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Abstract 
 
As one of the world’s fastest developing countries, urbanization in the Philippines occurs at a rapid pace – however, this process has 
been well established to exhibit negative climatic impacts. This study uses linear spectral unmixing (LSU) of a PRISMA 
hyperspectral image alongside land surface temperature (LST) data to establish the relationship between material abundance and 
LST, quantify said relationship through correlation analysis, and identify how materials contribute to surface temperature. Material 
fraction maps derived from PRISMA were validated using high-resolution PlanetScope imagery, yielding strong agreement for 
vegetation and built-up areas (R^2 = 0.8420 and 0.9007, respectively). Correlation analysis revealed that vegetation (r = -0.7808 and 
-0.7794) had strong negative correlations while impervious surfaces, particularly galvanized iron (GI) sheets (r = 0.7260 and 
0.7229), exhibited positive correlations with LST and UTFVI calculated using Landsat thermal image.  Multilinear regression 
further quantified these relationships showing that the presence of vegetation and GI sheets produced a strong cooling and warming 
effect, respectively, on LST; it also identified GI sheets as the most thermally impactful material. These findings demonstrate the 
effectiveness of combining hyperspectral and thermal remote sensing for UHI analysis and emphasize the need to consider 
material-specific thermal behavior in planning and building tropical urban environments. 
 
 

1.​ Introduction 
 
1.1​ Background of the Study 
 
Urbanization is defined as the large-scale movement of 
populations from rural to more urban settings. In 2018, the 
United Nations estimated that 55% of the world’s population 
live in urban areas; moreover, urban population is projected to 
increase to roughly 68% by 2050 (United Nations, 2018). As 
the growth of metropolitan areas furthers the development of 
spaces, rapid urbanization has become evident even in 
third-world countries. With major cities developing facilities, 
establishments, and infrastructures to service urban lifestyles, 
the material composition of these urbanized areas begins to 
change drastically on a localized scale. As this continues to 
occur, Alcantara et al. (2019) notes that the changes in material 
composition in the metro have been shown to bear significant 
effects on the climate of an area. 
 
One key characteristic in describing climate is land surface 
temperature (LST) which, as the name suggests, is the radiative 
temperature on the surface of the earth at a specific location. 
This provides insight for energy and water balance studies by 
quantifying the “redistribution of energy into latent and sensible 
heat fluxes” (Hulley et al., 2019). Studies identified 
contributing factors to changes in LST include the presence or 
absence of specific types of plants, density of said vegetation, 
and the amount of solar energy absorbed by surface features 
such as paved infrastructures and barren soil. 
The area’s ability to retain or dispel solar energy also 
diminishes as urban features begin to overtake natural ones. 
Due to this, LST, especially in densely urbanized areas, has 
been proven to house higher surface temperatures than that of 
its surrounding vegetatively dense areas, thus creating Surface 
Urban Heat Islands (UHIs).  

 
The presence of SUHIs, or UHIs in general, also bears negative 
consequences on the habitability of cities and causes issues 
towards the environment and its citizens. Higher surface 
temperatures impact both local atmosphere and human 
well-being, causing increased air temperature, higher levels of 
energy usage in cooling solutions, extreme heat events, and 
greater risks of illnesses related to heat and pollution 
(Grimmond, 2007; Ichinose et al., 2008; Mohajerani, 2017; 
Synnefa et al., 2011; Yang et al., 2015).  
 
1.2​ Research Objectives 
 
As surface materials have been proven to directly affect the 
local climate, this study aims to model UHIs in highly 
urbanized cities by relating LST with surface material 
percentage using regression analysis. 
 
To achieve this goal, the specific objectives are to: 
 

1.​ Estimate and map the percentages of common surface 
materials by using spectral unmixing of a 
hyperspectral image; 
 

2.​ Determine the existing LST-SUHI effect in the area; 
 

3.​ Provide detailed information regarding the 
relationship between material abundances and the 
LST-SUHI as well as what materials can contribute or 
mitigate this phenomenon. 

