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Abstract

Orthophoto imaging of the Earth's surface using unmanned aerial systems have in recent years become a common and efficient method
for acquiring highly detailed orthophoto maps. These are widely used in transportation and civil engineering fields. In the context of
traffic accidents and technical documentation, such imagery can be applied for accurate reconstruction of the scene. However, this
process often requires manual vectorization of selected road infrastructure features. This task is time-consuming and demanding,
especially in more complex scenarios. The presented paper introduces a newly proposed method for semi-automatic vectorization of
road infrastructure features from raster imagery. The method was implemented in MATLAB and consists of several sequential steps.
These include selection of the area of interest, colour identification, noise reduction, clustering, and generation of vector contours. The
entire process emphasizes simplicity, computational efficiency, and ease of use without the need for machine learning or extensive
training data. Statistical evaluation using a paired t-test (p = 0.0022) confirmed that the automated approach is significantly faster than
manual processing. On average, the proposed semi-automatic vectorization process was 2.15 times faster. In realistic scenarios, such
as entire intersection areas, a speed increase of up to 3.1 times was achieved. These results confirm the practical benefit of the proposed

method for efficient and rapid processing of traffic infrastructure image documentation.

1. Introduction

Imaging of the Earth's surface represents one of the fundamental
methods for collecting geospatial data. Obtaining these image
data is not only dependent on satellite images or aerial
photography, but increasingly also on unmanned aerial vehicles
(Svaty et al., 2023). Low-altitude image capture enables the
acquisition of very high-resolution surface information
(McGlone et al., 2004). Another undeniable advantage of UASs
is the speed of data collection and the timeliness of the results.
Using image correlation techniques, orthographic images can be
generated (Knyaz et al., 2016) and subsequently used for further
analysis.

Orthophotos are commonly applied in transportation engineering
and construction-related disciplines. For example, sections of
road networks can be mapped to provide up-to-date visual
overviews of specific locations (Pinto et al., 2020). Aerial image
documentation can also be captured during traffic accident
investigations. These image materials can then serve as a base for
situational plans in design studies or as a mapping background
for graphical reconstruction of accident events.

Reconstruction of such sites is typically carried out by manually
redrawing selected road infrastructure objects into vector form,
while the raster image continues to serve only as a background
layer. These objects usually include road markings, road edges,
and, in some cases, roadside barriers. Manual vectorization can
become increasingly time-consuming with the growing
complexity or size of the site, requiring users to spend
considerable time redrawing existing features that add little value
to the analytical phase of the work. However, this step is essential
for most subsequent processes.

The aim of this paper is to present the individual steps of a newly
proposed method for identifying and vectorizing selected
elements of road infrastructure with minimal user input.
Emphasis is placed on process automation, user-friendly control,
and computational speed. By simplifying the user’s workload,
more time can be devoted to the actual problem analysis of the
given site. Additionally, the method allows for the generation of
quick image-processing outputs even by users with limited
technical skills, such as police officers preparing investigation
report of a traffic accident.

The proposed method does not rely on machine learning
techniques and thus does not require large volumes of training or
testing data. The outcomes of the method will be demonstrated
through sample use cases and compared with traditional
approaches based on manual vectorization of selected road
infrastructure features. This comparison aims to determine
whether the use of automated processes provides a more efficient
approach to processing image-based documentation.

2. Related work

The review section is primarily focused on methods currently
used for image processing, as this aspect is fundamental to the
present work.

The initial detection of information from images began in the
1980s (Zhang and Suen, 1984). At that stage, the process could
not yet be described as vectorization of raster images. However,
methods were introduced for identifying the skeletal structure of
a graphical representation, i.e., image skeletonization. The
principle of the method was based on iterative cycles in which
unnecessary points were eliminated in each iteration.
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These methods were gradually improved, and by the 1990s,
actual image vectorization could be observed in the processing of
cadastral map documentation (Janssen and Vossepoel, 1997).
This involved progressive line smoothing and guiding curves
through areas with dark pixels. A binary mask was applied, which
could be efficiently handled computationally and
programmatically, as working with matrices reduced
computational demands. In this way, it was possible to generate
an editable image.

