes to the current procedure may still occur. 

To demonstrate the current functionality of the proposed process, 

horizontal road markings at an intersection will be identified. The 

orthophoto image of the examined location is shown in the 

following Figure 1. The image size is 1321×802 px (1,059,442 

pixels). 

 

 

Figure 1. Orthophoto image of the evaluated site with a polygon 

marking the area of interest. 

 

In the given image, RGB colours are identified. For each colour 

component, an appropriate tolerance range is defined to allow for 

slight variations in hue. Depending on the user’s needs, this 

tolerance is set in such a way that it sufficiently covers the desired 

colour area while minimizing the generation of excessive noise. 

When identifying light colours, a common issue at high RGB 

tolerances is the inclusion of light gray shades, which need to be 

reduced. To enable efficient image processing, the input image is 

converted into a binary mask. Pixels falling within the user-

defined colour range are assigned a value of 1, while the rest of 

the image is represented by 0. This process significantly 

simplifies the analysed image, as the bit depth is reduced from 
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the original 24 bits per pixel (RGB) to just 1 bit per pixel 

(Hájkovský et al., 2012). 

 

Noise elimination can be addressed through several techniques. 

One approach involves the removal of small pixel clusters below 

a defined size threshold (in this specific case, clusters smaller 

than 50 pixels are eliminated). The pixels are removed or 

recalculated from a value of 1 to a value of 0 if the maximum size 

condition is met. At the same time, no connectivity is detected 

along diagonal or vertical axes with other previously identified 

pixels having a value of 1. 

 

An inverse approach can also be used to fill holes in the mask. 

Areas with horizontal road markings often exhibit signs of wear 

due to frequent vehicle traffic or the presence of dirt on the road 

surface. Nevertheless, the underlying light colour, typically 

white, tends to dominate in these regions, and the corresponding 

pixels have mostly already been identified. The filling of 

unidentified areas is once again carried out if two conditions are 

met: the size of the hole is below a defined threshold and there is 

sufficient connectivity to the surrounding mask. 

 

To further reduce noise in the binary mask and achieve more 

accurate object identification, morphological operations such as 

dilation and erosion can be applied (Said et al., 2021; Hájkovský 

et al., 2012). Morphological transformation can be imagined as 

the movement of a structural element (B) across the binary mask 

image (X). The structuring element represents a predefined shape. 

In this case, a circle with a defined radius was selected as the 

most suitable option. Dilation then represents the composition of 

two sets of points using vector addition. After dilation is applied, 

the objects in the image are enlarged by the size of the circle's 

radius. This operation helps fill gaps or smooth irregularities 

along the edges of previously segmented pixel clusters. 

 

The formal definition of dilation can be expressed by the 

following equation (1): 

 

        (1) 

 

where B = structural element (circle) 

 X = binary mask image 

 E2 = Euclidean space 

 

Erosion represents the inverse operation. It is defined as the 

composition of two point sets using vector difference and is 

typically used to simplify the structure of an object. 

The relationship can be defined by the following equation (2): 

 

         (2) 

 

where B = structural element (circle) 

 X = binary mask image 

 E2 = Euclidean space 

 

By combining these two morphological operations, the closing 

operation is achieved (Jähne, 2005). This process makes it 

possible to smooth edges and eliminate small holes within 

individual clusters in the mask. If the size of the structuring 

element is the same, the final mask retains approximately the 

same overall dimensions as before the operations. However, 

irregularities along the edges and small gaps within pixel clusters 

are significantly reduced. The result after applying these 

operations can be seen in Figure 2. 

 

 

Figure 2. Modification of a binary mask using the closure 

method (dilatation and erosion). 

 

It can be seen that most of the noise has been successfully 

reduced. At this stage, objects are still not precisely identified in 

the image. The results are still a representation in the form of a 

binary mask. To transform the mask into individual, editable 

objects, the DBSCAN method was applied (Beer et al., 2023; 

Ester et al., 1996). DBSCAN is a non-parametric density-based 

clustering algorithm. The clustering process is based on the 

identification of core points within clusters (3). Core points are 

defined if there is a defined minimum number of neighbouring 

(non-core) points within a distance of ε around them. Each cluster 

then forms at least one core point.  If non-core points are also 

present, they must be directly accessible from the core. The 

identified clusters can subsequently be optimized to minimize 

their number while still meeting the conditions defined by the 

method. 

