ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-5/\W4-2025
Philippine Geomatics Symposium (PhilGEOS) 2025 "Enhancing Human Quality of Life through Geospatial Technologies",
24-25 November 2025, Quezon City, Philippines

Comparative Analysis of UAV Photogrammetry and Terrestrial Laser Scanning
for 3D Building Reconstruction

Jarence David D. Casisirano’, Alexis Richard C. Claridades'

'Department of Geodetic Engineering, University of the Philippines Diliman, Quezon City, Philippines
-{jdcasisirano, acclaridades}@up.edu.ph

Keywords: UAV photogrammetry, TLS, point cloud comparison, 3D building reconstruction, accuracy assessment

Abstract

Recently, unmanned aerial vehicle (UAV) photogrammetry has gained popularity as an alternative to terrestrial laser scanners (TLS)
for collecting 3D information, particularly for building models. However, comprehensive comparative assessments of the two methods
remain limited in the literature. This study compares TLS and UAV-based photogrammetry for 3D building modeling. 3D point cloud
data is collected in a study area using both methods, with ground truth data collected using a total station. The resulting point clouds
were evaluated through multiple quantitative metrics, including RMSE, cloud-to-cloud distance, surface area, point density, planarity,
roughness, and surface variation, in addition to qualitative assessments of model completeness and feature reconstruction. Results show
that TLS achieved lower RMSE and smoother, more accurate facade geometry, particularly in near-ground areas. However, this method
failed to capture rooftop structures due to occlusion. The UAV model successfully captured upper structures and finer architectural
features but showed noisier surfaces and missing data at the building base. Surface geometry analyses further revealed that TLS outputs
were more planar and consistent. Meanwhile, UAV data exhibited greater variation and reconstruction artifacts. The findings highlight
the strengths and limitations of each method depending on the modeling objective. While UAV photogrammetry may be sufficient for
applications such as solar potential estimation or volume analysis, TLS is more suitable for high-precision tasks like facade
documentation or structural monitoring. For projects requiring both accuracy and coverage, a hybrid approach is recommended. This

study emphasizes their complementary value and offers guidance for urban-scale 3D data acquisition strategies.

1. Introduction
1.1 Background of the Study

As modern cities rapidly shift toward sustainable and smart
infrastructure, digital twins and detailed 3d building models
become increasingly important. Ketzler et al. (2020) stated that
“3D city model” is still the most prominent term in the field of
3D GIS and that the term “digital twin” has seen a significant
increase in academic literature, particularly in the context of
cities and built environment studies. Rightfully so, accurate and
detailed 3D building models play a pivotal role in many modern
geospatial applications, including but not limited to urban
planning, infrastructure monitoring, disaster management, and
climate change adaptation (Fan et al., 2021; Riaz et al., 2023).

Among the many techniques available to produce accurate 3D
building models, terrestrial laser scanners (TLS) and unmanned
aerial vehicles (UAVs) are two of the most common. TLS can
capture highly accurate, dense, and geometrically reliable point
clouds. However, TLS comes with significant challenges,
including price, technical know-how, and occlusions brought
about by line-of-sight (LOS) limitations. On the other hand, UAV
photogrammetry has gained popularity in recent years because of
its portability, cost-effectiveness, and ability to rapidly collect
data remotely from a range of perspectives (Dominici et al., 2017,
Fernandez-Hernandez et al., 2015). With the emergence of
consumer-grade drones, even non-expert users can now generate
3D spatial data with ease. Still, the quality and accuracy of UAV-
derived point clouds will vary depending on factors such as
camera quality, lighting conditions, target object properties, and
flight path designs, to name a few.

While, independently, both technologies are already well
established, academic literature discussing the comparative
assessment between TLS and UAV photogrammetry is scarce,

particularly in the Philippines, where 3D modeling and digital
twin technologies are still in the early stages of maturity. Most
previous studies focus on less detailed but large-scale 3D
mapping using high-end equipment such as Light Detection and
Ranging (LiDAR) systems, leaving a gap in understanding how
consumer-level UAV systems perform against TLS systems in
micro-scale contexts (Santillan et al., 2015; Villanueva et al.,
2015). This paper addresses that gap by presenting a case study
comparing 3D building point clouds generated using TLS and
UAYV photogrammetry. The comparison is supported by ground
truth data collected via total station measurements.