Over the years, a large number of publications have focused
primarily on sketch analysis and the vectorization of hand-drawn
illustrations. For example, methods have been proposed for raster
image vectorization based on simple lines and the detection of
node points (Guo et al., 2019), as well as techniques for
evaluating the quality of extracted paths within an image (Yan et
al., 2020).

In the context of road analysis, it is then possible to present, for
example (Chaudhuri et al., 2012). In this study, the authors
focused on the extraction of roads, rivers, and buildings from
satellite imagery using semi-automatic methods. Noise is
reduced, followed by the extraction of the image skeleton.
Similarly, (Wang et al., 2025) presented a method aimed at
improving the quality of road segmentation from satellite images.

Satellite imagery is also used by (Dey and Aithal, 2024), who
introduced more advanced methods employing machine learning
and deep learning. The development of urban databases was
supported, and contributions were made to sustainable
transportation planning.

Vectorization of road markings was addressed by (Xia et al.,
2024), who introduced a sophisticated machine learning
approach for generating standardized vector map features,
particularly for lane prediction. Similarly, advanced techniques
were also presented by (Chen et al., 2024).

Feature identification and vectorization are also performed on
point clouds, which, although inherently different from raster
imagery, can serve as a valuable source of methodological
inspiration. One such approach involves the analysis of RGB
colour intensity (Gao et al., 2017). In the case of point clouds,
feature identification can be further refined using laser return
intensity or point density (Rastiveis et al., 2020). Additional
methods for assessing point clouds include height-based analysis
(Puetal., 2011) or feature extraction within cross-sectional slices
(Yan et al., 2016).

Identified features within point clouds may also be subjected to
techniques such as the alpha shape method. In a later stage,
shortest path algorithms can be applied to define object
trajectories or envelopes, thus enabling subsequent vectorization
(Prochazka et al., 2018).

Several publications can also be mentioned that deal more
generally with image processing methods. These methods can be
universally applied beyond the domain of road infrastructure.
These include educational materials e.g., (H4jkovsky et al.,
2012). Similarly, there are also important algorithms that have
not yet been mentioned, e.g., (Douglas and Peucker, 1973),
which focuses on point reduction and curve simplification.
Finally, bitmap adjustments can also be mentioned (Stanko et al.,
2020; Shen et al., 2021).

Based on the reviewed literature, it was possible to understand
the principles of various processing techniques and draw
inspiration from them for the present work. This research differs

from existing approaches primarily in its direct adaptation to the
generation of schematic site plans, which are applicable in
transport practice. Moreover, it is specifically focused on inputs
derived from orthographic images captured by UASs.

3. Object identification and vectorization method

The process of vectorizing elements in an image is designed in
the MATLAB software environment and is divided into several
modular parts, which are further divided by their own functions.
It is possible to return to these cycles at any time and repeat the
given part of the calculation if necessary. In general, the method
can be summarized in several consecutive steps:

The first step involves defining the area of interest and
identifying the relevant colour. Colour is the only visual indicator
that users can reliably interpret from a standard raster image.

This is followed by steps focused on defining specific colour
shades, as well as detecting and removing unwanted noise. Noise
presents a major challenge in the process and tends to increase
proportionally with broader tolerance ranges for the selected
colour shades.

Subsequent steps involve refining selected regions of interest by
clustering and grouping relevant points. After identifying
complete objects, it is possible to proceed to the creation of
envelopes and final vectorization of the image.

As the method is still being optimized to achieve the most
accurate results for identifying road infrastructure features, minor
changes to the current procedure may still occur.

To demonstrate the current functionality of the proposed process,
horizontal road markings at an intersection will be identified. The
orthophoto image of the examined location is shown in the
following Figure 1. The image size is 1321x802 px (1,059,442
pixels).

Figure 1. Orthophoto image of the evaluated site with a polygon
marking the area of interest.

In the given image, RGB colours are identified. For each colour
component, an appropriate tolerance range is defined to allow for
slight variations in hue. Depending on the user’s needs, this
tolerance is set in such a way that it sufficiently covers the desired
colour area while minimizing the generation of excessive noise.
When identifying light colours, a common issue at high RGB
tolerances is the inclusion of light gray shades, which need to be
reduced. To enable efficient image processing, the input image is
converted into a binary mask. Pixels falling within the user-
defined colour range are assigned a value of 1, while the rest of
the image is represented by 0. This process significantly
simplifies the analysed image, as the bit depth is reduced from
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the original 24 bits per pixel (RGB) to just 1 bit per pixel
(Hajkovsky et al., 2012).