 

              (3) 

 

where C = set of clusters 

 ε = threshold distance 

 ddb (p, q) = distance between core and non-core   

                           points 

 

The resulting clustering can be seen in Figure 3. 

 

 

Figure 3. Application of the DBSCAN method to a binary mask 

and identification of objects. 

 

This method now allows individual clusters to be treated as 

separate objects. It is possible to manually remove excess objects 

that were not previously detected as noise. At the same time, 

individual clusters can be merged into a single entity. Due to the 
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absence of machine learning, this semi-automatic mode is 

necessary. Although the algorithm mathematically considers the 

clustered objects to be valid, they may not always make logical 

sense in context. 

As part of the final vectorization of the image, two output options 

are available. If the emphasis is on the overall envelope of 

individual objects, it is possible to detect and smooth the 

boundaries of objects. If the user wants to work only with a 

simplified version, it is possible to skeletonize the image and 

work only with the unit skeleton of the object. 

 

The first option is more suitable for complex use cases, as the 

outputs contain the complete envelope of each cluster. The 

envelope is easily identifiable, as it defines the transition between 

the object and the rest of the binary mask area. The detected edges 

are then smoothed using the Savitzky–Golay filter (Schafer, 

2011). This digital filter is capable of smoothing object 

boundaries with minimal distortion and preserves corner points 

more effectively than, for example, a moving average filter. The 

smoothing process is based on convolution. Successive subsets 

of points along the object boundary are fitted with a low-degree 

polynomial, approximated using the method of linear least 

squares (Kumar, 2017). The definition of the method can be 

described by the following equation (4): 

 

          (4) 

 

where Yj = centre of the convolution window 

 C = convolution coefficient 

 m = window size 

 

The second method for analysing objects is the application of the 

skeletonization process (Abu-Ain et al., 2013). This process 

reduces objects to a width of one pixel. The coordinates of the 

image skeleton are then recalculated into identified clusters. The 

principle of skeletonization is based on erosion followed by 

morphological opening (erosion followed by dilation) (Jähne, 

2005). Its mathematical expression can be described by the 

following equation (5): 

 

               (5) 

 

where S = skeleton 

 X = binary mask image 

 B = structuring element 

 

The skeletonized image can then be approximated using 

geometric primitives. At the current stage, the authors focused 

primarily on fitting line segments and arcs using the least squares 

approximation method (Kumar, 2017). This is based on the 

polynomial function defined in equation (6): 

 

            (6) 

 

A first-degree polynomial is used for line detection (7): 

 

              (7) 

 

If the distribution of points within a skeletonized cluster suggests 

the presence of an arc, the approximation is performed using the 

equation of a circle (8). A segment of the arc is then extracted, 

defined by the endpoints of the given cluster. 

 

                (8) 

 

In the final stage, individual objects are vectorized and exported 

to the .dxf graphic format. During export, they are automatically 

divided into individual layers. Both the boundaries of individual 

clusters and the skeleton itself are exported. An example can be 

seen in Figure 4. The smoothed envelopes of individual objects 

are shown in white, and the unit skeleton is shown in red. 

 

 

Figure 4. Image vectorization. 

 

4. Comparison of automated methods with manual image 

processing 

A comparison of the automated process and manual vectorization 

was performed on a total of 10 samples listed in Table 1. The test 

images varied in both size and level of detail. Additionally, the 

number of individual objects present differed across the images. 

The aim of this evaluation was to compare the time efficiency of 

manual and automated segmentation processes. 

 

Both approaches were tested by all authors of this paper (number 

of tests performed – 4 x 2 x 10). The authors have experience in 

design, so it can be said that the efficiency of manual processing 

was performed at a high level. Predefined templates with 

individual horizontal road marking lines and directional arrow 

templates were also used in the manual work. It can therefore be 

said that the time required for manual vectorization sufficiently 

corresponds to the user's real-life practice.  

 

Table 1 lists the overall average time spent by all authors on a 

specific image and type of processing. 

 

 

Image 

No. Image size 
No. of 

objects 

Processing 

method 

 [px] [-] 
Manual 

[s] 

Auto 

[s] 

 

1 193 x 276 1 225 13 

 

2 514 x 446 2 223 47 

 
3 

1809 x 

753 
3 38 31 
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4 
1813 x 

1375 
8 214 41 

 
5 

2561 x 

1493 
20 596 90 

 
6 

2813 x 

1605 
14 398 43 

 
7 

4381 x 

2625 
19 187 94 

 
8 

4445 x 

3069 
37 1078 204 

 
9 

12121 x 

6737 
62 1475 728 

 
10 

17700 x 

10350 
86 1900 1649 

Table 1. Comparison of automated and manual object 

vectorization processes. 

