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Abstract

As one of the world’s fastest developing countries, urbanization in the Philippines occurs at a rapid pace — however, this process has
been well established to exhibit negative climatic impacts. This study uses linear spectral unmixing (LSU) of a PRISMA
hyperspectral image alongside land surface temperature (LST) data to establish the relationship between material abundance and
LST, quantify said relationship through correlation analysis, and identify how materials contribute to surface temperature. Material
fraction maps derived from PRISMA were validated using high-resolution PlanetScope imagery, yielding strong agreement for
vegetation and built-up areas (R*2 = 0.8420 and 0.9007, respectively). Correlation analysis revealed that vegetation (r = -0.7808 and
-0.7794) had strong negative correlations while impervious surfaces, particularly galvanized iron (GI) sheets (r = 0.7260 and
0.7229), exhibited positive correlations with LST and UTFVI calculated using Landsat thermal image. Multilinear regression
further quantified these relationships showing that the presence of vegetation and GI sheets produced a strong cooling and warming
effect, respectively, on LST; it also identified GI sheets as the most thermally impactful material. These findings demonstrate the
effectiveness of combining hyperspectral and thermal remote sensing for UHI analysis and emphasize the need to consider

material-specific thermal behavior in planning and building tropical urban environments.

1. Introduction
1.1 Background of the Study

Urbanization is defined as the large-scale movement of
populations from rural to more urban settings. In 2018, the
United Nations estimated that 55% of the world’s population
live in urban areas; moreover, urban population is projected to
increase to roughly 68% by 2050 (United Nations, 2018). As
the growth of metropolitan areas furthers the development of
spaces, rapid urbanization has become evident even in
third-world countries. With major cities developing facilities,
establishments, and infrastructures to service urban lifestyles,
the material composition of these urbanized areas begins to
change drastically on a localized scale. As this continues to
occur, Alcantara et al. (2019) notes that the changes in material
composition in the metro have been shown to bear significant
effects on the climate of an area.

One key characteristic in describing climate is land surface
temperature (LST) which, as the name suggests, is the radiative
temperature on the surface of the earth at a specific location.
This provides insight for energy and water balance studies by
quantifying the “redistribution of energy into latent and sensible
heat fluxes” (Hulley et al, 2019). Studies identified
contributing factors to changes in LST include the presence or
absence of specific types of plants, density of said vegetation,
and the amount of solar energy absorbed by surface features
such as paved infrastructures and barren soil.

The area’s ability to retain or dispel solar energy also
diminishes as urban features begin to overtake natural ones.
Due to this, LST, especially in densely urbanized areas, has
been proven to house higher surface temperatures than that of
its surrounding vegetatively dense areas, thus creating Surface
Urban Heat Islands (UHIs).

The presence of SUHIs, or UHIs in general, also bears negative
consequences on the habitability of cities and causes issues
towards the environment and its citizens. Higher surface
temperatures impact both local atmosphere and human
well-being, causing increased air temperature, higher levels of
energy usage in cooling solutions, extreme heat events, and
greater risks of illnesses related to heat and pollution
(Grimmond, 2007; Ichinose et al., 2008; Mohajerani, 2017;
Synnefa et al., 2011; Yang et al., 2015).

1.2 Research Objectives

As surface materials have been proven to directly affect the
local climate, this study aims to model UHIs in highly
urbanized cities by relating LST with surface material
percentage using regression analysis.

To achieve this goal, the specific objectives are to:

1. Estimate and map the percentages of common surface
materials by using spectral unmixing of a
hyperspectral image;

2. Determine the existing LST-SUHI effect in the area;

3. Provide detailed information regarding the
relationship between material abundances and the
LST-SUHI as well as what materials can contribute or
mitigate this phenomenon.

By identifying specific building materials’ contributions to the
UHI phenomenon, proper allocation of materials when
designing projects can be taken into account, allowing the
mitigation of the thermal effects of urbanization. Furthermore,
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derivative products such as LST maps of the project area puts
UHIs into a local context.

1.3 Scope and Limitations

This study is confined to the City of Taguig, a highly urbanized
city in the Metropolitan Manila region. It covers a total area of
47.88 square kilometers, houses 28 barangays with a mixed
usage for residential, commercial, and industrial purposes,
making it fit for mapping and land use and land cover (LULC)
research. Figure 1 shows the varied land use and land cover
(LULC) features within the City of Taguig.
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Figure 1. The City of Taguig with the satellite image showing
the spatial distribution of various land use and land cover
features.