Noise elimination can be addressed through several techniques.
One approach involves the removal of small pixel clusters below
a defined size threshold (in this specific case, clusters smaller
than 50 pixels are eliminated). The pixels are removed or
recalculated from a value of 1 to a value of 0 if the maximum size
condition is met. At the same time, no connectivity is detected
along diagonal or vertical axes with other previously identified
pixels having a value of 1.

An inverse approach can also be used to fill holes in the mask.
Areas with horizontal road markings often exhibit signs of wear
due to frequent vehicle traffic or the presence of dirt on the road
surface. Nevertheless, the underlying light colour, typically
white, tends to dominate in these regions, and the corresponding
pixels have mostly already been identified. The filling of
unidentified areas is once again carried out if two conditions are
met: the size of the hole is below a defined threshold and there is
sufficient connectivity to the surrounding mask.

To further reduce noise in the binary mask and achieve more
accurate object identification, morphological operations such as
dilation and erosion can be applied (Said et al., 2021; Hajkovsky
et al., 2012). Morphological transformation can be imagined as
the movement of a structural element (B) across the binary mask
image (X). The structuring element represents a predefined shape.
In this case, a circle with a defined radius was selected as the
most suitable option. Dilation then represents the composition of
two sets of points using vector addition. After dilation is applied,
the objects in the image are enlarged by the size of the circle's
radius. This operation helps fill gaps or smooth irregularities
along the edges of previously segmented pixel clusters.

The formal definition of dilation can be expressed by the
following equation (1):

X@PB={d€E*d=x+hx€X,bEB}] X@EB= UX”

bER (1)

where B = structural element (circle)
X = binary mask image

E?= Euclidean space

Erosion represents the inverse operation. It is defined as the
composition of two point sets using vector difference and is
typically used to simplify the structure of an object.
The relationship can be defined by the following equation (2):

X@B={d€E*d+b €X,vbh€B} X@B:ﬂX,D
bER (2)

B = structural element (circle)
X = binary mask image
E?= Euclidean space

where

By combining these two morphological operations, the closing
operation is achieved (Jdhne, 2005). This process makes it
possible to smooth edges and eliminate small holes within
individual clusters in the mask. If the size of the structuring
element is the same, the final mask retains approximately the
same overall dimensions as before the operations. However,
irregularities along the edges and small gaps within pixel clusters
are significantly reduced. The result after applying these
operations can be seen in Figure 2.

Figure 2. Modification of a binary mask using the closure
method (dilatation and erosion).

It can be seen that most of the noise has been successfully
reduced. At this stage, objects are still not precisely identified in
the image. The results are still a representation in the form of a
binary mask. To transform the mask into individual, editable
objects, the DBSCAN method was applied (Beer et al., 2023;
Ester et al., 1996). DBSCAN is a non-parametric density-based
clustering algorithm. The clustering process is based on the
identification of core points within clusters (3). Core points are
defined if there is a defined minimum number of neighbouring
(non-core) points within a distance of € around them. Each cluster
then forms at least one core point. If non-core points are also
present, they must be directly accessible from the core. The
identified clusters can subsequently be optimized to minimize
their number while still meeting the conditions defined by the
method.

min €]
CcCdylpq)<eVpqe( Vi el

3)

C = set of clusters

¢ = threshold distance

dav (p, q) = distance between core and non-core
points

where

The resulting clustering can be seen in Figure 3.

Figure 3. Application of the DBSCAN method to a binary mask
and identification of objects.

This method now allows individual clusters to be treated as
separate objects. It is possible to manually remove excess objects
that were not previously detected as noise. At the same time,
individual clusters can be merged into a single entity. Due to the
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absence of machine learning, this semi-automatic mode is
necessary. Although the algorithm mathematically considers the
clustered objects to be valid, they may not always make logical
sense in context.