1.2 Significance of the Study

This study contributes to the growing field of 3D geospatial data
acquisition and analysis by providing a head-to-head comparison
of TLS and low-cost UAV photogrammetry for building-scale
modeling. While TLS has traditionally been viewed as the
standard in accuracy and completeness, recent advancements in
photogrammetry and drone camera technology suggest that even
consumer-grade UAVs can produce, to some extent, competitive
results. The findings of this study aim to support geospatial
professionals, urban planners, and researchers in selecting
appropriate data acquisition techniques for different types of
applications. Understanding the trade-offs between these two
methods is critical for digital twin development, urban planning,
and 3D modeling, especially in contexts where cost, portability,
and time constraints are significant considerations. This paper
aims to help practitioners and researchers who must balance these
competing factors in their workflows make informed decisions.

1.3 Research Objectives

This study aims to evaluate and compare the performance of
terrestrial laser scanning (TLS) and UAV photogrammetry in
generating 3D building models. It involves generating point
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cloud datasets of the same structure using a DJI Mini 3 Pro drone
and a terrestrial laser scanner. The study also assesses the
accuracy and quality of the UAV-derived point cloud using TLS
data and total station measurements as references and evaluates
the models based on various spatial metrics. Finally, the study
identifies the strengths and limitations of each method in terms
of spatial quality and provides recommendations on their
suitability for various geospatial modeling applications.

1.4 Review of Related Work

TLS has long been established as a benchmark for acquiring
highly accurate and dense 3D data in the built environment
(Sternberg et al., 2004). By emitting laser pulses and measuring
their returns, TLS can capture precise geometric details with
millimeter-level accuracy (Stenz et al., 2020), making it preferred
for reliable as-built documentation and structural monitoring.
However, it is limited by high equipment costs, restricted
mobility, and occlusions from line-of-sight (LOS) obstructions.

In contrast, UAV photogrammetry reconstructs 3D models from
overlapping aerial images, with modern software automating
image alignment and point cloud generation. Its affordability,
ease of deployment, and rapid data acquisition have driven its
popularity (Nex et al., 2022) and it has been successfully applied
in construction monitoring, disaster response, and archaeology
(Dominici et al., 2017; Fernandez-Hernandez et al., 2015).
Compact, consumer-grade UAVs have made 3D spatial data
collection more accessible, though quality remains dependent on
environmental conditions, image resolution, surface texture, and
flight planning. In urban settings, insufficient overlap, motion
blur, and narrow-corridor occlusions may produce gaps in the
data (Wu et al., 2018).

Both TLS and UAV photogrammetry have proven valuable for
3D building modeling, each with unique strengths. Comparative
studies typically evaluate geometric accuracy, completeness, and
structural fidelity, using metrics such as cloud-to-cloud (C2C)
distance (Kamnik et al., 2019; Liu et al., 2023), root mean square
error (RMSE) from ground control points or total station data,
point density, completeness, and sometimes roughness, planarity,
and volume deviation. Kersten & Lindstaedt (2012) found TLS
denser and more accurate, while photogrammetry provided
adequate detail for visualization. Ferndndez-Hernandez et al.
(2015) showed UAV photogrammetry could produce accurate,
interpretable models with sufficient overlap and camera
calibration.

Most prior comparisons use high-end UAVs and TLS in open,
controlled settings. Fewer assess low-cost drones, which lack
RTK modules and are more sensitive to environmental
conditions. Micro-scale studies such as on single buildings or in
dense urban contexts are especially scarce, particularly in the
Philippines. This study addresses these gaps by comparing point
clouds from a consumer-grade UAV (DJI Mini 3 Pro) and a TLS
unit for a single building in a micro-scale urban context. Ground
truth from total station measurements provides an independent
accuracy benchmark, offering a practical evaluation of low-cost
3D data acquisition workflows in real-world conditions.

2. Methodology

This section discusses the methodology for this study, as
illustrated and summarized in Figure 1.
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Figure 1. Overall methodology workflow.

2.1 Study Area

The study was conducted at the National Institute of Molecular
Biology and Biotechnology (NIMBB), located within the
University of the Philippines Diliman campus in Quezon City,
Philippines (approximately 14.65072° N, 121.07157° E), as
shown in Figure 2.

