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Abstract

This study investigates long-term trends and future projections of key climate variables, evapotranspiration, land surface temperature
(LST), normalized difference vegetation index (NDVI), soil moisture and precipitation, across Uzbekistan using multi-source satellite
and reanalysis datasets within the Google Earth Engine (GEE) platform. Spanning the period from 1995 to 2024, the analysis applied
the Mann-Kendall test to assess the statistical significance of observed trends, revealing significant increases in LST, NDVI and
evapotranspiration, while trends in soil moisture and precipitation were statistically insignificant. To forecast future trajectories (2025-
2050), the autoregressive integrated moving average (ARIMA) model was employed, indicating continued warming, vegetation growth
and rising evapotranspiration, with marginal changes in precipitation and a possible decline in soil moisture. Model performance was
evaluated through a 70/30 training-test split, where NDVI achieved the highest R? (0.64), followed by precipitation, LST,
evapotranspiration and soil moisture. These results suggest ARIMA can capture temporal patterns to a degree, but more extensive
datasets and integrated models may be necessary for higher accuracy. To sum up, findings point to a warming and drying climate
scenario, underscoring the urgency of proactive land and water management strategies to ensure ecological and agricultural

sustainability in Uzbekistan under evolving climatic conditions.

1. Introduction

In the context of accelerating climate change and increasing
environmental variability, the continuous monitoring of key
climate parameters has become essential for understanding
ecosystem dynamics and supporting sustainable resource
management. Remote sensing technologies offer a powerful
means of capturing large-scale environmental data with high
spatial and temporal resolution, overcoming the limitations of
traditional in-situ measurements. Parameters such as vegetation
condition (e.g., normalized difference vegetation ratio - NDVI)
(Fayech and Tarhouni, 2021), land surface temperature (LST)
(Ozelkan et al., 2014), evapotranspiration (Vinukollu et al., 2011)
and precipitation (Levizzani and Cattani, 2019) can be effectively
monitored using satellite-based observations, enabling
comprehensive assessments of climatic and ecological trends
over extended time periods. The capacity of remote sensing to
provide consistent, repeatable and objective measurements
across diverse geographic regions makes it an indispensable tool
in climate analysis, hydrological modelling, drought and flood
risk assessment and agricultural and water resource planning. As
such, remote sensing has emerged as a cornerstone of modern
environmental monitoring systems (Ahmadi et al., 2023;
Odongo, 2023), contributing significantly to both scientific
research and evidence-based policy-making.

A wide variety of satellite-based remote sensing datasets have
become indispensable for monitoring terrestrial and atmospheric
components of the climate system. Among the most extensively
utilized platforms, the Landsat mission series, jointly operated by
National Aeronautics and Space Administration (NASA) and the
United States Geological Survey (USGS), has provided
continuous medium-to-low-resolution imagery since the 1970s,
enabling the analysis of LST (Berroir et al., 1998), vegetation
indices (Running and Nemani, 1988) and land cover change
(Reid et al., 2000). Complementing Landsat, the Sentinel
missions under the Copernicus Programme of the European
Space Agency (ESA) offer higher temporal resolution and
multispectral capabilities, particularly Sentinel-2 for vegetation
monitoring (Addabbo et al., 2016) and Sentinel-1 for soil

moisture estimation through synthetic aperture radar (SAR) data
(Chatterjee et al., 2020). MODIS (Moderate Resolution Imaging
Spectroradiometer) on board the Terra and Aqua satellites
remains a key source for daily estimates of evapotranspiration
(Mu et al., 2013), vegetation dynamics (Beck et al., 2006) and
surface temperature (Phan and Kappas, 2018) at global scale. For
precipitation, products like CHIRPS (Climate Hazards Group
InfraRed Precipitation with Station data) integrate satellite
observations with meteorological station data to produce
spatially detailed precipitation estimates (Funk et al., 2015;
Paredes-Trejo et al., 2017), particularly valuable in data-scarce
regions. Soil moisture and land surface fluxes are often derived
from reanalysis datasets such as ERA5-Land, developed by the
European Centre for Medium-Range Weather Forecasts
(ECMWF), which assimilates both remote sensing and ground-
based measurements into physically consistent, gridded outputs.
These diverse remote sensing platforms collectively provide a
comprehensive toolkit for evaluating the spatial and temporal
dynamics of key environmental variables, supporting robust time
series analyses and climate forecasting efforts worldwide.