Furthermore, the study also focuses on the direct effect of
surface material percentage on LST and SUHIs. As such, linear
spectral unmixing, correlation, and regression analysis were
used as main methodologies. Satellite images, namely,
Landsat-9, PRISMA, and PlanetScope acquired in 2023, were
utilized for data extraction.

In terms of the feasible methodologies, the study remains
restricted to pure pixel sampling from the satellite image due to
the inability to conduct in-situ measurements, to the lack of a
suitable sample for materials made of concrete, and to mitigate
the different effects of specific atmospheric conditions.

2. Review of Related Literature

2.1 LST Estimation and SUHI Detection in Remote
Sensing

LST serves as a quantitative basis for analyzing the climate of a
specific area and dictates whether the conditions of the climate
have deviated from the expected patterns. Chapman et al.

(2017) reported that urban growth was found to exhibit large
impacts on local temperatures, reaching up to a 5°C increase.
They accredited this increase to a combination of climate
change and the UHI phenomenon where two notable claims are
made. Firstly, climate change, depending on the location, can
both increase (e.g. Chicago and Beijing) or decrease (e.g. Paris
and Brussels) the effects of heat islands. Secondly, the study
notes that after considering both factors of climate change and
UHIs, the temperature increase associated with the UHI always
turned out to be higher. With these in play, it is only sensible
that the study adopts this line of thinking and dissects the
factors that influence the LST and SUHIs of an area.

Numerous studies have investigated LST and SUHI dynamics
using satellite imageries, with Landsat being one of the most
commonly used due to its overall accessibility, long temporal
coverage, and appropriate spatial resolution for analysis.
Thermal infrared bands from Landsat missions, particularly
Landsat 5, 7, 8, and more recently 9, have been utilized to
estimate LST using methods such as split-window technique
and single-channel algorithm. More importantly, with Landsat
Collection 2, Level-2 LST products have been made available,
removing the need for atmospheric correction models. These
recent innovations have enabled assessments of urban thermal
patterns, evaluation of land cover change impacts, and
identification of SUHI-vulnerable zones (Ahmed, 2017; Cruz et
al., 2020; Estoque et al., 2016, Parastatidis et al, 2017; Sahoo et
al., 2022).

2.2 LST-UHI as a Consequence of Land Use and Land
Cover (LULC) Change

A study by Alcantara et al. (2019) expresses interest in the
same field by exploring the modeling of UHIs itself using
ordinary least squares and geographically weighted regression
making use of Landsat-8 images. Three of the parameters used
are normalized difference vegetation index (NDVI), normalized
difference built-up index (NDBI), and surface albedo. NDVI
and NDBI are indicators of vegetation and level of
urbanization, respectively. Multiple studies have established
that the former has a negative relation to LSTs while the latter
has positive relation.

Additionally, Alcantara et al. (2019) utilize surface albedos to
factor in the incoming solar radiation that is reflected by said
surface. Areas in which much of the solar radiation is absorbed
instead of reflected indicate the absorption of solar radiation
which leads to the trapping of heat. This, in tandem with LST
findings, allows for the identification of UHIs as well as their
scope of effects.

It is concluded in most studies that UHI intensity is greatly
affected by the densification of built environments in urban
areas. Some specific examples are in Kandy City and Nuwara
Eliya, both tropical mountain regions in Sri Lanka. From 1996
to 2017, positive correlation between the density of built-up
lands and mean LST was seen, while the latter has an inverse
correlation with the density of agricultural lands; although, the
direct effect of which was offset by the initiatives of forest
lands preservation led by the government (Raganalage et al.,
2018; Raganalage et al., 2019). Both studies show an increase
in surface UHI along the urban-rural gradient, solidifying the
role of built-up spaces in UHI formation. The same
observations are seen in a local mountainous city, as well.
Estoque and Murayama (2017) shows that the temperature
difference between urban and rural zones rose from 4.0°C to
roughly 8.2°C in the hilly Baguio City in the Philippines.
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Another observation made in the 2017 Baguio City study of
Estoque and Murayama (2017) is the temperature difference in
areas with artificial impervious surfaces (IS) and green spaces
(GS) which increased from 2.7°C to 3.4°C during the study
period of 1987 to 2015. Further studies by Estoque et al. (2016)
using Landsat-8 OLI/TIRS data in the three major southeast
Asian megacities of Bangkok (Thailand), Jakarta (Indonesia),
and Manila (Philippines) also show a strong correlation of
LST-IS-GS along the urban-rural gradient. The study implies
that a significantly larger GS cover is necessary to combat the
LST effects of IS area, especially in areas nearer to city centers
as GS density is relatively low within these zones. Importance
should also be given to the size, shape, complexity, and
aggregation of GS to better combat higher LSTs. Moreover, in
Alcantara et al. (2019) and Sahoo et al. (2022), industrial and
commercial land use areas are shown to have higher mean LSTs
as compared to agricultural areas and water bodies. This is in
line with the idea that industrial and commercial areas have
more artificial IS as compared to agricultural areas which are
rich in GS and vegetation.