The building was selected as the target structure due to its well-
defined geometry, multiple accessible facades, and relatively
clear surrounding space, which are advantageous characteristics
for both TLS and UAV photogrammetry. The building is a multi-
story facility composed of multiple rectangular artifacts and
overhangs. It also has a uniform white paint with trees present in
the surrounding area of the building, both of which introduce
difficult but necessary challenges in aerial image acquisition and
processing. This specific setting reflects common use-case
scenarios for 3D building modeling in urban areas using TLS and
UAYV photogrammetry. It provides a relevant test for evaluating
the performance and suitability of low-cost UAV

photogrammetry compared to TLS in similar built environments.

% 4 R

Figure 2. Study area (Google Earth, 2025)
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2.2 Data Collection

2.2.1 UAYV Data Collection: The data acquisition process for
the building followed a segmented approach. The building was
divided into five main sections: a nadir (top-down) view of the
building and its immediate surroundings and one view for each
of the four cardinal sides. As a result, aerial image acquisition
was not continuous; the drone was manually repositioned
between segments to capture each facade individually. This
strategy was necessary due to space limitations and the presence
of surrounding trees on all sides of the building, which restricted
continuous flight paths. All flights were conducted during
favorable weather conditions—either around 10:00 AM or 1:00
PM—under clear skies and bright sunlight, providing adequate
illumination for capturing surface details.

Initially, flight automation and pre-programmed waypoints using
advanced drone software were heavily considered to streamline
data collection. However, this approach proved virtually
impossible in practice due to the physical constraints of the study
site. The presence of narrow gaps, tight corners, and tree
branches extending close to the building walls made it difficult
to define safe flight paths with adequate clearance. Furthermore,
flight planning involved not only horizontal trajectories for nadir
views but also vertical paths for capturing building facades,
further complicating the process and increasing operational risk.
These challenges, combined with the potential for GPS signal
degradation and collision hazards during automated flights, led
to the decision to carry out all image acquisition through manual
piloting. This approach provided precise control over both drone
positioning and camera orientation, thereby ensuring data quality
and equipment safety during close-range image captures.

UAV-based imagery was acquired using the DJI Mini 3 Pro, a
compact, consumer-grade remotely piloted aircraft (RPA)
equipped with a 1/1.3” CMOS camera capable of capturing 48
MP still images. A total of 1,392 images were collected during
the mission and distributed across five main building sections: 50
images for the nadir view, 406 for the front facade (south-facing),
527 for the back facade (north-facing), 265 for the right facade
(east-facing), and 144 for the left facade (west-facing). The
number of images per facade varied due to differences in wall
dimensions, drone-to-surface distance, and shooting density
driven by on-the-fly overlap estimation.

Because the image acquisition was performed manually, overlap
percentages were only estimated based on flight trajectory and
shooting intervals. An approximate 60% forward overlap and
60% side overlap were achieved across most segments. Image
capture for the facades followed a vertical sweeping approach in
which the drone was flown up and down to capture multiple
height levels per wall. As a result, the altitude varied
continuously throughout this process, in contrast to the nadir
segment, which was captured at a relatively constant altitude of
approximately 50 meters. Additionally, the drone’s lateral
distance from the facades was dynamically adjusted to avoid
nearby obstructions, such as tree branches, which posed collision
risks. While these adjustments ensured safe proximity and
equipment protection, they also contributed to variations in
acquisition geometry. Nevertheless, these adaptations were
necessary due to the tight spatial constraints and environmental
obstructions present at the study site.

2.22 TLS Data Collection: TLS data collected from a
previous study (Ingles et al., 2024) in the same area was used in
this paper. The TLS data collection was conducted using a
handheld Foxtech SLAM100 device. It utilizes simultaneous and
localization mapping technology for mobile 3D point cloud
acquisition. The scanning followed a predefined walking route
around the building. One operator carried the scanner, and
another monitored the trajectory using the SLAM GO
application. A steady walking pace of approximately Skm/h was
ensured under clear weather conditions to ensure optimal data
quality, and a 60-second initialization phase was completed
before scanning. To reduce the noise in the point cloud, the best
effort was made to minimize movement during acquisition. This
method allowed access to areas difficult to capture using tripod-
mounted scanners. However, care was taken to maintain
consistent motion and scanner orientation.