 
By identifying specific building materials’ contributions to the 
UHI phenomenon, proper allocation of materials when 
designing projects can be taken into account, allowing the 
mitigation of the thermal effects of urbanization. Furthermore, 
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derivative products such as LST maps of the project area puts 
UHIs into a local context. 
 
1.3 Scope and Limitations 
 
This study is confined to the City of Taguig, a highly urbanized 
city in the Metropolitan Manila region. It covers a total area of 
47.88 square kilometers, houses 28 barangays with a mixed 
usage for residential, commercial, and industrial purposes, 
making it fit for mapping and land use and land cover (LULC) 
research. Figure 1 shows the varied land use and land cover 
(LULC) features within the City of Taguig. 
 

 
Figure 1. The City of Taguig with the satellite image showing 

the spatial distribution of various land use and land cover 
features. 

 
Furthermore, the study also focuses on the direct effect of 
surface material percentage on LST and SUHIs. As such, linear 
spectral unmixing, correlation, and regression analysis were 
used as main methodologies. Satellite images, namely, 
Landsat-9, PRISMA, and PlanetScope acquired in 2023, were 
utilized for data extraction. 
 
In terms of the feasible methodologies, the study remains 
restricted to pure pixel sampling from the satellite image due to 
the inability to conduct in-situ measurements, to the lack of a 
suitable sample for materials made of concrete, and to mitigate 
the different effects of specific atmospheric conditions. 
 

2. Review of Related Literature 
 
2.1 ​ LST Estimation and SUHI Detection in Remote  

Sensing 
 
LST serves as a quantitative basis for analyzing the climate of a 
specific area and dictates whether the conditions of the climate 
have deviated from the expected patterns. Chapman et al. 

(2017) reported that urban growth was found to exhibit large 
impacts on local temperatures, reaching up to a 5°C increase. 
They accredited this increase to a combination of climate 
change and the UHI phenomenon where two notable claims are 
made. Firstly, climate change, depending on the location, can 
both increase (e.g. Chicago and Beijing) or decrease (e.g. Paris 
and Brussels) the effects of heat islands. Secondly, the study 
notes that after considering both factors of climate change and 
UHIs, the temperature increase associated with the UHI always 
turned out to be higher. With these in play, it is only sensible 
that the study adopts this line of thinking and dissects the 
factors that influence the LST and SUHIs of an area. 
 
Numerous studies have investigated LST and SUHI dynamics 
using satellite imageries, with Landsat being one of the most 
commonly used due to its overall accessibility, long temporal 
coverage, and appropriate spatial resolution for analysis. 
Thermal infrared bands from Landsat missions, particularly 
Landsat 5, 7, 8, and more recently 9, have been utilized to 
estimate LST using methods such as split-window technique 
and single-channel algorithm. More importantly, with Landsat 
Collection 2, Level-2 LST products have been made available, 
removing the need for atmospheric correction models. These 
recent innovations have enabled assessments of urban thermal 
patterns, evaluation of land cover change impacts, and 
identification of SUHI-vulnerable zones (Ahmed, 2017; Cruz et 
al., 2020; Estoque et al., 2016; Parastatidis et al, 2017; Sahoo et 
al., 2022).  
 
2.2​ LST-UHI as a Consequence of Land Use and Land 
Cover (LULC) Change 
 
A study by Alcantara et al. (2019) expresses interest in the 
same field by exploring the modeling of UHIs itself using 
ordinary least squares and geographically weighted regression 
making use of Landsat-8 images. Three of the parameters used 
are normalized difference vegetation index (NDVI), normalized 
difference built-up index (NDBI), and surface albedo. NDVI 
and NDBI are indicators of vegetation and level of 
urbanization, respectively. Multiple studies have established 
that the former has a negative relation to LSTs while the latter 
has positive relation.   
 
Additionally, Alcantara et al. (2019) utilize surface albedos to 
factor in the incoming solar radiation that is reflected by said 
surface. Areas in which much of the solar radiation is absorbed 
instead of reflected indicate the absorption of solar radiation 
which leads to the trapping of heat. This, in tandem with LST 
findings, allows for the identification of UHIs as well as their 
scope of effects. 
 
