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Abstract 

 

Fine particulate matter (PM₂.₅) remains a major public-health concern in Thailand, with seasonal peaks amplified by terrain-induced 

stagnation. We delineate nationwide airshed regimes by integrating topography with multi-variable meteorology in an object-based 

workflow coupled to K-means clustering. Monthly composites for 2003–2024 were assembled for digital elevation (DEM), planetary 

boundary-layer pressure (PBL; proxy for PBL height), 10-m wind speed (WS10), surface pressure (SUR), surface shortwave 

radiation (SRAD), TMAX/TMIN, vapor pressure (VAP), and precipitation (PPT), harmonized to a common grid and aggregated to 

objects. Candidate K=2–10 was evaluated; the Elbow criterion supported K=4. 

Four physically interpretable clusters emerge—lowland, two transition belts, and highland—monotonically ordered by elevation and 

accompanied by coherent atmospheric gradients. From lowland to highland, SUR, TMAX, TMIN, VAP, and PPT decline, winds 

weaken in transition/highland zones, and PBL pressure decreases (consistent with higher PBL tops); SRAD is modestly lower aloft. 

Seasonality is systematic: November–February features expansion of transition/highland classes into basins under cooler, more 

stable conditions, whereas during the Southwest monsoon (May–October) transition belts retract as ventilation and wet scavenging 

strengthen. Despite boundary shifts, cluster identity at fixed locations is highly repeatable. 

The zoning provides an operational scaffold for airshed-aware management: targeting monitoring and advisories in transition belts 

and basin interiors, supporting cross-provincial coordination, and informing regime-conditioned forecasting. Limitations include a 

dispersion-focused design and reliance on gridded products. Planned extensions will incorporate ventilation capacity 

(VC=WS10×PBLH), stagnation frequency, and expanded validation (Silhouette/Gap, bootstrap stability, external/temporal holdouts 

with independent PM₂.₅). 

 

 

1. Introduction 

Particulate matter (PM2.5), with a diameter of less than 2.5 

microns, has become a significant environmental concern in 

Thailand, particularly in major cities like Bangkok and Chiang 

Mai, as well as rural areas such as Mae Hong Son. In 2023, 

PM2.5 concentrations increased by 28% compared to 2022, 

with levels in Chiang Mai reaching 53.4 to 106.4 µg/m³, 

exceeding WHO standards and posing health risks (IQAir, 

2023). Meteorological factors like wind speed, temperature, 

vapor pressure (VAP), and precipitation play key roles in 

PM2.5 dispersion. Temperature inversions, which trap 

pollutants near the surface, are particularly common in winter 

(OPDC, 2019). 

 

In low- and middle-income countries (LMICs), air quality 

management often follows political borders, which may not 

address transboundary pollution. The airshed concept, which 

defines regions influenced by similar meteorological and 

pollution factors, offers a more comprehensive framework for 

managing air quality across political boundaries (Khan et al., 

2024). This study aims to delineate regional and local airsheds 

in Thailand by integrating topographical and meteorological 

data, addressing geographical and seasonal variations in air 

quality to improve management strategies. To evaluate the 

spatial and temporal patterns of airshed classification across 

Thailand by applying Object-Based Classification (OBC) to 

monthly meteorological datasets from 2003–2024. 

 

2. Literature Review 

2.1 Airshed Concept and Classification 

The airshed concept plays a critical role in air quality 

management by recognizing that pollution is influenced by 

meteorological conditions and emission sources that often cross 

administrative boundaries. Classifying airsheds based on shared 

climatic, topographic, and emission characteristics enables more 

targeted and efficient pollution control strategies. This approach 

is especially valuable in low- and middle-income countries 

(LMICs), where traditional governance structures limit cross-

boundary interventions. By identifying regions with similar air 

quality profiles, airshed delineation improves hotspot detection 

and policy implementation (Khan et al., 2024). 

 

2.2 Meteorological and Topographical Factors in Air 

Pollution Dispersion 

Meteorological and geographical conditions are key 

determinants in the dispersion and accumulation of air 

pollutants. Variables such as wind speed, temperature, 

precipitation, and air pressure influence how pollutants spread 

and persist in the atmosphere. Temperature inversions—

common in colder months—trap pollutants near the surface, 

while wind patterns and terrain features like valleys and 

mountains can create stagnant zones that intensify pollution. 