2.3 Application of Hyperspectral Data in LST-UHI
Assessment

While remotely-sensed data derived from satellite images have
been prominent in urban studies, methodologies that can
identify and characterize exact features and surface types that
consist of these landscapes are still limited. Currently, recent
UHI studies in the Philippines usually utilize indices such as
NDVI, NDBI, and UTFVI and categorize LULC into four
types: built-up, vegetation, barren soil, and surface water.

Alternatively, Priyadarshini et al. (2021) used hyperspectral
dataset to determine which specific urban materials aggravate
more heat in Kalaburagi, India. This technique uses spectral
signatures derived from both satellite images and field
measurements for validation. These libraries provide
reflectance spectra accurate enough to differentiate urban
materials in the study area. It is determined that common
materials used in pavement and building construction such as
cement, asbestos, and black soil exhibit more heat; thus,
effectively exacerbating the UHI phenomenon. In Despini et al.
(2021), “modifiable surfaces” such as roofs and parking areas
are identified and given higher surface albedos to further
understand how common materials can help in mitigating
UHIs.

To bridge the gap in existing UHI studies and localize the
hyperspectral approach, this study incorporates thermal data
from Landsat-9 TIRS/OLI and hyperspectral data from
PRISMA. The study identified and provided unique
characterization of urban surface material types in relation to
thermal hot/cold spots.

3. Methodology

This study builds on existing research on LST and SUHIs by
exploring how hyperspectral images can enhance SUHI
modeling through detailed detection of material composition
percentages.

Figure 2 shows the three main process groups of the study:
characterization of LST-UHI, determination of surface material
percentage through spectral unmixing, and the analysis of their
relationship with each other.

Data
Acquizition

v

Landsat-8 )
p PRISMA Image dmember
Image -
. Processing Spectra
Processing =

LsU

I
o
]
A A

no
¥ ¥ -

LST.UHI Material ¢ thn

ICharacterization] Abundanc “;Pﬁr.. N

ves
Databaze
L8T-
Ammdance

jb Correlation and
Zonal Analysiz Linear

Regression

Figure 2. Flowchart of the overall methodology integrating
LST-UHI characterization, spectral unmixing, and correlation
and regression analysis.

Meanwhile, Table 1 summarizes the remotely sensed datasets
used in this study. Landsat-9, PRISMA, and PlanetScope
imagery were acquired to derive LST, perform spectral
unmixing for material percentages, and validate results,
respectively. It should be noted that the Landsat-9 and PRISMA
images were acquired one month apart. While this temporal
mismatch may introduce minor discrepancies due to seasonal
dynamics, the short gap during the dry season minimizes
substantial changes in land cover.

Satellite Date of Spatial Purpose
Imagery Acquisition | Resolution
Landsat-9 March 12, 30 m LST
2023 calculation
PRISMA April 20, 30 m Spectral
2023 unmixing to
generate
material
percentages
PlanetScope | March 22, 3m Data
2023 validation

Table 1. Summary of remotely-sensed datasets.

Each satellite product was used to provide different parameters
to the dataset. Landsat-9 utilizes Operational Land Imager 2
(OLI-2) and the Thermal Infrared Sensor 2 (TIRS-2) to provide
thermal data through its Collection 2 Level 2 Science Products.
(USGS, 2022). PRISMA on the other hand collects data across
236 spectral bands allowing for precise identification and
characterization of various materials and features on the Earth’s
surface (ASI, 2020). Finally, PlanetScope provides high
resolution satellite images at 3 - 5 meters that may be used for
data validation (Planet Labs, 2022)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-5-W4-2025-11-2026 | © Author(s) 2026. CC BY 4.0 License. 13



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-5/W4-2025
Philippine Geomatics Symposium (PhilGEOS) 2025 "Enhancing Human Quality of Life through Geospatial Technologies",
24-25 November 2025, Quezon City, Philippines

31 Image Pre-Processing

The following initial steps were taken to prepare the data sets
for analysis:

The formula applied to the acquired Landsat-9 Level 2 Surface
Temperature (ST) Science Product to calculate the final land
surface temperature (LST) was:

T = (0. 00341802 * Ti) +149.0 1)

where T § Final LST in Kelvin;

Tl_ = Initial LST in Kelvin;

0.00341802 is the scale factor;
149.0 is the offset value.