It is concluded in most studies that UHI intensity is greatly 
affected by the densification of built environments in urban 
areas. Some specific examples are in Kandy City and Nuwara 
Eliya, both tropical mountain regions in Sri Lanka. From 1996 
to 2017, positive correlation between the density of built-up 
lands and mean LST was seen, while the latter has an inverse 
correlation with the density of agricultural lands; although, the 
direct effect of which was offset by the initiatives of forest 
lands preservation led by the government (Raganalage et al., 
2018; Raganalage et al., 2019). Both studies show an increase 
in surface UHI along the urban-rural gradient, solidifying the 
role of built-up spaces in UHI formation. The same 
observations are seen in a local mountainous city, as well. 
Estoque and Murayama (2017) shows that the temperature 
difference between urban and rural zones rose from 4.0℃ to 
roughly 8.2℃ in the hilly Baguio City in the Philippines.  
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Another observation made in the 2017 Baguio City study of 
Estoque and Murayama (2017) is the temperature difference in 
areas with artificial impervious surfaces (IS) and green spaces 
(GS) which increased from 2.7°C to 3.4℃ during the study 
period of 1987 to 2015. Further studies by Estoque et al. (2016) 
using Landsat-8 OLI/TIRS data in the three major southeast 
Asian megacities of Bangkok (Thailand), Jakarta (Indonesia), 
and Manila (Philippines) also show a strong correlation of 
LST-IS-GS along the urban-rural gradient. The study implies 
that a significantly larger GS cover is necessary to combat the 
LST effects of IS area, especially in areas nearer to city centers 
as GS density is relatively low within these zones. Importance 
should also be given to the size, shape, complexity, and 
aggregation of GS to better combat higher LSTs. Moreover, in 
Alcantara et al. (2019) and Sahoo et al. (2022), industrial and 
commercial land use areas are shown to have higher mean LSTs 
as compared to agricultural areas and water bodies. This is in 
line with the idea that industrial and commercial areas have 
more artificial IS as compared to agricultural areas which are 
rich in GS and vegetation. 
 
2.3 ​ Application of Hyperspectral Data in LST-UHI 
Assessment 
 
While remotely-sensed data derived from satellite images have 
been prominent in urban studies, methodologies that can 
identify and characterize exact features and surface types that 
consist of these landscapes are still limited. Currently, recent 
UHI studies in the Philippines usually utilize indices such as 
NDVI, NDBI, and UTFVI and categorize LULC into four 
types: built-up, vegetation, barren soil, and surface water. 
 
Alternatively, Priyadarshini et al. (2021) used hyperspectral 
dataset to determine which specific urban materials aggravate 
more heat in Kalaburagi, India. This technique uses spectral 
signatures derived from both satellite images and field 
measurements for validation. These libraries provide 
reflectance spectra accurate enough to differentiate urban 
materials in the study area. It is determined that common 
materials used in pavement and building construction such as 
cement, asbestos, and black soil exhibit more heat; thus, 
effectively exacerbating the UHI phenomenon. In Despini et al. 
(2021), “modifiable surfaces” such as roofs and parking areas 
are identified and given higher surface albedos to further 
understand how common materials can help in mitigating 
UHIs.  
 
To bridge the gap in existing UHI studies and localize the 
hyperspectral approach, this study incorporates thermal data 
from Landsat-9 TIRS/OLI and hyperspectral data from 
PRISMA. The study identified and provided unique 
characterization of urban surface material types in relation to 
thermal hot/cold spots. 
 

3. Methodology 
 
This study builds on existing research on LST and SUHIs by 
exploring how hyperspectral images can enhance SUHI 
modeling through detailed detection of material composition 
percentages.  
 
Figure 2 shows the three main process groups of the study: 
characterization of LST-UHI, determination of surface material 
percentage through spectral unmixing, and the analysis of their 
relationship with each other.  

 
Figure 2. Flowchart of the overall methodology integrating 

LST-UHI characterization, spectral unmixing, and correlation 
and regression analysis. 

