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Abstract

Fine particulate matter (PM2.s) remains a major public-health concern in Thailand, with seasonal peaks amplified by terrain-induced
stagnation. We delineate nationwide airshed regimes by integrating topography with multi-variable meteorology in an object-based
workflow coupled to K-means clustering. Monthly composites for 2003—2024 were assembled for digital elevation (DEM), planetary
boundary-layer pressure (PBL; proxy for PBL height), 10-m wind speed (WS10), surface pressure (SUR), surface shortwave
radiation (SRAD), TMAX/TMIN, vapor pressure (VAP), and precipitation (PPT), harmonized to a common grid and aggregated to
objects. Candidate K=2—10 was evaluated; the Elbow criterion supported K=4.

Four physically interpretable clusters emerge—Ilowland, two transition belts, and highland—monotonically ordered by elevation and
accompanied by coherent atmospheric gradients. From lowland to highland, SUR, TMAX, TMIN, VAP, and PPT decline, winds
weaken in transition/highland zones, and PBL pressure decreases (consistent with higher PBL tops); SRAD is modestly lower aloft.
Seasonality is systematic: November—February features expansion of transition/highland classes into basins under cooler, more
stable conditions, whereas during the Southwest monsoon (May—October) transition belts retract as ventilation and wet scavenging
strengthen. Despite boundary shifts, cluster identity at fixed locations is highly repeatable.

The zoning provides an operational scaffold for airshed-aware management: targeting monitoring and advisories in transition belts
and basin interiors, supporting cross-provincial coordination, and informing regime-conditioned forecasting. Limitations include a
dispersion-focused design and reliance on gridded products. Planned extensions will incorporate ventilation capacity
(VC=WS10xPBLH), stagnation frequency, and expanded validation (Silhouette/Gap, bootstrap stability, external/temporal holdouts

with independent PM..s).

1. Introduction

Particulate matter (PM2.5), with a diameter of less than 2.5
microns, has become a significant environmental concern in
Thailand, particularly in major cities like Bangkok and Chiang
Mai, as well as rural areas such as Mae Hong Son. In 2023,
PM2.5 concentrations increased by 28% compared to 2022,
with levels in Chiang Mai reaching 53.4 to 106.4 pg/m’,
exceeding WHO standards and posing health risks (IQAir,
2023). Meteorological factors like wind speed, temperature,
vapor pressure (VAP), and precipitation play key roles in
PM2.5 dispersion. Temperature inversions, which trap
pollutants near the surface, are particularly common in winter
(OPDC, 2019).

In low- and middle-income countries (LMICs), air quality
management often follows political borders, which may not
address transboundary pollution. The airshed concept, which
defines regions influenced by similar meteorological and
pollution factors, offers a more comprehensive framework for
managing air quality across political boundaries (Khan et al.,
2024). This study aims to delineate regional and local airsheds
in Thailand by integrating topographical and meteorological
data, addressing geographical and seasonal variations in air
quality to improve management strategies. To evaluate the
spatial and temporal patterns of airshed classification across
Thailand by applying Object-Based Classification (OBC) to
monthly meteorological datasets from 2003-2024.

2. Literature Review
2.1 Airshed Concept and Classification

The airshed concept plays a critical role in air quality
management by recognizing that pollution is influenced by
meteorological conditions and emission sources that often cross
administrative boundaries. Classifying airsheds based on shared
climatic, topographic, and emission characteristics enables more
targeted and efficient pollution control strategies. This approach
is especially valuable in low- and middle-income countries
(LMICs), where traditional governance structures limit cross-
boundary interventions. By identifying regions with similar air
quality profiles, airshed delineation improves hotspot detection
and policy implementation (Khan et al., 2024).
2.2 Meteorological and Topographical Factors in Air
Pollution Dispersion

Meteorological and geographical conditions are key
determinants in the dispersion and accumulation of air
pollutants. Variables such as wind speed, temperature,
precipitation, and air pressure influence how pollutants spread
and persist in the atmosphere. Temperature inversions—
common in colder months—trap pollutants near the surface,
while wind patterns and terrain features like valleys and
mountains can create stagnant zones that intensify pollution.
These factors are essential for analyzing the spatiotemporal
behavior of pollutants and designing effective air quality
management strategies (Ghosh et al., 2021; Thitaporn, 2013).
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2.3 Advancements in Remote Sensing and Object-Based
Classification (OBC)