In recent years, the advent of cloud-based geospatial processing
platforms such as Google Earth Engine (GEE) has significantly
transformed the way large-scale environmental data analyses are
conducted. GEE provides researchers with direct access to a vast
catalogue of pre-processed satellite imagery and climate datasets,
such as MODIS, Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), Landsat, Sentinel, CHIRPS
and ERAS, eliminating the need for local data storage and
extensive pre-processing workflows. Its powerful parallel
computing infrastructure enables rapid processing of petabyte-
scale datasets, which is particularly advantageous for long-term
time series analyses across large geographic regions.
Furthermore, GEE’s JavaScript- and Python-based APIs
facilitate flexible and reproducible workflows, allowing users to
apply complex spatial and temporal operations, visualize results
in real time and share code openly for collaborative research.
These capabilities make GEE an especially valuable tool for
climate and environmental studies, where multi-source data
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integration, high temporal granularity and large spatial coverage
are essential for deriving meaningful insights and forecasts.

Its capabilities have made GEE an indispensable platform for
environmental and climate research in recent years, and many
studies have leveraged its computational efficiency and extensive
data catalogue to conduct large-scale spatiotemporal analyses.
Ravanelli et al., (2018) demonstrated the potential of GEE and
the Climate Engine tool to process extensive Landsat archives for
long-term monitoring of surface urban heat island (SUHI)
dynamics and their link to land cover change, highlighting
consistent SUHI intensification across six U.S. metropolitan
areas from 1992 to 2011. Hao et al., (2019) employed multi-
source remote sensing data within GEE to assess land use/cover
change and climate variability in the Three Gorges Reservoir
Catchment (China) from 2000 to 2015, revealing that land
transformation, particularly urban expansion and reforestation,
influenced regional vegetation dynamics and surface temperature
patterns. Using 570 Landsat images and meteorological data
from 1984 to 2019 via GEE, Abujayyab et al., (2021) revealed a
significant shrinkage of Burdur Lake (Tiirkiye)’s surface area,
linked to seasonal variations in temperature, precipitation,
radiation and evapotranspiration, with implications for
sustainable water management in Tiirkiye. Utilizing GEE and 40
years of Palmer drought severity index (PDSI) data, Venkatappa
et al., (2021) quantified the spatial and temporal impacts of
droughts and floods on cropland and crop production in
Southeast Asia, revealing severe damage to rainfed agriculture
and identifying regional vulnerabilities requiring targeted policy
interventions. Rahaman and Shermin (2022) used GEE to analyse
six years of Sentinel-1 and Landsat-8 data in northeast
Bangladesh, revealing a consistent negative correlation between
flood extent and vegetation health, alongside increasing LST in
flood-affected areas. Moazzam et al., (2022) used Landsat and
climate datasets on GEE and revealed a surprising increase in
snow cover area in the Astore and Shigar basins of the Upper
Indus Basin from 1991 to 2021, likely driven by rising
precipitation and localized cooling trends at higher elevations.
Using GEE and multi-source satellite data, Shetty et al., (2022)
revealed that rapid urbanization in Dakshina Kannada district
between 2001 and 2019 significantly altered land cover,
increased surface temperatures and reduced evapotranspiration,
particularly in forest and built-up areas, highlighting the climatic
consequences of LULC change. Using MODIS data and GEE, de
Almeida et al., (2023) assessed temperature trends in Montesinho
Natural Park (Portugal) from 2003 to 2021, revealing stable
summer temperatures but rising winter night-time LST, with
strong correlations between vegetation indices and diurnal
temperature patterns. Gadekar et al., (2023) used GEE, remote
sensing data and machine learning to analyse LST, NDVI and
normalized difference built-up index (NDBI) in Nashik,
revealing intensified UHI effects and strong LST correlations
with vegetation loss and urban expansion between 2015 and
2019. Sanchez et al., (2023) presented a GEE-based framework
utilizing open data to assess environmental vulnerabilities in
Kosovo, emphasizing the critical role of data accessibility and
institutional capacity in addressing climate change and
sustainability challenges in developing nations. By integrating
JRC Global Surface Water layers with MODIS-based climatic
variables on GEE, Kazemi Garajeh et al., (2024) used JRC
surface water datasets and MODIS-derived climatic indicators
within GEE to reveal that rising air temperature and
evapotranspiration are key drivers of surface water loss in the
Lake Urmia Basin between 2000 and 2021, with minimal
influence from precipitation. Erdogan and Yilmaz (2024)
demonstrated clear evidence of climate-driven shifts in Tiirkiye's
environmental parameters, with evapotranspiration and