 
Meanwhile, Table 1 summarizes the remotely sensed datasets 
used in this study. Landsat-9, PRISMA, and PlanetScope 
imagery were acquired to derive LST, perform spectral 
unmixing for material percentages, and validate results, 
respectively. It should be noted that the Landsat-9 and PRISMA 
images were acquired one month apart. While this temporal 
mismatch may introduce minor discrepancies due to seasonal 
dynamics, the short gap during the dry season minimizes 
substantial changes in land cover. 
 

Satellite 
Imagery 

Date of 
Acquisition 

Spatial 
Resolution 

Purpose 

Landsat-9 March 12, 
2023 

30 m LST 
calculation 

PRISMA April 20, 
2023 

30 m Spectral 
unmixing to 

generate 
material 

percentages 

PlanetScope March 22, 
2023 

3 m Data 
validation 

Table 1. Summary of remotely-sensed datasets. 
 

Each satellite product was used to provide different parameters 
to the dataset. Landsat-9 utilizes Operational Land Imager 2 
(OLI-2) and the Thermal Infrared Sensor 2 (TIRS-2) to provide 
thermal data through its Collection 2 Level 2 Science Products. 
(USGS, 2022). PRISMA on the other hand collects data across 
236 spectral bands allowing for precise identification and 
characterization of various materials and features on the Earth’s 
surface (ASI, 2020). Finally, PlanetScope provides high 
resolution satellite images  at 3 - 5 meters that may be used for 
data validation (Planet Labs, 2022) 
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3.1 ​ Image Pre-Processing 
 
The following initial steps were taken to prepare the data sets 
for analysis: 
 
The formula applied to the acquired Landsat-9 Level 2 Surface 
Temperature (ST) Science Product to calculate the final land 
surface temperature (LST) was: 
 

​ ​ (1) 𝑇
𝑆

= 0. 00341802 * 𝑇
𝑖( ) + 149. 0

where​ ​  = Final LST in Kelvin; 𝑇
𝑆

​ ​  = Initial LST in Kelvin; 𝑇
𝑖

​ ​ 0.00341802 is the scale factor; 
​ ​ 149.0 is the offset value.  
 
For PRISMA imagery, ground control points were established 
to georeference and align the PRISMA image to the acquired 
boundary layer as validated through PlanetScope. Second, 
minimum noise fraction (MNF) analysis was performed to 
remove unwanted variability and enhance signal-to-noise ratio 
in the image. 
 
For the purpose of this study, each component was visually 
inspected and only the first 16 MNF bands were used and 
reverted back through the inverse MNF algorithm, producing 
the denoised image. The resulting forward MNF output also 
served as the input for the pixel purity index (PPI) algorithm, a 
process necessary in choosing pure pixels for endmember 
spectra collection. These processes are summarized in the 
following flowchart in Figure 3. 
 

 
Figure 3.  Pre-processing steps for the acquired PRISMA 

image. 
 
3.2 ​ UTFVI Calculation 
 
UTFVI is an LST-based index used to provide quantitative and 
qualitative assessment of the severity of the presence of UHIs 
within a specific study area. This index is computed by using 
the following formula: 

 

 ​​ ​ (2) 𝑈𝑇𝐹𝑉𝐼 =
𝑇

𝑆
−𝑇

𝑚𝑒𝑎𝑛

𝑇
𝑆

where​  = LST of a specific point in Kelvin; 𝑇
𝑆

​  = Mean LST within the subject area in  𝑇
𝑚𝑒𝑎𝑛

              Kelvin. 
 

To assess the derived values qualitatively, threshold values to 
categorize the intensities were set by Ahmed (2017) as shown 
in Table 2 below: 
 

Urban Thermal Field 
Variance Index 

Presence of UHI 
Phenomenon 

<0.000 
0.000-0.005 
0.005-0.010 
0.010-0.015 

None 
Weak 

Moderate 
Strong 

0.015 - 0.020 Stronger 
> 0.020 Strongest 

Table 2. Qualitative categories of UHI intensity based on 
UTFVI. 

 
3.3​ Linear Spectral Unmixing 
 
To conduct linear spectral unmixing, the following workflow 
illustrated in Figure 4 was followed: 
 

 
Figure 4. Process flowchart for surface material percentage 

determination using linear spectral unmixing. 
 