These factors are essential for analyzing the spatiotemporal 

behavior of pollutants and designing effective air quality 

management strategies (Ghosh et al., 2021; Thitaporn, 2013). 
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2.3 Advancements in Remote Sensing and Object-Based 

Classification (OBC) 

Advancements in remote sensing have significantly enhanced 

the monitoring of air pollution and environmental variables. 

High-resolution satellite imagery and sensors now provide 

precise, real-time data on atmospheric and surface conditions. A 

key development is object-based classification (OBC), which 

improves classification accuracy by grouping pixels into 

meaningful objects based on spatial, spectral, and contextual 

attributes, rather than analyzing individual pixels. The OBC 

process typically includes image segmentation, object 

classification, and spatial analysis. 

 

Mathematically, segmentation is expressed as a function: 

 

S(I)→O={O1, O2, ..., On}                    (1) 

 

where I  is the input image a 

          On denotes the resulting image objects 

 

These objects are then classified using techniques such as k-

means clustering or machine learning. In air pollution studies, 

OBC enables the integration of meteorological, topographical, 

and pollutant data, supporting more accurate mapping of 

pollution dispersion patterns. 

 

2.4 Air Quality Challenges and Seasonal Health Impacts in 

LMICs 

Air quality management in low- and middle-income countries 

(LMICs) faces numerous challenges, including limited financial 

resources, inadequate monitoring infrastructure, and weak 

enforcement of environmental regulations. These issues are 

especially pronounced in rapidly growing urban areas where 

pollution from traffic, construction, and biomass burning is 

widespread. Despite advances in remote sensing and affordable 

air monitoring technologies, LMICs often struggle to implement 

effective air quality strategies due to structural and resource 

limitations. 

 

Seasonal variations further complicate air pollution 

management. In many LMICs, PM2.5 concentrations tend to 

peak during winter and dry seasons due to temperature 

inversions and increased combustion activities, while rainy 

seasons generally see reduced levels as precipitation helps 

remove airborne particles (OPDC, 2019; Pope et al., 2009). 

These fluctuations have significant health implications. Long-

term exposure to PM2.5 is linked to respiratory and 

cardiovascular diseases, including asthma, chronic bronchitis, 

lung cancer, and heart disease (Lelieveld et al., 2015). 

Vulnerable groups such as children, the elderly, and those with 

pre-existing conditions are particularly at risk. 

 

To address these challenges, LMICs require adaptive and cost-

effective approaches that integrate seasonal air quality data, 

enforce emission controls, and promote public awareness. 

Initiatives such as Clean Air Asia have demonstrated the value 

of regional collaboration and the use of remote sensing data to 

improve pollution tracking and policy development. Seasonal 

patterns in PM2.5 underscore the urgency of targeted 

interventions during high-risk periods, including public 

advisories, the adoption of cleaner technologies, and cross-

sectoral cooperation. 

 

3. Datasets use in the study  

3.1 Topographic Characteristics 

Thailand (≈5°–21° N, 97°–106° E; ~513,000 km²) spans coastal 

lowlands, extensive alluvial plains, inter-montane basins, and 

high mountain ranges, with elevations from sea level to ~2,565 

m. The national climate is tropical monsoon, characterized by a 

cool–dry season (November–February), a hot pre-monsoon 

(March–April), and a wet Southwest-monsoon season (May–

October). Orography exerts strong control on local ventilation: 

the Central Plains (e.g., Chao Phraya basin) are predominantly 

low-lying, while the North and West contain basin-and-range 

terrain that channels winds and modulates boundary-layer 

structure. 

 

Basin-like terrains—especially inter-montane basins such as the 

Chiang Mai–Lamphun basin—are more prone to smog 

accumulation than adjacent plains, owing to terrain-induced 

sheltering and frequent air-stagnation under stable conditions in 

the cool–dry season (WHO, 2016; Phopsuk, 2019). This study 

therefore treats basin interiors and their rims as candidate 

airshed hotspots, while still delineating regimes nationwide to 

support cross-boundary management. Major urban centers (e.g., 

Bangkok in the coastal/lowland setting and Chiang Mai in a 

basin setting) provide contrasting dispersion environments that 

are representative of Thailand’s topographic diversity. 