vegetation indices showing strong interdependence and
pronounced spatial variability in response to changing
precipitation and temperature patterns. GEE-based analysis of
LULC, LST and normalized difference water index (NDWI)
from 2000-2023 showed that Lake Victoria’s surface area
gradually expanded, urban and cropland areas increased, and
LST remained relatively stable, though extreme water level rise
displaced over 29,000 people in 2020 (Ali et al., 2024). Using
multi-sensor satellite data processed through GEE, Halder and
Pereira (2024) quantified mangrove degradation and cyclone
impacts in the Sundarbans Biosphere Reserve between 2017 and
2022, highlighting the role of remote sensing in assessing coastal
vulnerability to sea-level rise and extreme weather events.
Radwan et al., (2025) used GEE and 20 years of CHIRPS and
MODIS data; and found declining rainfall-vegetation correlation,
rising land surface temperatures and increasing climatic
variability in southern India, highlighting growing vulnerability
to droughts, floods and agricultural stress. Using time-series
remote sensing data from 1995-2023, Serifoglu Yilmaz (2025)
analysed the climatic impacts of five dam reservoirs in Artvin,
Tiirkiye, revealing post-construction increases in temperature,
evapotranspiration, and heat index, alongside vegetation growth,
but no significant change in precipitation.

The motivation behind this study stems from the growing need to
better understand the long-term spatiotemporal dynamics of key
hydro-climatic variables in the context of climate variability and
water resource challenges in Central Asia. Uzbekistan,
characterized by its arid to semi-arid climate and high
dependence on transboundary water resources, faces increasing
pressure from rising temperatures, shifting precipitation patterns,
and land degradation. These environmental stressors have
profound implications for agriculture, ecosystem stability, and
sustainable development in the region. Despite the critical
importance of monitoring indicators such as evapotranspiration,
land surface temperature, vegetation health, soil moisture and
precipitation, comprehensive and integrated assessments based
on long-term remote sensing data remain limited. This study aims
to address this gap by utilizing multi-source satellite and
reanalysis datasets to evaluate historical trends and forecast
future trajectories of these variables through time series
modelling. By doing so, the research seeks to contribute valuable
insights for climate impact assessment, water resource planning,
and regional adaptation strategies.

Section 2 will outline the geographic context of Uzbekistan and
describe the remote sensing datasets employed in the analysis,
along with a detailed explanation of the forecasting methodology
applied to the climate variables and some details for the Mann-
Kendall test used to assess the significance of the trends. Section
3 is dedicated to presenting and interpreting the results of the
forecasts. Finally, Section 4 will present a summary of the
concluding remarks.

2. Material and Methods
2.1 Study Area

Uzbekistan is a double landlocked country located in Central
Asia, situated between the Amu Darya and Syr Darya rivers. The
country shares borders with Kazakhstan to the north,
Turkmenistan to the west, Kyrgyzstan and Tajikistan to the east
and southeast and Afghanistan to the south. With a population of
approximately 37 million, Uzbekistan covers a total area of
447,400 km?, of which about 43,000 km? is used for agricultural
purposes (Khasanov et al, 2022; World Bank, 2024
Makhmudova et al., 2023).
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Around 80% of Uzbekistan’s land consists of plains and desert
areas. In addition to vast lowland plains and deserts, the
landscape is also characterized by foothills and mountain ranges.
The country’s highest point is located in the Hisar Mountains,
reaching an elevation of 4,643 meters, while the lowest point is
the Sarygamysh Depression, approximately 20 meters below sea
level (Belolipov et al., 2012).

The climate across Uzbekistan is arid and continental, with
significant seasonal and regional variability in temperature and
precipitation. In the arid lowlands of the northwest, annual
precipitation generally remains around 70-100 mm, whereas in
the mountainous regions it can occasionally exceed 1,200 mm.
Most precipitation occurs between late autumn and early spring,
with peak rainfall typically observed in March and April
(Khasanov et al., 2022; Makhmudova et al., 2023).