Advancements in remote sensing have significantly enhanced
the monitoring of air pollution and environmental variables.
High-resolution satellite imagery and sensors now provide
precise, real-time data on atmospheric and surface conditions. A
key development is object-based classification (OBC), which
improves classification accuracy by grouping pixels into
meaningful objects based on spatial, spectral, and contextual
attributes, rather than analyzing individual pixels. The OBC

process typically includes image segmentation, object

classification, and spatial analysis.

Mathematically, segmentation is expressed as a function:
S()—0={01, 02, ..., On} 0))]

where [ is the input image a
On denotes the resulting image objects

These objects are then classified using techniques such as k-
means clustering or machine learning. In air pollution studies,
OBC enables the integration of meteorological, topographical,
and pollutant data, supporting more accurate mapping of
pollution dispersion patterns.

2.4 Air Quality Challenges and Seasonal Health Impacts in
LMICs

Air quality management in low- and middle-income countries
(LMICs) faces numerous challenges, including limited financial
resources, inadequate monitoring infrastructure, and weak
enforcement of environmental regulations. These issues are
especially pronounced in rapidly growing urban areas where
pollution from traffic, construction, and biomass burning is
widespread. Despite advances in remote sensing and affordable
air monitoring technologies, LMICs often struggle to implement
effective air quality strategies due to structural and resource
limitations.

Seasonal variations further complicate air pollution
management. In many LMICs, PM2.5 concentrations tend to
peak during winter and dry seasons due to temperature
inversions and increased combustion activities, while rainy
seasons generally see reduced levels as precipitation helps
remove airborne particles (OPDC, 2019; Pope et al., 2009).
These fluctuations have significant health implications. Long-
term exposure to PM2.5 is linked to respiratory and
cardiovascular diseases, including asthma, chronic bronchitis,
lung cancer, and heart disease (Lelieveld et al., 2015).
Vulnerable groups such as children, the elderly, and those with
pre-existing conditions are particularly at risk.

To address these challenges, LMICs require adaptive and cost-
effective approaches that integrate seasonal air quality data,
enforce emission controls, and promote public awareness.
Initiatives such as Clean Air Asia have demonstrated the value
of regional collaboration and the use of remote sensing data to
improve pollution tracking and policy development. Seasonal
patterns in PM2.5 underscore the urgency of targeted
interventions during high-risk periods, including public
advisories, the adoption of cleaner technologies, and cross-
sectoral cooperation.

3. Datasets use in the study
3.1 Topographic Characteristics

Thailand (=5°-21° N, 97°-106° E; ~513,000 km?) spans coastal
lowlands, extensive alluvial plains, inter-montane basins, and
high mountain ranges, with elevations from sea level to ~2,565
m. The national climate is tropical monsoon, characterized by a
cool-dry season (November—February), a hot pre-monsoon
(March—April), and a wet Southwest-monsoon season (May—
October). Orography exerts strong control on local ventilation:
the Central Plains (e.g., Chao Phraya basin) are predominantly
low-lying, while the North and West contain basin-and-range
terrain that channels winds and modulates boundary-layer
structure.

Basin-like terrains—especially inter-montane basins such as the
Chiang Mai-Lamphun basin—are more prone to smog
accumulation than adjacent plains, owing to terrain-induced
sheltering and frequent air-stagnation under stable conditions in
the cool—dry season (WHO, 2016; Phopsuk, 2019). This study
therefore treats basin interiors and their rims as candidate
airshed hotspots, while still delineating regimes nationwide to
support cross-boundary management. Major urban centers (e.g.,
Bangkok in the coastal/lowland setting and Chiang Mai in a
basin setting) provide contrasting dispersion environments that
are representative of Thailand’s topographic diversity.