 

To represent terrain with high fidelity across the country, we 

employed a NASA Digital Elevation Model (DEM) that 

integrates SRTM, ASTER GDEM v3, and ICESat sources 

(Crippen et al., 2016). DEM-derived metrics are analyzed 

jointly with meteorological drivers (e.g., boundary-layer height, 

wind, precipitation, temperature) to quantify how orography and 

seasonal monsoon dynamics structure dispersion capacity and, 

consequently, the spatial patterning of airshed classes. 

 

3.2 Meteorological Data 

All meteorological predictors were compiled as monthly 

composites for 2003–2024. Variables include planetary 

boundary-layer height (PBL), wind speed (WS), surface 

pressure (SUR), precipitation (PPT), surface shortwave 

radiation (SRAD), maximum/minimum temperature 

(TMAX/TMIN), and vapor pressure (VAP). Datasets were 

harmonized to a common analysis grid and time base; monthly 

mode values were then aggregated to OBC segments for 

clustering. 

 

• Planetary Boundary Layer (PBL): The atmospheric layer 

closest to the Earth's surface, influenced by energy and 

moisture exchanges. PBL height data from ECMWF are 

used to identify the vertical extent for PM2.5 dispersion 

(Simiu et al., 2015). 

• Surface Pressure (SUR): Surface-level atmospheric 

pressure, which influences air flow and circulation patterns 

(Simiu et al., 2015). 

 

TerraClimate Dataset: This high-resolution (~4 km) global 

climate dataset provides monthly time series of climate 

variables including precipitation, radiation, temperature, wind 

speed, and vapor pressure (Abatzoglou et al., 2018; Araghi et 

al., 2023). 

• Precipitation (PPT): Interpolated using the Climatically 

Aided Interpolation (CAI) method, integrated with 

WorldClim data. 
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• Surface Shortwave Radiation (SRAD): Adjusted using 

CRU TS4.0 and JRA-55 reanalysis. 

• Maximum & Minimum Temperature (TMAX & TMIN): 

Combined from WorldClim v1.4 and v2.0, CRU TS v4, 

and JRA-55 (Royal Irrigation Department, 2014). 

• Vapor Pressure (VAP): Represents atmospheric moisture 

content from evapotranspiration. 

• Wind Speed (WS): Uses 10-m average wind speed data 

(Saldanha et al., 2024). 

 

4. Methodology 

4.1 Object-Based Classification (OBC) 

Object-based image analysis (OBC) was conducted using 

eCognition software. Multi-resolution segmentation (MRS) was 

applied with the following parameters: Scale = 50, Shape = 0.1, 

and Compactness = 0.5. These parameters were selected to 

balance thematic (e.g., topographic and climatic) and spatial 

information during the segmentation process. 

 

The scale parameter, which controls the maximum allowed 

heterogeneity within image objects, was set to 50 to capture 

meaningful patterns of elevation and climate zones while 

avoiding excessive over-segmentation. A low shape weight of 

0.1 was used to emphasize spectral/thematic consistency—

appropriate in environmental studies where surface variation is 

driven more by gradients in elevation and climate than by 

geometric form. The compactness value of 0.5 provides a 

balance between compact and smooth boundaries, allowing 

segments to align with natural transitions in terrain and 

atmospheric features. 

 

These settings align with prior practice; for example, Wang 

(2018) recommended compactness values between 0.4 and 0.6 

to maintain boundary realism in complex landscapes. Low 

shape weights (≈0.1–0.3) have likewise been reported as 

suitable for preserving thematic detail in topographic 

classification using DEM data (Wang, 2018). 

 

4.2 K-Mean Clustering 

A K-means algorithm was applied to cluster the integrated 

DEM and monthly meteorological datasets. Various values of K 

(2 to 10) were tested to explore spatial and temporal clustering 

patterns. The optimization aimed to minimize within-cluster 

distances (Hall & Minns, 1999): 

 

               (2) 

 

Where: 

  = total within-cluster variance 

  = number of clusters 

  = number of data points 

  = data point  

   = centroid of cluster  

 = Euclidean distance between  and centroid  

 

4.3 Cluster Validation 

The Elbow Method was employed to determine the optimal 

number of clusters k This method involves computing the Sum 

of Squared Errors (SSE) or Total with-cluster sum of squared 

Euclidean distance for different values of k and identifying the 

point at which the SSE curve exhibits an "elbow", suggesting 

that additional clusters provide minimal improvement in model 

performance. 