The prolonged summer months are extremely hot and dry, with
temperatures often exceeding 45°C in some areas. Winters, on
the other hand, vary by region: while the southern parts
experience milder winters, the northern regions are affected by
severe cold and temperatures can occasionally drop below -37°C
(Belolipov et al., 2012).

2.2 Data Used

In this study, to evaluate evapotranspiration, the global 8-day
actual evapotranspiration product derived from NASA’s MODIS
sensor was utilized (Mu et al., 2013). The dataset, available in the
GEE library under the ID “MODIS/061/MOD16A2,” estimates
the total evapotranspiration from the land surface to the
atmosphere, including both evaporation and plant transpiration.
This product has a spatial resolution of 500 meters and covers the
period from 2021 to the present. The evapotranspiration values
are provided in units of kg/m?, which are practically equivalent
to millimetres (mm) for hydrological analyses (Google Earth
Engine, 2025). Since this dataset does not include data prior to
2021, the earlier version, identified as “MODIS/006/MO
D16A2,” was used to analyse the period between 2001 and 2022.

The Landsat satellite program provided researchers with long-
term and continuous temporal data (Wulder et al., 2019). Thermal
Infrared (TIR) imagery, which serves as the primary data source
for LST calculations, is fully accessible on the GEE platform,
starting from Landsat 4, launched in 1982, up to the most recent
Landsat 9 data. In this study, Landsat 5 imagery (GEE ID:
“LANDSAT/LT05/C02/T1_L2”) was used for the 1995-2012
period, while Landsat 8 imagery (GEE ID: “LANDSAT/LTO
8/C02/T1_L2”) was used for the post-2012 period. For LST
analysis, the thermal bands ‘ST _B6’ and ‘ST_B10’ were utilized
from Landsat 5 and Landsat 8, respectively.

Vegetation indices are essential tools used to assess the
distribution and health of vegetation in ecosystems. Among
them, the NDVI is widely used in environmental studies, as it
provides insights into vegetation conditions based on the
reflectance properties of chlorophyll in plants (Zhu et al., 2008).
In this study, NDVI calculations were based on surface
reflectance imagery derived from Landsat 5 TM and Landsat 8
satellite data.

NDVI = NIR — RED W
" NIR +RED

where, NIR represents the near-infrared band, while RED refers
to the red band. NDVI values range from -1 to +1 and reliably
indicate land surface characteristics. High NDVI values

correspond to dense and healthy vegetation, while low values
indicate sparsely vegetated or non-vegetated surfaces such as
soil, water, ice or snow. This range allows researchers to monitor
land use and vegetation changes over time (Fu et al., 2023;
Serifoglu Yilmaz, 2025). In this study, the temporal variation of
NDVI values was examined for the period between 1995 and
2024.

For the soil moisture analyses, the ERAS5-Land reanalysis dataset,
developed by the ECMWF under the Copernicus Climate Change
Service (C3S) of the European Commission, was utilized
(Hersbach et al., 2020; Mufioz-Sabater et al., 2021). ECMWF is
an independent research institution that produces global
numerical weather predictions and climate data, serving 35
partner countries and a wide user community. Available on the
GEE platform under the identifier "ECMWF/ERAS LAND/H
OURLY", ERA5-Land represents the land component of the
ERAS series and provides enhanced data quality compared to
previous versions (Mufioz-Sabater et al., 2021). In this study, the
‘volumetric_soil water layer 1’ band was used to assess soil
moisture. This band represents the topsoil layer (approximately
0-7 cm deep) and provides hourly data on volumetric soil water
content. Expressed in units of m?*/m?, it quantifies the amount of
water present per unit volume of soil, allowing for a quantitative
assessment of soil moisture status. The soil moisture analysis was
conducted for the time period spanning from 1995 to 2024.

The CHIRPS dataset was used to analyse precipitation.
Developed by NASA in collaboration with the Climate Hazards
Group at the University of California, Berkeley, this dataset
combines satellite observations with ground station data to
provide high spatial accuracy (Meshesha et al., 2024). Available
on the GEE platform under the identifier "USCB-CHG/CHIRPS/
DAILY", the dataset offers daily temporal resolution and was
used in this study at a spatial resolution of 5.56 km. Precipitation
distributions were analysed for the period between 1995 and
2024.