As part of the final vectorization of the image, two output options
are available. If the emphasis is on the overall envelope of
individual objects, it is possible to detect and smooth the
boundaries of objects. If the user wants to work only with a
simplified version, it is possible to skeletonize the image and
work only with the unit skeleton of the object.

The first option is more suitable for complex use cases, as the
outputs contain the complete envelope of each cluster. The
envelope is easily identifiable, as it defines the transition between
the object and the rest of the binary mask area. The detected edges
are then smoothed using the Savitzky—Golay filter (Schafer,
2011). This digital filter is capable of smoothing object
boundaries with minimal distortion and preserves corner points
more effectively than, for example, a moving average filter. The
smoothing process is based on convolution. Successive subsets
of points along the object boundary are fitted with a low-degree
polynomial, approximated using the method of linear least
squares (Kumar, 2017). The definition of the method can be
described by the following equation (4):
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-

where Yj = centre of the convolution window
C = convolution coefficient

m = window size

The second method for analysing objects is the application of the
skeletonization process (Abu-Ain et al., 2013). This process
reduces objects to a width of one pixel. The coordinates of the
image skeleton are then recalculated into identified clusters. The
principle of skeletonization is based on erosion followed by
morphological opening (erosion followed by dilation) (Jahne,
2005). Its mathematical expression can be described by the
following equation (5):

S(x) = U ﬂl(Xe pB) — (X © pB) o uB|
p=0 p>0 (5)

S = skeleton
X = binary mask image
B = structuring element

where

The skeletonized image can then be approximated using
geometric primitives. At the current stage, the authors focused
primarily on fitting line segments and arcs using the least squares
approximation method (Kumar, 2017). This is based on the
polynomial function defined in equation (6):

P(x)=ax"+a,_x" '+ +ax +aq

(6)
A first-degree polynomial is used for line detection (7):

Pi(x) =ax+a, %)

If the distribution of points within a skeletonized cluster suggests
the presence of an arc, the approximation is performed using the
equation of a circle (8). A segment of the arc is then extracted,
defined by the endpoints of the given cluster.

(x—m)?+ (x—n)2 =12 (8)

In the final stage, individual objects are vectorized and exported
to the .dxf graphic format. During export, they are automatically
divided into individual layers. Both the boundaries of individual
clusters and the skeleton itself are exported. An example can be
seen in Figure 4. The smoothed envelopes of individual objects
are shown in white, and the unit skeleton is shown in red.

Figure 4. Image vectorization.

4. Comparison of automated methods with manual image
processing

A comparison of the automated process and manual vectorization
was performed on a total of 10 samples listed in Table 1. The test
images varied in both size and level of detail. Additionally, the
number of individual objects present differed across the images.
The aim of this evaluation was to compare the time efficiency of
manual and automated segmentation processes.

Both approaches were tested by all authors of this paper (number
of tests performed — 4 x 2 x 10). The authors have experience in
design, so it can be said that the efficiency of manual processing
was performed at a high level. Predefined templates with
individual horizontal road marking lines and directional arrow
templates were also used in the manual work. It can therefore be
said that the time required for manual vectorization sufficiently
corresponds to the user's real-life practice.

Table 1 lists the overall average time spent by all authors on a
specific image and type of processing.

No. | Image size No. of Processing
Image . s objects method
: [px] [_] Manual Auto

[s] [s]

e .]:  ] 1 | 193x276 1 225 13
}"’ﬁ’ 2 | 514x446 | 2 223 47

1809 x
3 753 3 38 31
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4 1531735" 8 214 41
5 2152913" 20 596 90
6 256135" 14 398 43
7 455215" 19 187 94
8 4;‘3659" 37 1078 | 204
9 126172317" 62 1475 | 728
10 1175320" 86 1900 | 1649

Table 1. Comparison of automated and manual object
vectorization processes.

The number of objects is always defined by a specific shape or
line type. For example, if only the road line is analysed, three
objects are defined in the form of left, right, and centre
continuous lines.

The individual measured values are presented in Figures 5 and 6
below.

2000 ||=-Manual
|=-Automatic

1600 -

Number of Objects

Image Number

Figure 5. Dependency of automatic and manual processing on
time and the number of objects in individual images.
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Figure 6. Dependency of image size and object count across the
evaluated dataset.