The SSE for a given value of k is calculated as: 

 

  (3) 

 

Where: 

      = is the set of points in cluster  

      = frequency of cluster  over the 12-month period 

      = total number of unique cluster labels observed 

  = is the squared Euclidean distance between  and 

the cluster centroid 

 

5. Results and Discussion 

5.1 Geoclimatic Zoning Analysis 

The Result of Elbow Method was employed to determine the 

optimal number of clusters (K) for this study. Figure 1 presents 

the Total Within-Cluster Sum of Squares (WCSS) for each 

tested K value. A noticeable change in the slope of the WCSS 

curve occurs between K = 4 and K = 5, indicating a significant 

reduction in WCSS up to K = 4, followed by a more gradual 

decline. This inflection point, commonly referred to as the 

"elbow," suggests that K = 4 is the most appropriate choice. 

Therefore, K = 4 was selected for clustering in this study to 

ensure more meaningful and accurate results. Elbow analysis 

indicates a clear inflection at K=4, and qualitative inspection of 

K>4 partitions shows fragmentation of transition belts without 

introducing new, physically distinct regimes—supporting K=4 

on parsimony and interpretability grounds.  

 

 

Figure 1. Elbow Method Result 

 

Geoclimatic zones were identified using Object-Based 

Classification (OBC) in combination with K-means clustering 

(Hall & Minns, 1999). Monthly mode values of topographic and 

meteorological variables were used, and the optimal number of 

clusters was validated using the Elbow Method. Key variables 
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included Digital Elevation Model (DEM) data and 

meteorological datasets, acknowledging the role of topography 

in influencing regional climate and ecosystems. As topographic 

variation directly affects climatic parameters such as 

temperature, pressure, and precipitation clustering these 

parameters supports the delineation of geoclimatic zones with 

environmental significance. 

The analysis identified four primary climate zones, showing a 

clear relationship between elevation and key environmental 

parameters. As elevation increases, air pressure, temperature, 

and precipitation generally decrease. 

 

These results confirm the strong influence of elevation on 

surface pressure, temperature, and vapor pressure. Specifically: 

• Surface pressure decreases from 1,006.54 hPa in lowland 

areas to 934.19 hPa in highland areas due to reduced air 

density with altitude. 

• Temperature shows a declining trend: maximum 

temperatures fall from 32.37°C to 30.12°C, and minimum 

temperatures from 23.80°C to 18.73°C. 

• Precipitation and vapor pressure also decline with 

elevation, reflecting reduced humidity and moisture 

content. 

The clusters can be interpreted as follows: 

• Cluster 1: Warm, humid lowlands with strong wind 

circulation. 

• Cluster 2 and 3: Transition zones with moderate elevation 

and intermediate climate characteristics. 

• Cluster 4: Highland and mountainous zones with cool, 

dry conditions and low surface pressure. 

 

 
Figure 2. Spatial distribution of geographic-airshed clusters for each 

month 

 

5.2 Seasonal Changes in Airshed Zoning 

Monthly maps of the K-means output reveal a coherent, 

elevation-ordered pattern of “airshed clusters” across Thailand. 

Cluster 1 (Lowland) dominates the Central Plains, lower 

Northeast, and coastal deltas year-round; Cluster 4 (Highland) is 

concentrated along the northern and western ranges and parts of 

the Tenasserim Hills; Clusters 2–3 (Transition Zones 1–2) 

occupy foothills, plateau margins, and basin rims (e.g., around 

Chiang Mai–Lamphun and the Khorat Plateau). Spatial 

boundaries shift modestly with season, but the rank ordering of 

clusters by topography and atmosphere is persistent across 

months. 

 

Variable 
Airshed Cluster Level 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

DEM (m) 27.89 177.61 435.47 808.94 

PBL (hPa) 556.08 488.48 434.99 427.62 

PPT (mm) 174.36 154.87 133.94 113.59 

SRAD (W/m²) 218.31 218.96 214.92 211.65 

SUR (hPa) 1006.54 988.1 960.09 934.19 

TMAX (°C) 32.37 31.84 31.41 30.12 

TMIN (°C) 23.8 22.04 20.43 18.73 

VAP (kPa) 2.93 2.62 2.44 2.2 

WS (m/s) 1.84 1.41 1.21 1.28 

Table 1. Summary of mean values for topographic and 

meteorological variables across the four clusters. 