2.3 Future Projection with ARIMA

The future estimations for the climate parameters focused were
done with the ARIMA, which is a widely used statistical
modelling technique for analysing and forecasting time series
data. It combines three components (Dimri et al., 2020):
autoregression (AR), which uses the relationship between a
current value and its past values; integration (I), which involves
differencing the data to make it stationary (i.e., removing trends
and seasonality); and moving average (MA), which models the
error of the prediction as a linear combination of past forecast
errors. By identifying and estimating the appropriate parameters
for these components, ARIMA can produce accurate forecasts
and uncover underlying trends in historical data, making it useful
in various fields such as economics (Aljandali and Tatahi, 2018),
climate studies (Dimri et al., 2020) and environmental
monitoring (Kumar and Jain, 2010).

2.4 Trend Analysis

The Mann-Kendall test is a non-parametric statistical method
widely used to detect trends in time series data without requiring
the data to be normally distributed (Mann, 1945; Kendall, 1975).
It evaluates whether there is a monotonic upward or downward
trend over time, based on the ranks of the observations rather than
their raw values. This makes it particularly suitable for analysing
environmental and climate data, which often exhibit non-linear
patterns and contain outliers. In this study, the Mann-Kendall test
was applied to assess the statistical significance of trends
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observed in key climate indicators LST, evapotranspiration,
NDVI, precipitation and soil moisture. A significant result
indicates the presence of a consistent trend over the study period,
while a non-significant result suggests that no clear directional
change was detected.

3. Results and Discussion

Figure 2 illustrates both the actual annual total evapotranspiration
values from 2001 to 2024 and the values projected for the period
2025-2050 using the autoregressive integrated moving average
(ARIMA) model. Between 2001 and 2022, annual ET values
remained relatively stable, fluctuating between approximately 70
mm/year and 130 mm/year. However, a noticeable increase was
observed in 2023 and 2024, with annual ET values rising to 184
mm/year and 218 mm/year, respectively. These recent spikes
caused a distinct upward trend in the overall time series. Based
on this pattern, the ARIMA model forecasted ET values between
180 mm/year and 265 mm/year for the period extending to 2050.

Total evapotranspiration forecasting for 2025-2050
T T T

T
280 | Actual value |
—— Forecasted value

Linear trend

ol ¥ = 3.6556x + 7236.59 RO
R? = 0.8599

n
=
=]

Total evapotranspiration (mm/year)
2
(=1

© 1 I 1
2005 2010 2016 2020 2025 2030 2035 2040 2045 2050
Year

Figure 2. Actual and forecasted annual total evapotranspiration
values.

This suggests that the region may be entering a phase of
heightened evapotranspiration, which could be driven by several
interrelated factors. Rising temperatures due to climate change
may be increasing atmospheric demand for moisture, while
potential changes in land cover, such as agricultural
intensification, expansion of irrigated croplands or afforestation
efforts, could also enhance evapotranspiration rates.
Additionally, prolonged growing seasons and shifts in vegetation
phenology could be contributing to higher annual water fluxes.

The upward trend in evapotranspiration may have critical
implications for water availability, agricultural planning and
ecosystem services in Uzbekistan. For instance, increased
evapotranspiration could lead to reduced soil moisture and higher
irrigation demands, placing additional stress on already limited
water resources in the region. Moreover, if the trend reflects a
broader climatic shift, it may necessitate the revision of current
hydrological models and resource management strategies to
ensure long-term sustainability.

Figure 3 presents the observed annual mean LST values for the
period 1995-2024, along with the values projected for 2025-2050
using the ARIMA model. As shown in the figure, the observed
LST values exhibit considerable interannual variability. Notably,
abnormal spikes in LST were recorded in the years 2006, 2007

and 2008. Despite this variability, the linear trend of LST over
the observed period is clearly upward.
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Figure 3. Actual and forecasted annual mean LST values.

The ARIMA-based projections indicate that annual mean LST
may reach as high as 43°C by 2050. This indicates a substantial
warming trend, which could have significant consequences for
regional climate dynamics, water availability and land
productivity. An increase in surface temperatures of this
magnitude could intensify evapotranspiration rates, exacerbate
drought conditions and place further pressure on agricultural
systems and natural ecosystems. Furthermore, rising LST may
contribute to heat stress, reduce crop yields and increase the
frequency of extreme weather events.