For PRISMA imagery, ground control points were established
to georeference and align the PRISMA image to the acquired
boundary layer as validated through PlanetScope. Second,
minimum noise fraction (MNF) analysis was performed to
remove unwanted variability and enhance signal-to-noise ratio
in the image.

For the purpose of this study, each component was visually
inspected and only the first 16 MNF bands were used and
reverted back through the inverse MNF algorithm, producing
the denoised image. The resulting forward MNF output also
served as the input for the pixel purity index (PPI) algorithm, a
process necessary in choosing pure pixels for endmember
spectra collection. These processes are summarized in the
following flowchart in Figure 3.

Georefencing to
VHE

h 4

Forward MNF

h
MNF Pixel Punty
Crutput Index

b

Inverze MINF

h 4

ennized
Image

Figure 3. Pre-processing steps for the acquired PRISMA
image.

3.2 UTFVI Calculation

UTFVI is an LST-based index used to provide quantitative and
qualitative assessment of the severity of the presence of UHIs
within a specific study area. This index is computed by using
the following formula:

UTFVI = e )

N

where T = LST of a specific point in Kelvin;

= Mean LST within the subject area in
mean

Kelvin.

To assess the derived values qualitatively, threshold values to
categorize the intensities were set by Ahmed (2017) as shown
in Table 2 below:

Urban Thermal Field Presence of UHI
Variance Index Phenomenon
<0.000 None
0.000-0.005 Weak
0.005-0.010 Moderate
0.010-0.015 Strong
0.015 - 0.020 Stronger
> 0.020 Strongest
Table 2. Qualitative categories of UHI intensity based on
UTFVL
33 Linear Spectral Unmixing

To conduct linear spectral unmixing, the following workflow
illustrated in Figure 4 was followed:

Pre-processed Endmember
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Figure 4. Process flowchart for surface material percentage
determination using linear spectral unmixing.
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Prior to conducting the actual unmixing, a spectral library was
built by employing the Pixel Purity Index (PPI) to identify
suitable sample pixels within the image that are made up of a
single material. These pure pixel samples were taken per
endmember. Using this, a pixel with high PPI value indicates a
higher likelihood of being dominated by a single material,
whereas a low PPI value suggests heterogenous pixels. Table 3
shows the following endmembers that were utilized for the
unmixing:
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Surface Class Specific Endmembers

Aquatic Vegetation
Grass
Tree

Vegetation

Asphalt

Impervious Materials Galvanized Iron (GI) Sheets

Soil Barren Soil
Water River Water
Table 3. Endmembers used in the spectral unmixing algorithm.

Once the spectral library was built, the unmixing decomposed
mixed pixel spectra into its constituent endmembers and
provided abundance fractions within each pixel, based on the
assumption that each mixed pixel’s spectral signature is a linear
combination of the spectral signatures of the pure endmembers
present in it.

To validate its outputs, pixel-based unsupervised classification
using the ISODATA algorithm was performed onto the
PlanetScope image with classifications of vegetation, asphalt,
GI sheets, soil, and water. Using a 150 x 150 meter fishnet grid,
the total percentage cover of both vegetation and impervious
surfaces were computed. This, together with the relative
abundance of each endmember for water, vegetation and
impervious materials as derived from PRISMA, were extracted
to serve as validation samples. Linear regression analysis was
performed to determine the coefficient of determination
between the two datasets.

34 LST-UTFVI vs Surface Material Abundance

A total of 6 000 random points were generated throughout the
study area using a simple random sampling approach. At each
point, data were extracted for LST, UTFVI, and the percentage
cover of vegetation, asphalt, GI sheets, soil, and water. These
datasets were then analyzed using correlation and regression
analysis to assess the relationships between surface material
abundance and thermal characteristics.

4. Results and Discussion
4.1 Linear Spectral Unmixing

Refining the LSU processes for the study consisted of a series
of trial-and-error in order to determine the optimal
configuration that best suits the image. Generally speaking
however, each trial utilized similar configurations of
constrained unmixing with a weight of one. Significant changes
and milestones to the process are further discussed below.