Prior to conducting the actual unmixing, a spectral library was 
built by employing the Pixel Purity Index (PPI) to identify 
suitable sample pixels within the image that are made up of a 
single material. These pure pixel samples were taken  per 
endmember. Using this, a pixel with high PPI value indicates a 
higher likelihood of being dominated by a single material, 
whereas a low PPI value suggests heterogenous pixels. Table 3 
shows the following endmembers that were utilized for the 
unmixing: 
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Surface Class Specific Endmembers  

Vegetation 
Aquatic Vegetation 

Grass 
Tree 

Impervious Materials Asphalt 
Galvanized Iron (GI) Sheets 

Soil Barren Soil 
Water River Water 

Table 3. Endmembers used in the spectral unmixing algorithm. 
 

Once the spectral library was built, the unmixing decomposed 
mixed pixel spectra into its constituent endmembers and 
provided abundance fractions within each pixel, based on the 
assumption that each mixed pixel’s spectral signature is a linear 
combination of the spectral signatures of the pure endmembers 
present in it. 
 
To validate its outputs, pixel-based unsupervised classification 
using the ISODATA algorithm was performed onto the 
PlanetScope image with classifications of vegetation, asphalt, 
GI sheets, soil, and water. Using a 150 x 150 meter fishnet grid, 
the total percentage cover of both vegetation and impervious 
surfaces were computed. This, together with the relative 
abundance of each endmember for water, vegetation and 
impervious materials as derived from PRISMA, were extracted 
to serve as validation samples. Linear regression analysis was 
performed to determine the coefficient of determination 
between the two datasets. 
 
3.4​ LST-UTFVI vs Surface Material Abundance 
 
A total of 6 000 random points were generated throughout the 
study area using a simple random sampling approach. At each 
point, data were extracted for LST, UTFVI, and the percentage 
cover of vegetation, asphalt, GI sheets, soil, and water. These 
datasets were then analyzed using correlation and regression 
analysis to assess the relationships between surface material 
abundance and thermal characteristics. 
 

4.​ Results and Discussion 
 
4.1​ Linear Spectral Unmixing 
 
Refining the LSU processes for the study consisted of a series 
of trial-and-error in order to determine the optimal 
configuration that best suits the image. Generally speaking 
however, each trial utilized similar configurations of 
constrained unmixing with a weight of one. Significant changes 
and milestones to the process are further discussed below. 
 
The first iteration was the most straightforward approach 
towards unmixing, utilizing a library of eight endmembers 
(including an additional concrete endmember) derived from the 
pure pixels of the image. This provided an image that was able 
to detect the presence of the majority of materials in a pixel; up 
to 2 or 3 of the primary materials within said pixel – however 
the numerical percentage showed the presence of large negative 
values which should not be the case when assessing the 
percentage abundance of materials. 
 
The presence of large and negative values in linear spectral 
unmixing, while not uncommon, is documented by L3Harris 
Technologies to be a sign of either missing endmembers crucial 
to the unmixing or samples not well characterized enough to act 

as bases for the unmixing. A sample area and the results of this 
iteration of unmixing are shown in Figure 5. 
 

 
Figure 5. Surface material abundance fractions of the initial 

implementation. 
 
It was further noted that GI sheets which should have been the 
majority composition, were not detected in the unmixing. Upon 
investigation, significant differences in the spectral signatures 
of differently painted roofs were observed, specifically in the 
visible and infrared spectrum. Due to these differences, a 
general sample of GI sheets performed poorly, as the created 
sample spectra attempts to compensate for these differences, 
effectively removing a defining feature of the endmember’s 
spectral signature. 
 
In response, a total of four GI sheet endmembers were 
temporarily added to the spectral library namely neutral (N), 
red (R), green (G), and blue (B) samples in order to cover the 
different possible colors of roofs. This had now allowed for 
better detection of the GI sheet endmembers when recombined 
to act as a general indicator for GI sheets. In addition to this, 
asphalt and concrete were also found to be problematic 
endmembers, exhibiting similar spectral signature patterns 
(Figure 6), which the unmixing often could not differentiate – 
thus, these endmembers were consolidated as one.  
 