223 Ground Truth Measurements: Ground truth
measurements were obtained using a total station (TS). The TS
was operated in reflector-less mode, providing an independent
reference dataset for evaluating the geometric accuracy of the
point clouds generated by UAV photogrammetry and TLS.
Establishing a conventional geodetic or project control network
using known reference points for TS setup was not feasible for
the study due to environmental constraints such as dense
vegetation and obstructed sightlines. Instead, the TS was
positioned at stable and site-appropriate locations near each
building facade. It was operated locally to collect the relative
coordinates of identifiable structural features and artifacts, such
as building corners and window edges. This process was
conducted separately for each facade, resulting in four distinct
local coordinate systems—each internally consistent but not
references to a global reference network. While this approach did
not allow for absolute georeferencing of the ground truth
measurements, it enabled the collection of dimensionally valid
and reliable measurements within each localized setup. This
adaptive methodology, though unconventional, was appropriate
for the study’s primary goal of evaluating the geometric fidelity
of the 3D reconstructions rather than their absolute positioning.
The relative coordinates collected were sufficient for calculating
physically meaningful dimensions such as object length and
widths used for quantitative assessment of model accuracy in
relation to real-world building geometry.

2.3 Processing Workflow

2.3.1 UAYV Photogrammetry Processing: First, a custom
Python script was used to group the captured UAV images based
on the acquisition time stamps, effectively segregating them into
five sets corresponding to the nadir view and each of the four
building facades. All the UAV photogrammetric data were
processed using Agisoft Metashape following a structured and
semi-automated workflow. The image groups were imported into
separate chunks within the Metashape project to allow for
independent processing. Within each chunk, images were aligned
using medium accuracy settings that enabled both generic and
reference preselection. After alignment, dense point clouds were
generated via depth map computation with medium quality and
mild filtering. This process was repeated for each of the five
chunks. To integrate the datasets, shared markers were manually
placed on common architectural features across the chunks for a
marker-based chunk alignment. Finally, the chunks were then
merged into a unified project while preserving their respective
point clouds and tie points.
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23.2 TLS Point Cloud Integration: The initially
unreferenced TLS-derived point cloud was also imported into
Metashape as a separate chunk. Using the same marker-based
alignment method, it was aligned to the UAV model. Markers
were placed on visually identifiable features (e.g., building
corners and facade edges) present in both datasets. The alignment
was performed without adjusting the scale of the TLS point cloud
to ensure that the original dimensions of both the datasets were
preserved. This method allowed for a meaningful comparison
between the UAV and TLS point clouds.

2.3.3  Ground Truth Data Processing: The ground truth data
from the total station contains relative ENZ (Easting, Northing,
Elevation) coordinates. Using these coordinates, linear distances
between structural features, such as wall lengths and window
spans, were computed directly. Although not georeferenced,
these measurements were dimensionally accurate and provided a
reliable basis for comparing real-world dimensions against those
derived from point cloud reconstructions.

2.4 Point Cloud Assessment

The accuracy and quality of the 3D building models were
assessed using selected metrics. All evaluations were conducted
using CloudCompare, an open-source point cloud analysis
platform. The first metric was the completeness assessment. It
involved a visual comparison of both datasets to identify missing
or occluded regions. Then, the root mean squared error (RMSE)
of measured distances was calculated by comparing real-world
lengths obtained from total station measurement data with
equivalent dimensions extracted from the UAV- and TLS-
derived models. Key features such as wall windows and wall
lengths were measured. Second, C2C deviation analysis was
performed to quantify the spatial differences between UAV and
TLS point clouds. The TLS dataset was used as the reference.
The statistical outputs were generated to assess consistency
across surfaces. Finally, point cloud density was calculated to
compare the resolution of each dataset. This calculation provided
insight into the level of surface detail captured by each method.

The point clouds were also converted into triangulated mesh
models, which were manually segmented by building sections
using 3D processing software to calculate surface areas.
Planarity, roughness, and surface variation analyses were
performed using neighborhood-based geometric descriptors to
quantify surface flatness, local texture deviations, and changes in
surface normal orientation, respectively. Scalar field
visualizations and histograms were used to interpret geometric
characteristics. Additionally, a qualitative assessment was
conducted by visually inspecting the models’ structure,
completeness, and mesh quality, with attention to occlusions,
artifacts, and fine architectural features. All data processing and
analysis were performed using Agisoft Metashape and
CloudCompare.

3. Results and Discussion

This section presents a comparative analysis of the 3D data
generated from UAV photogrammetry and TLS. These datasets
were also evaluated against ground truth data obtained from the
total station survey. Quantitative metrics were checked, and
qualitative assessments were performed to evaluate geometric
fidelity, surface quality, and completeness. These results
collectively provide insight into the relative performance and
limitations of UAV- and TLS-derived point clouds.