The first iteration was the most straightforward approach
towards unmixing, utilizing a library of eight endmembers
(including an additional concrete endmember) derived from the
pure pixels of the image. This provided an image that was able
to detect the presence of the majority of materials in a pixel; up
to 2 or 3 of the primary materials within said pixel — however
the numerical percentage showed the presence of large negative
values which should not be the case when assessing the
percentage abundance of materials.

The presence of large and negative values in linear spectral
unmixing, while not uncommon, is documented by L3Harris
Technologies to be a sign of either missing endmembers crucial
to the unmixing or samples not well characterized enough to act

as bases for the unmixing. A sample area and the results of this
iteration of unmixing are shown in Figure 5.
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Figure 5. Surface material abundance fractions of the initial
implementation.

It was further noted that GI sheets which should have been the
majority composition, were not detected in the unmixing. Upon
investigation, significant differences in the spectral signatures
of differently painted roofs were observed, specifically in the
visible and infrared spectrum. Due to these differences, a
general sample of GI sheets performed poorly, as the created
sample spectra attempts to compensate for these differences,
effectively removing a defining feature of the endmember’s
spectral signature.

In response, a total of four GI sheet endmembers were
temporarily added to the spectral library namely neutral (N),
red (R), green (G), and blue (B) samples in order to cover the
different possible colors of roofs. This had now allowed for
better detection of the GI sheet endmembers when recombined
to act as a general indicator for GI sheets. In addition to this,
asphalt and concrete were also found to be problematic
endmembers, exhibiting similar spectral signature patterns
(Figure 6), which the unmixing often could not differentiate —
thus, these endmembers were consolidated as one.

Spectra for Asphalt and Concrete
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Figure 6. Comparison of the spectral signatures between asphalt
and concrete endmembers.

The researchers further noted that separating the unmixing of
vegetation and built-up areas using the normalized difference
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vegetation index (NDVI) to provide initial categorization of the
image, the unmixing resulted in more sensible and acceptable
values. A sample area and the results of this iteration of
unmixing are shown in Figure 7.

Abundance Fraction of Different Surface
Materials
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Figure 7. Surface material abundance fractions after initial
broad classification and separated GI sheet endmembers.

At this stage of the iterative process, the researchers noted two
criteria that led to deeming the output as satisfactory: (1) the
unmixing no longer returned the large negative values found in
prior iterations, indicating that the quality of the sample
endmembers are sufficient; and (2) the results of the unmixing
sums up to 1, providing a good indicator of the respective
material percentages.

The unmixing of these materials resulted in the fraction images
shown in Figure 8. These images of the study area showcase the
spatial distribution of each material. Vegetative areas are
clustered together while impervious materials dominate the
majority of the city. Light-colored pixels correspond to higher
amounts of material abundance; conversely, lower abundance
corresponds to darker-colored areas, with a range of 0-100%.

Figure 8. Spatial distribution of surface materials.
within the study area. Fraction images from the top-left position
in a clockwise direction: (a) True-color image, (b) vegetation,
(c) asphalt, (d) water, (e) soil, (f) GI sheets.

4.2 Spatial Distribution of LST-UHI

The LST values of Taguig City ranged widely from 29.17°C to
50.32°C on March 12, 2023. The lowest LST values were
found around the vegetative coastal areas along Laguna de Bay
while the highest values were located in large industrial and
densely populated residential areas. These were then used to
compute for UHI and represented graphically in Figure 9.
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Figure 9. UHI presence in Taguig City on March 12, 2023.

A zonal statistics tool was also used to compute the mean urban
thermal field variance index (UTFVI) values of the city’s
barangays. Figure 10 shows that the lowest UTFVI values are
along the vegetative coastal areas, in agreement with the LST
findings above. Although the majority of the city is residential
in nature, higher mean UTFVI values were found in densely
populated residential areas as compared to localities with mixed
vegetation and impervious surfaces (e.g., barangays with
high-end villages that contain golf courses and pocket parks).
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Figure 10. UHI presence in Taguig City per barangay.
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4.3 Correlation between LST-UHI
Material Percentage

and Surface

Using random points within the subject area, the percent cover
of the endmembers versus LST and UHI were analyzed
independently. Table 4 shows that relative to LST, a strong
negative correlation to vegetation was found with values of
-0.7808 and an R-squared value of 0.6096 — indicating that
60.96% of variability in LST can be explained by the presence
of vegetation. On the other hand, notable positive correlations
with both asphalt and GI sheets, with correlation values of
0.4868 and a much stronger 0.7260, respectively. Coefficient of
determination values for asphalt and GI sheets are 0.2369 and
0.5271, respectively. Soil and water have significantly weaker
correlation coefficients of -0.2588 and -0.3376, respectively,
alongside weak coefficients of determination values of 0.0670
and 0.1139, respectively.