To represent terrain with high fidelity across the country, we
employed a NASA Digital Elevation Model (DEM) that
integrates SRTM, ASTER GDEM v3, and ICESat sources
(Crippen et al., 2016). DEM-derived metrics are analyzed
jointly with meteorological drivers (e.g., boundary-layer height,
wind, precipitation, temperature) to quantify how orography and
seasonal monsoon dynamics structure dispersion capacity and,
consequently, the spatial patterning of airshed classes.

3.2 Meteorological Data

All meteorological predictors were compiled as monthly
composites for 2003-2024. Variables include planetary
boundary-layer height (PBL), wind speed (WS), surface
pressure (SUR), precipitation (PPT), surface shortwave
radiation (SRAD), maximum/minimum temperature
(TMAX/TMIN), and vapor pressure (VAP). Datasets were
harmonized to a common analysis grid and time base; monthly
mode values were then aggregated to OBC segments for
clustering.

e  Planetary Boundary Layer (PBL): The atmospheric layer
closest to the Earth's surface, influenced by energy and
moisture exchanges. PBL height data from ECMWF are
used to identify the vertical extent for PM2.5 dispersion
(Simiu et al., 2015).

e  Surface Pressure (SUR): Surface-level atmospheric
pressure, which influences air flow and circulation patterns
(Simiu et al., 2015).

TerraClimate Dataset: This high-resolution (~4 km) global

climate dataset provides monthly time series of climate

variables including precipitation, radiation, temperature, wind

speed, and vapor pressure (Abatzoglou et al., 2018; Araghi et

al., 2023).

e  Precipitation (PPT): Interpolated using the Climatically
Aided Interpolation (CAI) method, integrated with
WorldClim data.
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e Surface Shortwave Radiation (SRAD): Adjusted using
CRU TS4.0 and JRA-55 reanalysis.

e Maximum & Minimum Temperature (TMAX & TMIN):
Combined from WorldClim v1.4 and v2.0, CRU TS v4,
and JRA-55 (Royal Irrigation Department, 2014).

e Vapor Pressure (VAP): Represents atmospheric moisture
content from evapotranspiration.

e  Wind Speed (WS): Uses 10-m average wind speed data
(Saldanha et al., 2024).

4. Methodology
4.1 Object-Based Classification (OBC)

Object-based image analysis (OBC) was conducted using
eCognition software. Multi-resolution segmentation (MRS) was
applied with the following parameters: Scale = 50, Shape = 0.1,
and Compactness = 0.5. These parameters were selected to
balance thematic (e.g., topographic and climatic) and spatial
information during the segmentation process.

The scale parameter, which controls the maximum allowed
heterogeneity within image objects, was set to 50 to capture
meaningful patterns of elevation and climate zones while
avoiding excessive over-segmentation. A low shape weight of
0.1 was used to emphasize spectral/thematic consistency—
appropriate in environmental studies where surface variation is
driven more by gradients in elevation and climate than by
geometric form. The compactness value of 0.5 provides a
balance between compact and smooth boundaries, allowing
segments to align with natural transitions in terrain and
atmospheric features.

These settings align with prior practice; for example, Wang
(2018) recommended compactness values between 0.4 and 0.6
to maintain boundary realism in complex landscapes. Low
shape weights (=0.1-0.3) have likewise been reported as
suitable for preserving thematic detail in topographic
classification using DEM data (Wang, 2018).

4.2 K-Mean Clustering

A K-means algorithm was applied to cluster the integrated
DEM and monthly meteorological datasets. Various values of K
(2 to 10) were tested to explore spatial and temporal clustering
patterns. The optimization aimed to minimize within-cluster
distances (Hall & Minns, 1999):

J(S:X) = Zi d3 (xg,s;)

i=1 k=1 2)

Where:

J(5:X) = total within-cluster variance

¢ = number of clusters

N = number of data points

xg, = data point k

g; = centroid of cluster iy,

d5, = Euclidean distance between x;, and centroid s;

4.3 Cluster Validation

The Elbow Method was employed to determine the optimal
number of clusters k This method involves computing the Sum
of Squared Errors (SSE) or Total with-cluster sum of squared
Euclidean distance for different values of k and identifying the
point at which the SSE curve exhibits an "elbow", suggesting
that additional clusters provide minimal improvement in model
performance.