 

Cluster-means highlight systematic gradients that underpin 

these maps. Mean elevation rises monotonically from Cluster 1 

to 4 (≈28 m → ≈809 m), while surface pressure declines 

accordingly (≈1006 hPa → ≈934 hPa). Air temperature follows 

the lapse-rate expectation: TMAX decreases by roughly 2.3 °C 

and TMIN by ≈5.1 °C between lowland and highland clusters, 

indicating cooler nights and narrower diurnal ranges aloft. 

Atmospheric moisture proxies also decline with altitude; vapor 

pressure (VAP) drops by ≈0.7 kPa, consistent with drier 

boundary-layer conditions in uplands. Mean wind speed (WS) is 

highest in lowlands (≈1.84 m s⁻¹) and lower in 

transitional/highland zones (≈1.2–1.3 m s⁻¹), suggesting greater 

stagnation potential where terrain sheltering is stronger. 

 

Two variables speak directly to dispersion capacity. First, PBL 

pressure decreases from ≈556 hPa (Cluster 1) to ≈428 hPa 

(Cluster 4), reflecting a systematically higher PBL-top altitude 

over high terrain and a thinner column above the surface—an 

important control on vertical mixing. Second, shortwave 

radiation (SRAD) is modestly lower in highlands (≈212 W m⁻²) 

than in lowlands (≈218 W m⁻²), consistent with cooler, cloudier, 

orographically influenced conditions that can suppress 

convective growth on some days. Together with weaker winds, 

these differences help explain the observed tendency for 

transition and basin-rim zones to experience stagnant episodes 

in the cool/dry season. 

 

Seasonality is evident in the monthly cluster mosaics. From 

November to February, highland and transition classes expand 

and encroach farther into adjacent basins, coincident with lower 

temperatures and frequent stability. During the Southwest 

monsoon (May–October), transitional zones retract in many 

windward areas, and lowland extents stabilize, reflecting 

stronger synoptic ventilation and precipitation scavenging. This 

seasonal breathing of boundaries is most visible along 

mountain–valley interfaces in the North and along the western 
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cordillera. Despite these shifts, cluster identity at any given 

location is highly repeatable: most provinces remain in the same 

class or oscillate between a base class and its immediate 

neighbor (e.g., 2 ↔ 3), supporting the idea of stable geoclimatic 

regimes with seasonal modulation. 

 

Precipitation totals mirror the topographic ordering in this 

dataset (≈174 mm in lowlands to ≈114 mm in highlands for 

monthly modes), reinforcing that the identified clusters capture 

not only thermal and dynamical structure but also hydrological 

regimes. The joint behavior of DEM, PBL, SRAD, SUR, 

TMAX/TMIN, VAP, WS, and PPT confirms that the four 

clusters are physically interpretable “airshed environments”: (1) 

warm, moist, better-ventilated lowlands; (2–3) topographic 

transition belts with elevated stagnation risk; and (4) cool, drier 

highlands with distinct vertical structure. These results provide 

a reproducible basis for airshed-aware management, including 

seasonal targeting of monitoring and interventions in transition 

belts and basin interiors where stagnation and pollution 

accumulation are most likely. 

 

5.3 Future Airshed Zoning Developing  

To strengthen the physical basis of the zoning, a subsequent 

revision will incorporate explicit airflow diagnostics alongside 

DEM and meteorology. First, ventilation capacity (VC) will be 

computed as VC=WS10×PBLH, where WS10 is 10-m wind 

speed and PBLH is planetary boundary-layer height. Higher VC 

denotes greater flushing potential and lower risk of pollutant 

build-up. Second, stagnation frequency will be quantified as the 

monthly fraction of days meeting low-dispersion criteria (e.g., 

WS10 < 1.5 m s⁻¹, PBLH < 500 m, and precipitation < 1 mm), 

with thresholds calibrated to regional conditions. These metrics 

will be aggregated to OBC segments and co-analyzed with 

existing predictors to refine boundaries and identify persistent 

accumulation belts. 