 
Figure 6. Comparison of the spectral signatures between asphalt 

and concrete endmembers. 
 

The researchers further noted that separating the unmixing of 
vegetation and built-up areas using the normalized difference 
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vegetation index (NDVI) to provide initial categorization of the 
image, the unmixing resulted in more sensible and acceptable 
values. A sample area and the results of this iteration of 
unmixing are shown in Figure 7. 
 

 
Figure 7. Surface material abundance fractions after initial 
broad classification and separated GI sheet endmembers. 

 
At this stage of the iterative process, the researchers noted two 
criteria that led to deeming the output as satisfactory: (1) the 
unmixing no longer returned the large negative values found in 
prior iterations, indicating that the quality of the sample 
endmembers are sufficient; and (2) the results of the unmixing 
sums up to 1, providing a good indicator of the respective 
material percentages. 
 
The unmixing of these materials resulted in the fraction images 
shown in Figure 8. These images of the study area showcase the 
spatial distribution of each material. Vegetative areas are 
clustered together while impervious materials dominate the 
majority of the city. Light-colored pixels correspond to higher 
amounts of material abundance; conversely, lower abundance 
corresponds to darker-colored areas, with a range of 0-100%. 
 

 
Figure 8. Spatial distribution of surface materials.  

within the study area. Fraction images from the top-left position 
in a clockwise direction: (a) True-color image, (b) vegetation, 

(c) asphalt, (d) water, (e) soil, (f) GI sheets. 
 
 

4.2​ Spatial Distribution of LST-UHI 
 
The LST values of Taguig City ranged widely from 29.17°C to 
50.32°C on March 12, 2023. The lowest LST values were 
found around the vegetative coastal areas along Laguna de Bay 
while the highest values were located in large industrial and 
densely populated residential areas. These were then used to 
compute for UHI and represented graphically in Figure 9. 
 

 
Figure 9. UHI presence in Taguig City on March 12, 2023. 

 
A zonal statistics tool was also used to compute the mean urban 
thermal field variance index (UTFVI) values of the city’s 
barangays. Figure 10 shows that the lowest UTFVI values are 
along the vegetative coastal areas, in agreement with the LST 
findings above. Although the majority of the city is residential 
in nature, higher mean UTFVI values were found in densely 
populated residential areas as compared to localities with mixed 
vegetation and impervious surfaces (e.g., barangays with 
high-end villages that contain golf courses and pocket parks). 
 

 
Figure 10. UHI presence in Taguig City per barangay. 
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4.3​ Correlation between LST-UHI and Surface 
Material Percentage 
 
Using random points within the subject area, the percent cover 
of the endmembers versus LST and UHI were analyzed 
independently. Table 4 shows that relative to LST, a strong 
negative correlation to vegetation was found with values of 
-0.7808 and an R-squared value of 0.6096 – indicating that 
60.96% of variability in LST can be explained by the presence 
of vegetation. On the other hand, notable positive correlations 
with both asphalt and GI sheets, with correlation values of 
0.4868 and a much stronger 0.7260, respectively. Coefficient of 
determination values for asphalt and GI sheets are 0.2369 and 
0.5271, respectively. Soil and water have significantly weaker 
correlation coefficients of -0.2588 and -0.3376, respectively, 
alongside weak coefficients of determination values of 0.0670 
and 0.1139, respectively. 
 

Endmember  𝑅  𝑅2

Vegetation -0.7808 0.6096 
Soil -0.2588 0.0670 
Water -0.3376 0.1139 
Asphalt 0.4868 0.2369 
GI Sheets 0.7260 0.5271 

Table 4. Coefficients of correlation and determination of 
endmembers to LST. 