Even though the table shows a clear difference between
automated and manual processing, a more detailed statistical

analysis was performed. his analysis will also be useful in the
further development and testing of the algorithm.

The measured values were evaluated using the statistical method
of the paired t-test (Shier, 2004). It was assessed whether the
average difference between these two methods of evaluation was
statistically significant or whether it was a coincidence.

Two hypotheses were defined. The null hypothesis (Ho) states
that there is no statistically significant difference between
automated and manual image processing. The alternative
hypothesis (H1), on the other hand, states that manual processing
is slower than automatic processing.

Mathematically, a one-sided paired t-test can be expressed as
follows:

Two sets of data (Xi, X2) are obtained from n samples.
Subsequently, the difference between the measured values zi (9)
is defined, as well as the mean Z (10) and standard deviation s

(11).

Zp = Xq,0 — Xg

©

~ _1lewn
Z —;21:121'

(10)

Sz =\Jﬁz?=1(zi_zjz (11)

The test criterion then corresponds to relation (12):

z
t=—+/n=-3,7696
SZ

(12)

The definition of the critical region for the one-sided paired  t-
test is as follows (13):

K = {C < Cu.n—l)} (13)
tooso ~ —1,8331

where o=0,05

n = count of images

For the given results, it is also possible to determine the p-value

(14):
p=PT <t) T~t(n-1) (14)

The resulting p-value is 0,0022.

These calculations confirmed the hypothesis that manual
processing is slower than automatic processing. Another way to
interpret the result is that the time required for processing using
the automatic method is significantly faster than objects
identified and vectorized manually.

In order to determine how many times faster automated
processing is, it is possible to calculate the ratio (17) of their
average times (15, 16).

n

= 1
X == E ;= 294
1=7 X1, s

i=1 (15)
n
%, = %Z ;= 6334 s
i=1 (16)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-5-W3-2025-41-2025 | © Author(s) 2025. CC BY 4.0 License. 45



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-5/W3-2025
International Conference Applied Photogrammetry and Remote Sensing for Environmental and Industry
JAPRSEI — PHEDCS 2025, Tashkent®, 23-25 September 2025, Tashkent, Uzbekistan

R= i _ 6334 _ 215

& 204 (17)
The results for these specific cases indicate that automated
processing and vectorization of selected road infrastructure
objects is (in its current implementation) on average 2.15 times
faster. It is evident that this value is influenced primarily by large
images (e.g., Image no. 10) or images with simple shapes (e.g.,
straight lines in Image 3).

In realistic scenarios, analysis would more likely be conducted
on images such as 5, 8, and 9, as their areas correspond more
closely to the spatial extent of an intersection. These images
clearly show the entire intersection area, including its arms. If the
efficiency calculation is performed on these three images, the
difference in speed between the automated process and the
manual process is on average 3.1 times faster.

5. Conclusion

Based on the presented analysis, it can be concluded that the
developed method clearly leads to a higher degree of efficiency
related to image processing. Automated vectorization of selected
road features can save the user 2 to 3 times more time compared
to manual processing.

However, the current procedure needs to be further modified and
optimized. One of the key areas for future development is more
accurate identification of object boundaries. A future objective is
the implementation of predefined envelopes (e.g., rectangles),
which could be automatically fitted to features known to
represent lines. This would help smooth the representation of
linear elements and reduce the number of interest points.

Simplification will also be applied to curves that cannot be
directly described using basic geometric shapes. In such cases,
the use of methods like the Douglas—Peucker algorithm (Douglas
and Peucker, 1973) is being considered. If this method is already
applied to modified objects, it will be possible to simplify their
envelope point by point without compromising accuracy.
Another essential criterion for improving the precision of object
definition is the development of a method robust against shadows
or curve discontinuities caused by factors such as vegetation
above the roadway. The current design allows two or more
objects to be merged into one, but this merger is not linked in a
binary mask. Only groups are merged, not points recalculated or
continuous lines created between these objects. However, the
skeletonization method makes it possible to find a vector along
which points can be added until the shapes connect with each
other.

Lastly, the authors plan to evaluate the proposed method in
comparison with more modern approaches such as machine
learning or artificial intelligence. Testing will be conducted to
assess the effectiveness of both approaches, with the potential for
their integration in future developments.
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