3.1 Visual Comparison of Point Clouds

Figure 3 shows the point clouds produced from UAV
photogrammetry and TLS. These outputs exhibit contrasting
qualities that reflect their respective acquisition methods. The
UAV-derived model captures comprehensive top-down and
angled views. It effectively reproduced roof geometry and facade
textures with realistic color. However, occlusion due to
vegetation and the presence of floating artifacts slightly
diminishes its structural definition. On the other hand, the TLS
point cloud resulted in clearer wall and base geometry because of
its close-range and ground-based acquisition. Still, it suffers from
substantial vegetation obstruction, introducing extraneous points,
and lacks color information, which limits visual interpretability.
These visual and structural differences formed the basis for the
succeeding quantitative and qualitative assessments.

Figure 3. Point clouds derived from UAV (left) and TLS (right)
3.2 RMSE of Measured Distances

A total of 23 architectural features across all the building fagades
were measured and compared against total station ground truth
data to evaluate the dimensional accuracy of the UAV- and TLS-
derived point clouds. The resulting overall RMSE is 0.120 meters
for the UAV and 0.070 meters for the TLS, as shown in Table 1.
The TLS consistently achieved lower absolute errors across most
features, especially in horizontal spans such as fagade and
window widths. These errors indicate that, overall, TLS provided
a more accurate representation of real-world distances. For
context, previous UAV-based building modeling studies have
reported RMSE values as low as 0.015 m when conditions are
optimal (Sani et al., 2022).

Facade UAV RMSE (m) TLS RMSE (m)
Back Facade 0.1106 0.0601
Right Facade 0.0189 0.0753
Left Facade 0.1216 0.0305
Front Facade 0.1613 0.0882
Overall 0.1195 0.0697

Table 1. RMSE Comparison per Facade

The most pronounced UAV error was recorded on the front
facade (0.1613 m), likely due to visual obstructions such as trees
near the building entrance. In contrast, the TLS data showed the
highest error on the right facade (0.0753 m). However, this is still
relatively low compared to UAVs. Interestingly, the left facade
showed the most favorable result for TLS (0.0305 m RMSE),
possibly due to minimal obstructions and simpler geometry on
that side. While the UAV-derived model demonstrated slightly
higher RMSE overall, the deviations remained within the
commonly accepted tolerance of a few centimeters for building
modeling, considering equipment grade and environmental
limitations during acquisition (Mirza et al., 2023; Sani et al.,
2022). The above results emphasize the strength of TLS in
accurate facade reconstruction while also demonstrating the
UAV model’s adequacy in areas with less occlusion.
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3.3 Cloud-to-Cloud (C2C) Distance Analysis

To evaluate geometric alignment between the UAV- and TLS-
derived point clouds, a C2C distance analysis was conducted
using the TLS dataset as the reference, resulting in the top-down
C2C scalar field map in Figure 4 and the histogram of C2C
distances shown in Figure 5. While the TLS dataset lacked point
coverage for the roof due to its ground-based acquisition
perspective, the top-view comparison was still conducted to
assess alignment across the building’s visible horizontal and
upper fagade structures. Roof regions in the TLS dataset appear
as high-deviation zones in the C2C results; however, these
differences are not indicative of modeling errors in either dataset,
but rather a direct consequence of occlusion and incomplete
overlap. This reinforces the complementary nature of the two
methods and highlights the potential benefits of integrating
UAV-derived roof data with TLS-acquired facade detail for
complete building coverage.

Figure 4. Top View C2C Absolute Distance Visualization

As visualized in Figure 4, most deviations fall within the blue-to-
green spectrum. These deviations correspond to sub-meter
differences. However, significant deviations were observed in the
roof—represented by circular zones with higher C2C values.
This result was primarily caused by the TLS dataset lacking point
coverage for the roof area, leading to exaggerated discrepancies
in those areas when compared to the fully captured UAV model.