The SSE for a given value of k is calculated as:

k

SSE = 2 Z ¥l 2

k=LlxEs, 3)
Where:
5. =is the set of points in cluster k
Cp = frequency of cluster ; over the 12-month period
X; = total number of unique cluster labels observed

2
|%; € |; = is the squared Euclidean distance between X; and

the cluster centroid

5. Results and Discussion
5.1 Geoclimatic Zoning Analysis

The Result of Elbow Method was employed to determine the
optimal number of clusters (K) for this study. Figure 1 presents
the Total Within-Cluster Sum of Squares (WCSS) for each
tested K value. A noticeable change in the slope of the WCSS
curve occurs between K =4 and K = 5, indicating a significant
reduction in WCSS up to K = 4, followed by a more gradual
decline. This inflection point, commonly referred to as the
"elbow," suggests that K = 4 is the most appropriate choice.
Therefore, K = 4 was selected for clustering in this study to
ensure more meaningful and accurate results. Elbow analysis
indicates a clear inflection at K=4, and qualitative inspection of
K>4 partitions shows fragmentation of transition belts without
introducing new, physically distinct regimes—supporting K=4
on parsimony and interpretability grounds.

Elbow Method
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Figure 1. Elbow Method Result
Geoclimatic zones were identified using Object-Based

Classification (OBC) in combination with K-means clustering
(Hall & Minns, 1999). Monthly mode values of topographic and
meteorological variables were used, and the optimal number of
clusters was validated using the Elbow Method. Key variables
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included Digital Elevation Model (DEM) data and
meteorological datasets, acknowledging the role of topography
in influencing regional climate and ecosystems. As topographic
variation directly affects climatic parameters such as
temperature, pressure, and precipitation clustering these
parameters supports the delineation of geoclimatic zones with
environmental significance.

The analysis identified four primary climate zones, showing a
clear relationship between elevation and key environmental
parameters. As elevation increases, air pressure, temperature,
and precipitation generally decrease.

These results confirm the strong influence of elevation on
surface pressure, temperature, and vapor pressure. Specifically:

e  Surface pressure decreases from 1,006.54 hPa in lowland
areas to 934.19 hPa in highland areas due to reduced air
density with altitude.

e  Temperature shows a declining trend: maximum
temperatures fall from 32.37°C to 30.12°C, and minimum
temperatures from 23.80°C to 18.73°C.

e  Precipitation and vapor pressure also decline with
elevation, reflecting reduced humidity and moisture
content.

The clusters can be interpreted as follows:

e  Cluster 1: Warm, humid lowlands with strong wind
circulation.

e  Cluster 2 and 3: Transition zones with moderate elevation
and intermediate climate characteristics.

e  Cluster 4: Highland and mountainous zones with cool,
dry conditions and low surface pressure.

Legend

Cluscers Class 1 Class 2 Wl Clays 3 Class 4 _ Province boundary

Figure 2. Spatial distribution of geographic-airshed clusters for each
month

5.2 Seasonal Changes in Airshed Zoning

Monthly maps of the K-means output reveal a coherent,
elevation-ordered pattern of “airshed clusters” across Thailand.
Cluster 1 (Lowland) dominates the Central Plains, lower
Northeast, and coastal deltas year-round; Cluster 4 (Highland) is
concentrated along the northern and western ranges and parts of
the Tenasserim Hills; Clusters 2—3 (Transition Zones 1-2)
occupy foothills, plateau margins, and basin rims (e.g., around
Chiang Mai-Lamphun and the Khorat Plateau). Spatial
boundaries shift modestly with season, but the rank ordering of
clusters by topography and atmosphere is persistent across
months.