LST-1996

B

LST-2010

=

LST-2024

LST (°C)

f— | I

10 20 30

| T—
40 50

Figure 4. Mean LST maps produced for 1996, 2010 and 2024.
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If these projections hold true, it underscores the need for
proactive adaptation strategies, such as developing heat-tolerant
crop varieties, improving irrigation efficiency and implementing
climate-resilient land-use planning. Continuous monitoring and
integration of satellite-based indicators like LST will be critical
for guiding policy decisions and ensuring sustainable
development under changing climatic conditions.

Figure 4 illustrates the spatial distribution of mean LST for the
years 1996, 2010 and 2024. A clear warming trend is evident in
the figure, with a noticeable increase in LST values over time,
confirming the progression of surface temperature rise across
Uzbekistan.

Figure 5 displays the annual mean NDVI values observed
between 1995 and 2024, along with ARIMA-based projections
of annual mean NDVI extending to 2050. Uzbekistan is
characterized by a highly arid climate and a relatively sparse
vegetative cover in proportion to its land area. Accordingly, the
observed annual NDVI values during the 1995-2024 period
remained relatively low, fluctuating between approximately 0.04
and 0.085. As indicated by the linear trend line in Figure 4, NDVI
has shown a modest upward trajectory over time.

The ARIMA forecast suggests that the annual average NDVI
could reach up to 0.1 by 2050. While this represents a slight
improvement, such a level of vegetative density remains
critically low for a country grappling with persistent drought
conditions.
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Figure 5. Actual and forecasted annual mean NDVI values.

In this context, the projections emphasize the ongoing
vulnerability of Uzbekistan's ecosystems and agricultural
productivity. An NDVI value around 0.1 indicates limited
vegetative biomass, insufficient to sustain robust ecological
functions or extensive agricultural activities without substantial
external support such as irrigation. This scenario highlights the
urgent need for sustainable land management practices,
afforestation efforts and investment in resilient agricultural
systems to enhance vegetation cover and mitigate the adverse
effects of land degradation and climate variability. Integrating
satellite-based vegetation indices like NDVI into long-term
environmental planning can help guide effective adaptation
strategies in arid and semi-arid regions like Uzbekistan.

Figure 6 displays the spatial distribution of mean NDVI for the
years 1996, 2010 and 2024. The maps reveal a gradual
improvement in vegetation cover over time, with the most
notable increases observed in the eastern regions of Uzbekistan.

Figure 7 illustrates the annual mean soil moisture values
observed between 1995 and 2024, as well as the projected values
up to 2050 based on the ARIMA model. As seen in the figure,
the annual average soil moisture during the historical period
varied between approximately 0.11 m*/m? and 0.18 m3/m3. A
downward trend in soil moisture is evident as the data approaches
2024. The ARIMA-based projections suggest that mean soil
moisture levels may decline further, potentially reaching as low
as 0.12 m*/m?> by 2050.
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Figure 6. Mean NDVI maps produced for 1996, 2010 and 2024.

This situation underscores a concerning trajectory in
Uzbekistan’s environmental conditions. Declining soil moisture
levels may directly affect plant water availability, reduce
agricultural yields and contribute to land degradation and
desertification, especially in already arid regions. A reduction to
0.12 m*/m? in volumetric soil moisture could severely constrain
vegetation growth and further intensify drought stress across
ecosystems and farming systems.

for 2025-2050

Mean soil moisture for
T

T T
Actual value

o.19 ———Forecasted value

Linear trend

0.18 - —

y = -0.0005x + 1.07
R? = 0.3476 —

)
|

Mean soil moisture (m*m?,

I I I
1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050
Year

Figure 7. Actual and forecasted annual mean soil moisture
values.
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Such findings highlight the importance of adopting adaptive
strategies in water and land resource management. Enhancing
irrigation efficiency, promoting drought-resistant crop varieties
and implementing soil moisture conservation practices (e.g.,
mulching, reduced tillage) may be necessary to maintain
agricultural productivity under projected future conditions.
Moreover, continuous satellite-based monitoring of soil moisture
can serve as a crucial tool for early warning systems and policy
planning in response to climate change and variability.