Gauss: mean = 1.217119 / std.dev. = 1.300505 [5785 classes]
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Figure 5. Distribution of C2C Distances between Point Clouds

In contrast, the facade walls exhibit consistent alignment with
only minimal variation along vertical surfaces where both
datasets have complete overlap. The histogram in Figure 5
confirms this spatial observation. The distribution is right-
skewed, with a peak around 1.2 meters and a long tail extending
to higher values, further supporting the presence of localized
outliers and roof deviations. The computed mean distance of
1.217 m and standard deviation (SD) of 1.301 m reflects
moderate geometric variation, primarily due to the absence of

TLS data on the roof. Since the TLS scan lacked visibility for
elevated horizontal surfaces such as the roof, large discrepancies
in those regions are expected and do not necessarily indicate
modeling error. Instead, these results underscore the need for
integrating complementary datasets when full coverage is
required. These results affirm that while both datasets are mostly
aligned in the building’s primary geometry, further refinement is
needed in occlusion-prone zones.

3.4 Point Cloud Density

Surface density analysis reveals significant contrasts between the
TLS and UAV-derived point clouds in terms of data resolution,
completeness, and spatial coverage. The TLS dataset showed
extremely high-density values, particularly concentrated near the
scanner’s position—primarily at the base of the scan box—where
oversampling often occurred, while very few points were
captured on the roof. This uneven distribution is a result of the
TLS scanner’s ground-based position, which leads to dense point
capture near the scanner but limited visibility and data loss in
higher, occluded areas such as the roof. These patterns
underscore the occlusion-sensitive limitation of TLS when used
alone for capturing complex vertical structures.

The UAV dataset, as reflected in the surface density distribution
shown in Figure 6, demonstrated a more consistent point density
overall. Unlike the TLS model, which exhibited a widespread due
to localized high-density clusters near the scanner, the UAV point
cloud shows a tighter range of values with fewer extreme outliers.
This consistency can be attributed to uniform flight coverage and
overlapping image acquisition. While the UAV’s maximum
density was lower than that of TLS, the reduced SD suggests
more reliable coverage across the building envelope. However,
the density near ground-level facade sections remained limited
due to the difficulty of safely piloting the UAV at low altitudes
while maintaining sufficient overlap. Overall, the histogram
supports the UAV’s strength in producing a more balanced and
predictable data distribution despite its lower peak density.

Gauss: mean = 7690.400391 / std.dev. = 3936.911480 [5785 classes]
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Figure 6. UAV point cloud surface density value distribution

3.5 Surface Area

Surface area measurements for each building section were
extracted from both UAV- and TLS-derived meshes and are
summarized in Table 2. The UAV model recorded the highest
surface area for the roof (1495.11 m?), while the TLS reported no
roof data due to its limited vertical field of view. On the facades,
the TLS generally produced larger surface areas, notably on the
back facade (1007.95 m? TLS vs. 869.67 m*> UAV) and right
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facade (325.17 m?> TLS wvs. 256.78 m?> UAV). These
measurements suggest that the TLS system more effectively
captured lower facade sections and vertical geometry, likely due
to its closer proximity to the structure. In contrast, the UAV had
difficulty capturing near-ground areas, which were affected by
altitude restrictions and obstructions such as trees.

Facade Surface Area Surface Area
(m?) — UAV (m?) - TLS
Front (South) 744.82 774.475
Back (North) 869.668 1007.95
Left (West) 149.944 143.741
Right (East) 256.779 325.168
Roof (Top) 1495.11 0

Table 2. Surface area per facade derived from the point clouds

These discrepancies may also have resulted from residual mesh
artifacts and the manual nature of surface segmentation, where
boundary delineation was subject to researcher judgment and
software limitations. Overestimated values in the TLS model,
especially along tree-covered facades, may reflect fused
vegetation rather than true wall geometry. Meanwhile, the UAV
model likely underestimates facade areas due to missing lower
segments. Overall, UAV data performed better in capturing
elevated and roof structures, while TLS excelled in vertical and
near-ground coverage. This complementarity reinforces the value
of integrating both methods for full-envelope structural coverage.

3.6 Local Surface Geometry

3.6.1 Planarity: The planarity analysis for the back facade
reveals marked differences between the UAV- and TLS-derived
point clouds. As shown in Figure 7, the UAV dataset exhibits a
histogram skewed toward higher planarity values. It also has a
pronounced peak around 0.73 and an SD of 0.21, indicating that
most of its points lie on geometrically consistent flat surfaces.

25000
1250

20000

Figure 7. Planarity comparison between TLS and UAV point
clouds for the back facade. (Top-left: TLS planarity histogram.
Top-right: UAV planarity histogram. Bottom-left: TLS point
cloud visualization with planarity scalar field. Bottom-right:
UAYV point cloud visualization with planarity scalar field.)