 
In respect to UTFVI, the general trend still remains the same. 
Vegetation was shown in Table 5 to have a strong negative 
correlation with UTFVI, with a correlation coefficient of 
-0.7794 and a coefficient of determination value of 0.6075, 
Conversely, significant positive correlations were found 
between asphalt and GI sheet materials with correlation 
coefficient values of 0.4836 and 0.7229, respectively. With 
coefficients of determination of 0.2339 and 0.5226, 
respectively. Finally, soil and water both have negative 
correlations with UTFVI with values of -0.2555 and -0.3419, 
respectively, alongside weak coefficient of determination values 
at only 0.0653 and 0.1169, respectively. 
 

Endmember  𝑅  𝑅2

Vegetation -0.7794 0.6075 
Soil -0.2555 0.065 
Water -0.3419 0.1169 
Asphalt 0.4836 0.2339 
GI Sheets 0.7229 0.5226 

Table 5. Coefficients of correlation and determination of 
endmembers to UTFVI. 

 
4.4 ​ Multiple Linear Regression (MLR) Model for LST 
and UTFVI 
 
The variables with the strongest and significant correlation 
namely abundance fractions for vegetation, asphalt, and GI 
sheets were used in creating the linear regression model for 
both LST and UTFVI. As indicated by the p-values, all 
variables used in the regression model were significant. The 
RMSE values for the two models were 1.4280 and 0.0806, 
respectively. Agreeing with the results derived above, 
vegetation fraction has negative correlation with both LST and 
UTFVI; meanwhile, asphalt and GI sheet fractions have strong 
positive correlation with the two variables. Table 6 summarizes 
the results of the MLR modeling of both LST and UTFVI. 

Parameter LST (in Celsius) UTFVI 

Multiple R 0.8049 0.8025 

R^2 0.6478 0.6440 

RMSE 1.4280 0.0806 

Intercept 40.1620 -0.0067 

P-value 0.0000 0.0000 

Vegetation 
Coefficient -2.0999 -0.0068 

P-value 0.0000 0.0000 

Asphalt 
Coefficient  4.9656 0.0156 

P-value 0.0000 0.0000 

GI Sheets 
Coefficient 6.0401 0.0189 

P-value 0.0000 0.0000 

Table 6. Results of the multiple linear regression modeling of 
LST and UTFVI.  

 
5.​ Conclusions and Recommendations 

 
The insights from the results of this study outline the flaws and 
possible improvements that can be made in the implementation 
of urbanization. Firstly, it shows that there is definite evidence 
of the heat-retentive abilities of galvanized iron sheets, which 
are prevalent as roofing materials of both commercial buildings 
and residential houses. Conversely, it reaffirms the claims made 
by UHI studies regarding the cooling effect that vegetative 
areas have on land surface temperature, and showcases the 
cooling ability of green spaces. Together, these findings 
showcase the primary flaw in the country’s current system of 
urbanization: its built-up features, specifically buildings and 
houses, are built too densely, with hardly any space between 
them, and without room for green spaces to mitigate this.  
 
This urbanization pattern is not unique to Metro Manila. 
Emerging cities like Baguio, Cebu, Iloilo, and Davao, while 
currently retaining relatively larger peri-urban green spaces, are 
undergoing rapid urbanization and densification. By replicating 
this analysis, experts can gain comparative insights across 
cities, showing how variations in urban forms and neighboring 
landscape patterns can influence UHI intensity. 
 
The researchers recommend the following: firstly, the use of a 
larger subject area in order to gain an understanding of the 
phenomenon at a larger scale. As it stands, Taguig City was 
used mainly due to the presence of mixed land cover; however, 
Taguig is still situated in the heart of the metro, locked amongst 
other major cities. By utilizing a larger subject area, the study 
allows for analysis of areas that transition into the greener more 
rural areas outside of Metro Manila as well as the potential for 
other material samples for more elusive endmembers such as 
concrete and wood. Alongside this, on-ground samples and 
verification may also further open other endmembers that have 
been limited by the PPI-based methodology. Furthermore, other 
robust analysis methods such as geographically weighted 
regression (GWR) may also provide further sub-citywide 
insights from the data. Finally, when available, the researchers 
believe that higher spatial resolutions of hyperspectral images 
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will greatly aid in the advancement of the study – allowing for 
more potential material samples as well as more in-depth 
results from the unmixing process. 
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