Variable Airshed Cluster Level
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4
DEM (m) 27.89 177.61 435.47 808.94
PBL (hPa) 556.08 488.48 434,99 427.62
PPT (mm) 174.36 154.87 133.94 113.59
SRAD (W/m?) 218.31 218.96 214.92 211.65
SUR (hPa) 1006.54 988.1 960.09 934.19
TMAX (°C) 32.37 31.84 3141 30.12
TMIN (°C) 23.8 22.04 20.43 18.73
VAP (kPa) 2.93 2.62 2.44 2.2
WS (m/s) 1.84 1.41 1.21 1.28

Table 1. Summary of mean values for topographic and
meteorological variables across the four clusters.

Cluster-means highlight systematic gradients that underpin
these maps. Mean elevation rises monotonically from Cluster 1
to 4 (=28 m — =809 m), while surface pressure declines
accordingly (<1006 hPa — =934 hPa). Air temperature follows
the lapse-rate expectation: TMAX decreases by roughly 2.3 °C
and TMIN by ~5.1 °C between lowland and highland clusters,
indicating cooler nights and narrower diurnal ranges aloft.
Atmospheric moisture proxies also decline with altitude; vapor
pressure (VAP) drops by =~0.7 kPa, consistent with drier
boundary-layer conditions in uplands. Mean wind speed (WS) is
highest in lowlands (=1.84 m s') and lower in
transitional/highland zones (=1.2-1.3 m s™'), suggesting greater
stagnation potential where terrain sheltering is stronger.

Two variables speak directly to dispersion capacity. First, PBL
pressure decreases from =556 hPa (Cluster 1) to ~428 hPa
(Cluster 4), reflecting a systematically higher PBL-top altitude
over high terrain and a thinner column above the surface—an
important control on vertical mixing. Second, shortwave
radiation (SRAD) is modestly lower in highlands (=212 W m™)
than in lowlands (=218 W m™2), consistent with cooler, cloudier,
orographically influenced conditions that can suppress
convective growth on some days. Together with weaker winds,
these differences help explain the observed tendency for
transition and basin-rim zones to experience stagnant episodes
in the cool/dry season.

Seasonality is evident in the monthly cluster mosaics. From
November to February, highland and transition classes expand
and encroach farther into adjacent basins, coincident with lower
temperatures and frequent stability. During the Southwest
monsoon (May—October), transitional zones retract in many
windward areas, and lowland extents stabilize, reflecting
stronger synoptic ventilation and precipitation scavenging. This
seasonal breathing of boundaries is most visible along
mountain—valley interfaces in the North and along the western
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cordillera. Despite these shifts, cluster identity at any given
location is highly repeatable: most provinces remain in the same
class or oscillate between a base class and its immediate
neighbor (e.g., 2 <> 3), supporting the idea of stable geoclimatic
regimes with seasonal modulation.

Precipitation totals mirror the topographic ordering in this
dataset (=174 mm in lowlands to =114 mm in highlands for
monthly modes), reinforcing that the identified clusters capture
not only thermal and dynamical structure but also hydrological
regimes. The joint behavior of DEM, PBL, SRAD, SUR,
TMAX/TMIN, VAP, WS, and PPT confirms that the four
clusters are physically interpretable “airshed environments™: (1)
warm, moist, better-ventilated lowlands; (2-3) topographic
transition belts with elevated stagnation risk; and (4) cool, drier
highlands with distinct vertical structure. These results provide
a reproducible basis for airshed-aware management, including
seasonal targeting of monitoring and interventions in transition
belts and basin interiors where stagnation and pollution
accumulation are most likely.

5.3 Future Airshed Zoning Developing

To strengthen the physical basis of the zoning, a subsequent
revision will incorporate explicit airflow diagnostics alongside
DEM and meteorology. First, ventilation capacity (VC) will be
computed as VC=WS10xPBLH, where WS10 is 10-m wind
speed and PBLH is planetary boundary-layer height. Higher VC
denotes greater flushing potential and lower risk of pollutant
build-up. Second, stagnation frequency will be quantified as the
monthly fraction of days meeting low-dispersion criteria (e.g.,
WS10 < 1.5 m s7!, PBLH < 500 m, and precipitation < 1 mm),
with thresholds calibrated to regional conditions. These metrics
will be aggregated to OBC segments and co-analyzed with
existing predictors to refine boundaries and identify persistent
accumulation belts.