 

The number of objects is always defined by a specific shape or 

line type. For example, if only the road line is analysed, three 

objects are defined in the form of left, right, and centre 

continuous lines.   

 

The individual measured values are presented in Figures 5 and 6 

below. 

 

 

Figure 5. Dependency of automatic and manual processing on 

time and the number of objects in individual images. 

 

 

Figure 6. Dependency of image size and object count across the 

evaluated dataset. 

Even though the table shows a clear difference between 

automated and manual processing, a more detailed statistical 

analysis was performed. his analysis will also be useful in the 

further development and testing of the algorithm. 

 

The measured values were evaluated using the statistical method 

of the paired t-test (Shier, 2004). It was assessed whether the 

average difference between these two methods of evaluation was 

statistically significant or whether it was a coincidence. 

 

Two hypotheses were defined. The null hypothesis (H0) states 

that there is no statistically significant difference between 

automated and manual image processing. The alternative 

hypothesis (H1), on the other hand, states that manual processing 

is slower than automatic processing.  

 

Mathematically, a one-sided paired t-test can be expressed as 

follows: 

 

Two sets of data (X1, X2) are obtained from n samples. 

Subsequently, the difference between the measured values zi (9) 

is defined, as well as the mean z̅ (10) and standard deviation sz 

(11). 

 

                      (9) 

 

                    (10) 

 

                  (11) 

 

The test criterion then corresponds to relation (12): 

 

                  (12) 

 

The definition of the critical region for the one-sided paired      t-

test is as follows (13): 

 

                  (13) 

                
   

where  α = 0,05   

 n = count of images 

  

For the given results, it is also possible to determine the p-value 

(14): 

      (14) 

 

The resulting p-value is 0,0022. 

 

These calculations confirmed the hypothesis that manual 

processing is slower than automatic processing. Another way to 

interpret the result is that the time required for processing using 

the automatic method is significantly faster than objects 

identified and vectorized manually. 

In order to determine how many times faster automated 

processing is, it is possible to calculate the ratio (17) of their 

average times (15, 16). 

 

                     (15) 

                    (16) 
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                   (17) 

 

The results for these specific cases indicate that automated 

processing and vectorization of selected road infrastructure 

objects is (in its current implementation) on average 2.15 times 

faster. It is evident that this value is influenced primarily by large 

images (e.g., Image no. 10) or images with simple shapes (e.g., 

straight lines in Image 3). 

 

In realistic scenarios, analysis would more likely be conducted 

on images such as 5, 8, and 9, as their areas correspond more 

closely to the spatial extent of an intersection. These images 

clearly show the entire intersection area, including its arms. If the 

efficiency calculation is performed on these three images, the 

difference in speed between the automated process and the 

manual process is on average 3.1 times faster. 

 

5. Conclusion 

Based on the presented analysis, it can be concluded that the 

developed method clearly leads to a higher degree of efficiency 

related to image processing. Automated vectorization of selected 

road features can save the user 2 to 3 times more time compared 

to manual processing.  

 

However, the current procedure needs to be further modified and 

optimized. One of the key areas for future development is more 

accurate identification of object boundaries. A future objective is 

the implementation of predefined envelopes (e.g., rectangles), 

which could be automatically fitted to features known to 

represent lines. This would help smooth the representation of 

linear elements and reduce the number of interest points. 

 

Simplification will also be applied to curves that cannot be 

directly described using basic geometric shapes. In such cases, 

the use of methods like the Douglas–Peucker algorithm (Douglas 

and Peucker, 1973) is being considered. If this method is already 

applied to modified objects, it will be possible to simplify their 

envelope point by point without compromising accuracy. 

Another essential criterion for improving the precision of object 

definition is the development of a method robust against shadows 

or curve discontinuities caused by factors such as vegetation 

above the roadway. The current design allows two or more 

objects to be merged into one, but this merger is not linked in a 

binary mask. Only groups are merged, not points recalculated or 

continuous lines created between these objects. However, the 

skeletonization method makes it possible to find a vector along 

which points can be added until the shapes connect with each 

other. 

Lastly, the authors plan to evaluate the proposed method in 

comparison with more modern approaches such as machine 

learning or artificial intelligence. Testing will be conducted to 

assess the effectiveness of both approaches, with the potential for 

their integration in future developments. 
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