 

Methodological transparency and validation will also be 

expanded. Because the present version prioritizes integrative 

mapping, several elements are under-specified and will be 

added: (i) choice of K reported with Elbow, Silhouette, and Gap 

statistics (using a one-SE rule); (ii) stability analysis via 

bootstrap resampling with Adjusted Rand Index summaries; and 

(iii) external/temporal holdouts, including independent PM₂.₅–

based external checks, year-wise temporal splits, and leave-one-

province-out spatial holdouts. These steps will document the 

robustness of cluster membership, quantify sensitivity to 

perturbations, and link regimes to observed pollution patterns 

across seasons. 

 

Together, the airflow metrics (VC, stagnation frequency) and 

the expanded validation suite are expected to (a) align “airshed” 

delineation more tightly with dispersion capacity, (b) provide 

reproducible diagnostics for selecting K and assessing stability, 

and (c) yield policy-relevant thresholds (e.g., low-VC/high-

stagnation alerts) for seasonal targeting of monitoring and 

interventions. These additions are planned for a subsequent 

revision given current time constraints. 

 

6. Conclusion 

This study delineated Thailand’s airshed regimes by integrating 

topography with multi-variable meteorology in an object-based, 

K-means framework applied to monthly composites for 2003–

2024. Guided by Elbow diagnostics, four physically 

interpretable clusters emerged—lowland, two transition belts, 

and highland—arranged monotonically by elevation and 

accompanied by coherent gradients in surface pressure, 

temperature, moisture proxies, wind speed, shortwave radiation, 

and planetary boundary-layer (PBL) structure. Cluster means 

show declining surface pressure and cooling (both TMAX and 

TMIN) with altitude, alongside reductions in vapor pressure and 

precipitation; winds are generally stronger in lowlands and 

weaker in transition/highland zones. Lower PBL pressure in 

highland settings (indicative of higher PBL tops) and modestly 

reduced shortwave radiation together help explain a heightened 

propensity for stagnant conditions in basin rims and foothills 

during the cool/dry season. 

 

Seasonality is pronounced yet systematic. From November to 

February, transition and highland classes expand into adjacent 

basins, consistent with lower temperatures and more frequent 

static stability; during the Southwest monsoon (May–October), 

transition belts retract in windward sectors as synoptic 

ventilation and wet scavenging strengthen. Despite these 

“breathing” boundaries, cluster identity at fixed locations is 

highly repeatable, indicating stable geoclimatic regimes 

modulated by seasonal forcing. This persistence suggests the 

clusters offer a reproducible spatial scaffold for air-quality 

management that respects physical, rather than administrative, 

boundaries. 

 

The zoning has immediate operational relevance. First, it 

enables seasonally targeted interventions: densifying monitoring 

and issuing advisories in transition belts and basin interiors 

where stagnation risk is elevated, particularly during 

November–February. Second, it provides a common spatial 

language for cross-provincial coordination, aligning 

surveillance, emission controls, and public communication with 

shared dispersion environments. Third, the regimes can be 

incorporated into forecasting and early-warning systems (e.g., 

regime-conditioned thresholds for PM₂.₅), potentially improving 

lead time with minimal additional data requirements. 

 

Several limitations bound these conclusions. The present 

delineation is dispersion-focused: it does not explicitly model 

emissions, chemical transformation, or long-range transport, 

and it emphasizes monthly modes rather than extremes. 

Reliance on gridded products introduces resolution and bias 

uncertainties, and coastal/complex terrain may require finer-

scale wind and land–sea-breeze diagnostics. In addition, aspects 

of methodological transparency—choice of K, stability under 

resampling, and external/temporal holdouts—remain under-

specified in the current version.  

 

Planned extensions will address these gaps. We will incorporate 

explicit airflow diagnostics, namely ventilation capacity (VC = 

WS10 × PBLH) and stagnation frequency (share of days 

meeting low-dispersion criteria), aggregate them to object level, 

and re-evaluate cluster structure and boundaries. Validation will 

be expanded to include Elbow/Silhouette/Gap (with a one-SE 

rule), bootstrap stability via Adjusted Rand Index, and 

external/temporal holdouts using independent PM₂.₅ 

observations. These enhancements will further align the zoning 

with the physical drivers of accumulation and ventilation, 

strengthening its utility for seasonally adaptive, cross-boundary 

air-quality management. 
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