Endmember R R2
Vegetation -0.7808 0.6096
Soil -0.2588 0.0670
Water -0.3376 0.1139
Asphalt 0.4868 0.2369
GI Sheets 0.7260 0.5271

Table 4. Coefficients of correlation and determination of
endmembers to LST.

In respect to UTFVI, the general trend still remains the same.
Vegetation was shown in Table 5 to have a strong negative
correlation with UTFVI, with a correlation coefficient of
-0.7794 and a coefficient of determination value of 0.6075,
Conversely, significant positive correlations were found
between asphalt and GI sheet materials with correlation
coefficient values of 0.4836 and 0.7229, respectively. With
coefficients of determination of 0.2339 and 0.5226,
respectively. Finally, soil and water both have negative
correlations with UTFVI with values of -0.2555 and -0.3419,
respectively, alongside weak coefficient of determination values
at only 0.0653 and 0.1169, respectively.

Endmember R R2
Vegetation -0.7794 0.6075
Soil -0.2555 0.065
Water -0.3419 0.1169
Asphalt 0.4836 0.2339
GI Sheets 0.7229 0.5226

Table 5. Coefficients of correlation and determination of

endmembers to UTFVL

4.4 Multiple Linear Regression (MLR) Model for LST
and UTFVI

The variables with the strongest and significant correlation
namely abundance fractions for vegetation, asphalt, and GI
sheets were used in creating the linear regression model for
both LST and UTFVI. As indicated by the p-values, all
variables used in the regression model were significant. The
RMSE values for the two models were 1.4280 and 0.0806,
respectively. Agreeing with the results derived above,
vegetation fraction has negative correlation with both LST and
UTFVI; meanwhile, asphalt and GI sheet fractions have strong
positive correlation with the two variables. Table 6 summarizes
the results of the MLR modeling of both LST and UTFVL

Parameter LST (in Celsius) UTFVI
Multiple R 0.8049 0.8025
R™2 0.6478 0.6440
RMSE 1.4280 0.0806
Intercept 40.1620 -0.0067
P-value 0.0000 0.0000
egention -2.0999 -0.0068
P-value 0.0000 0.0000
égg?glctien . 4.9656 0.0156
P-value 0.0000 0.0000
gi:’t?ﬁeceltesm 6.0401 0.0189
P-value 0.0000 0.0000
Table 6. Results of the multiple linear regression modeling of

LST and UTFVL

5. Conclusions and Recommendations

The insights from the results of this study outline the flaws and
possible improvements that can be made in the implementation
of urbanization. Firstly, it shows that there is definite evidence
of the heat-retentive abilities of galvanized iron sheets, which
are prevalent as roofing materials of both commercial buildings
and residential houses. Conversely, it reaffirms the claims made
by UHI studies regarding the cooling effect that vegetative
areas have on land surface temperature, and showcases the
cooling ability of green spaces. Together, these findings
showcase the primary flaw in the country’s current system of
urbanization: its built-up features, specifically buildings and
houses, are built too densely, with hardly any space between
them, and without room for green spaces to mitigate this.

This urbanization pattern is not unique to Metro Manila.
Emerging cities like Baguio, Cebu, Iloilo, and Davao, while
currently retaining relatively larger peri-urban green spaces, are
undergoing rapid urbanization and densification. By replicating
this analysis, experts can gain comparative insights across
cities, showing how variations in urban forms and neighboring
landscape patterns can influence UHI intensity.

The researchers recommend the following: firstly, the use of a
larger subject area in order to gain an understanding of the
phenomenon at a larger scale. As it stands, Taguig City was
used mainly due to the presence of mixed land cover; however,
Taguig is still situated in the heart of the metro, locked amongst
other major cities. By utilizing a larger subject area, the study
allows for analysis of areas that transition into the greener more
rural areas outside of Metro Manila as well as the potential for
other material samples for more elusive endmembers such as
concrete and wood. Alongside this, on-ground samples and
verification may also further open other endmembers that have
been limited by the PPI-based methodology. Furthermore, other
robust analysis methods such as geographically weighted
regression (GWR) may also provide further sub-citywide
insights from the data. Finally, when available, the researchers
believe that higher spatial resolutions of hyperspectral images
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will greatly aid in the advancement of the study — allowing for
more potential material samples as well as more in-depth
results from the unmixing process.
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