Methodological transparency and validation will also be
expanded. Because the present version prioritizes integrative
mapping, several elements are under-specified and will be
added: (i) choice of K reported with Elbow, Silhouette, and Gap
statistics (using a one-SE rule); (ii) stability analysis via
bootstrap resampling with Adjusted Rand Index summaries; and
(iii) external/temporal holdouts, including independent PMa.s—
based external checks, year-wise temporal splits, and leave-one-
province-out spatial holdouts. These steps will document the
robustness of cluster membership, quantify sensitivity to
perturbations, and link regimes to observed pollution patterns
across seasons.

Together, the airflow metrics (VC, stagnation frequency) and
the expanded validation suite are expected to (a) align “airshed”
delineation more tightly with dispersion capacity, (b) provide
reproducible diagnostics for selecting K and assessing stability,
and (c) yield policy-relevant thresholds (e.g., low-VC/high-
stagnation alerts) for seasonal targeting of monitoring and
interventions. These additions are planned for a subsequent
revision given current time constraints.

6. Conclusion

This study delineated Thailand’s airshed regimes by integrating
topography with multi-variable meteorology in an object-based,
K-means framework applied to monthly composites for 2003—
2024. Guided by Elbow diagnostics, four physically
interpretable clusters emerged—lowland, two transition belts,
and highland—arranged monotonically by elevation and

accompanied by coherent gradients in surface pressure,
temperature, moisture proxies, wind speed, shortwave radiation,
and planetary boundary-layer (PBL) structure. Cluster means
show declining surface pressure and cooling (both TMAX and
TMIN) with altitude, alongside reductions in vapor pressure and
precipitation; winds are generally stronger in lowlands and
weaker in transition/highland zones. Lower PBL pressure in
highland settings (indicative of higher PBL tops) and modestly
reduced shortwave radiation together help explain a heightened
propensity for stagnant conditions in basin rims and foothills
during the cool/dry season.

Seasonality is pronounced yet systematic. From November to
February, transition and highland classes expand into adjacent
basins, consistent with lower temperatures and more frequent
static stability; during the Southwest monsoon (May—October),
transition belts retract in windward sectors as synoptic
ventilation and wet scavenging strengthen. Despite these
“breathing” boundaries, cluster identity at fixed locations is
highly repeatable, indicating stable geoclimatic regimes
modulated by seasonal forcing. This persistence suggests the
clusters offer a reproducible spatial scaffold for air-quality
management that respects physical, rather than administrative,
boundaries.

The zoning has immediate operational relevance. First, it
enables seasonally targeted interventions: densifying monitoring
and issuing advisories in transition belts and basin interiors
where stagnation risk is elevated, particularly during
November—February. Second, it provides a common spatial
language for  cross-provincial  coordination,  aligning
surveillance, emission controls, and public communication with
shared dispersion environments. Third, the regimes can be
incorporated into forecasting and early-warning systems (e.g.,
regime-conditioned thresholds for PM..s), potentially improving
lead time with minimal additional data requirements.

Several limitations bound these conclusions. The present
delineation is dispersion-focused: it does not explicitly model
emissions, chemical transformation, or long-range transport,
and it emphasizes monthly modes rather than extremes.
Reliance on gridded products introduces resolution and bias
uncertainties, and coastal/complex terrain may require finer-
scale wind and land—sea-breeze diagnostics. In addition, aspects
of methodological transparency—choice of K, stability under
resampling, and external/temporal holdouts—remain under-
specified in the current version.

Planned extensions will address these gaps. We will incorporate
explicit airflow diagnostics, namely ventilation capacity (VC =
WS10 x PBLH) and stagnation frequency (share of days
meeting low-dispersion criteria), aggregate them to object level,
and re-evaluate cluster structure and boundaries. Validation will
be expanded to include Elbow/Silhouette/Gap (with a one-SE
rule), bootstrap stability via Adjusted Rand Index, and
external/temporal ~ holdouts using independent PM..s
observations. These enhancements will further align the zoning
with the physical drivers of accumulation and ventilation,
strengthening its utility for seasonally adaptive, cross-boundary
air-quality management.
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