Figure 8 presents the observed annual mean precipitation values
between 1995 and 2024, along with projections of annual means
up to 2050 generated using the ARIMA model. As illustrated, the
mean precipitation over the historical period was approximately
180 mm/year. Notably, the years 2002, 2003 and 2004 recorded
values exceeding 220 mm/year, while in 1995, 2021 and 2023,
the annual mean precipitation dropped to around 120 mm/year.
The linear trend line in the figure indicates a slightly increasing
trend in annual mean precipitation between 1995 and 2024.
ARIMA-based projections suggest that this upward trend may
continue, with annual average precipitation potentially reaching
220 mm/year by 2050.
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Figure 8. Actual and forecasted annual mean precipitation values.

This scenario may offer both opportunities and challenges for
Uzbekistan’s water and agricultural sectors. On one hand,
increased precipitation can enhance water availability, support
crop growth and alleviate drought pressure in certain regions. On
the other hand, if precipitation increases are concentrated in
shorter periods or come with more intense events, they could lead
to soil erosion or inefficient water capture.

Therefore, while the forecasted increase in precipitation appears
favourable, it must be interpreted alongside other climatic and
hydrological indicators. Integrated water resource management
and investment in water infrastructure (such as reservoirs and
improved irrigation systems) will be essential to translate
potential gains into sustainable outcomes for agriculture and
ecosystems in Uzbekistan.

Table 1 summarizes the results of the Mann-Kendall test, which
was applied to assess the statistical significance of the observed
trends in key climate variables. The results revealed that
evapotranspiration, LST and NDVI exhibited statistically
significant increasing trends. This indicates that Uzbekistan has
been experiencing rising surface temperatures and vegetation
vigour, accompanied by an overall increase in
evapotranspiration. Such trends are consistent with broader
patterns of warming and potential vegetation stress, as higher

LST and evapotranspiration rates can intensify water demand and
potentially alter land cover characteristics.

Precipitation, although showing a slight upward trend, was not
statistically significant according to the Mann-Kendall test. This
suggests that, despite some variability or minor increases, there
is no clear or persistent long-term trend in precipitation totals
during the study period. This result implies that changes in water
availability might not be driven primarily by shifts in
precipitation alone, but rather by temperature-related processes
affecting evapotranspiration and surface energy balance.

Soil moisture was the only parameter that showed a non-
significant and decreasing trend. This downward tendency,
although not statistically robust, may still signal emerging risks
of soil drying, particularly when considered alongside the
significant increases in temperature and evapotranspiration.

The Mann-Kendall test results point toward a warming and
drying trajectory in Uzbekistan, characterized by increasing
surface temperatures and evapotranspiration, but without a
compensating increase in precipitation or soil water retention.
These findings underscore the importance of climate adaptation
strategies that address growing water stress and heat-related
impacts in the region.

Climate parameter _ p-value  Trend significant?
Evapotranspiration 0.0446 Yes
LST 0.0246 Yes
NDVI 0.0017 Yes
Soil Moisture 0.4118 No
Precipitation 0.6427 No

Table 1. Mann-Kendall test results (a significance level of
0=0.05 was used to assess the statistical trends).

To evaluate the performance of the ARIMA model, the actual
data from 1995 to 2024 were split into training and testing sets
using a 70/30 ratio. The model was trained on the first 70% of the
data and then used to estimate the remaining 30%, for which the
coefficient of determination (R?) was calculated. Among the
studied variables, NDVI achieved the highest estimation
accuracy with an R? of 0.64, followed by precipitation (0.54),
LST (0.52), evapotranspiration (0.46) and soil moisture (0.44).
While these results indicate that ARIMA can capture some
temporal patterns, particularly for NDVI and precipitation, the
moderate to low R? values suggest limitations in model
performance. This underlines the need for longer time series and
possibly additional explanatory variables to improve the
robustness and accuracy of future projections.

4. Conclusion

This study analysed long-term trends of climate parameters,
including evapotranspiration, LST, NDVI, soil moisture and
precipitation, over Uzbekistan from 1995 to 2024. The Mann-
Kendall test results indicated that trends in LST, NDVI and
evapotranspiration were statistically significant, pointing to a
warming climate and increased vegetative activity, whereas soil
moisture and precipitation trends were not statistically
significant. To extend the analysis into the future, the ARIMA
model was employed to forecast these climate variables from
2025 to 2050. The ARIMA-based projections suggest that the
climate conditions will be even more challenging for Uzbekistan
by 2050. These results underscore the importance of proactive
climate adaptation and land management strategies tailored to
Uzbekistan's environmental conditions.
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