This result is visually affirmed by the dense red-to-yellow color
gradient in the scalar field map, representing high planarity
across large contiguous regions. This result aligns with the
UAV's aerial vantage, which facilitates clearer capture of
uniform wall structures, especially on unobstructed surfaces like
the back facade. In contrast, the TLS dataset yields a histogram
with a near-normal distribution centered around a mean planarity

of 0.48 and a comparable spread (std. Dev. 0.22). This value
suggests a more diverse spread of geometric surface conditions.
The corresponding point cloud map reflects this with more
scattered mid-range planarity values, particularly in areas near
windows and vegetation intrusions at the base. These results
emphasize that while TLS provides high-resolution data, it is
more sensitive to local structural and textural variations,
especially in occluded or cluttered regions, whereas the UAV
data benefits from its holistic visibility, producing smoother
facade representations in open areas like the building’s rear.

3.6.2 Roughness: The comparison of the surface roughness of
the back facade, illustrated in Figure 8, reveals a clear distinction
between TLS and UAV datasets in terms of localized surface
irregularities. Cooler blue tones dominate the TLS-derived point
cloud (bottom-left). This result indicates consistently low
roughness values across most of the facade surface. This visual
uniformity is supported by the TLS histogram (top-left), where
values are distributed more broadly but still skewed toward the
lower end. The broader spread may reflect geometric details
captured by the scanner, such as window frames, vertical edges,
and surface protrusions that produce slight variability but do not
compromise the overall smoothness of the wall plane.
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Figure 8. Comparison of surface roughness for the back facade.
(Top-left: TLS roughness histogram. Top-right: UAV roughness
histogram. Bottom-left: TLS roughness point cloud. Bottom-
right: UAV roughness point cloud.)

In contrast, the UAV-derived roughness visualization (bottom-
right) exhibits a broader spatial distribution of green and yellow
hues, signifying higher roughness in certain regions. This
distribution is particularly noticeable in flat wall areas that ideally
should be smoother. The UAV histogram (top-right) appears
more sharply peaked near zero, yet this statistical concentration
hides the rougher appearance in the spatial data. This pattern
suggests that while most points have low roughness, the
photogrammetric model introduces noise artifacts more visibly
across otherwise flat areas. This discrepancy may be due to visual
limitations during image matching, particularly in low-texture
surfaces. Overall, TLS provides a more visually coherent and
geometrically stable surface for the back facade. In contrast, the
UAV data, although adequate, shows increased susceptibility to
reconstruction noise in smooth, texture-poor surfaces.

3.6.3 Surface Variation: Surface variation is a measure of
local geometric complexity and change in normal direction
within a neighborhood, providing additional insight into the
structural roughness of a point cloud surface. In Figure 9, the TLS
dataset (top-left and bottom-left) shows a narrower histogram
distribution with a lower mean of 0.0121 and an SD of 0.0266.
These values suggest that the TLS point cloud had relatively less
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surface variation, indicating more uniform and smoother surfaces
on the back facade. This pattern is supported by the TLS point
cloud visualization, where the dominant color is deep blue,
corresponding to very low surface variation values across most
of the wall area.

8

20000 100000

Figure 9. Comparison of surface variation for the back facade.
(Top-left: TLS surface variation histogram. Top-right: UAV
surface variation histogram. Bottom-left: TLS surface variation
point cloud. Bottom-right: UAV surface variation point cloud.)

In contrast, the UAV dataset (top-right and bottom-right)
recorded a slightly higher mean of 0.0209 and an SD of 0.0305.
These values mean that there is greater variability in local surface
orientations of the UAV dataset. While the difference in average
values may seem small, it is visually evident in the point cloud
visualization, displaying more green tones interspersed with blue.
This result is especially true around window edges and other finer
architectural features. Understandably, these regions are
typically more geometrically complex and more likely to exhibit
higher variation in point orientation due to occlusion,
reconstruction artifacts, or limitations in image overlap.
Nonetheless, the UAV model still captured the overall facade
structure with sufficient geometric stability, although with
slightly more noise and local irregularities than the TLS model.

3.7 Qualitative Assessment

Visual inspection of the two models offers further qualitative
insights into their respective strengths and limitations. The TLS-
derived point cloud, though uncolored, exhibits a notably cleaner
structure with well-preserved geometric details across the
facades. Its strength lies in capturing large-scale architectural
elements with minimal noise. The majority of the wall features
are also consistently represented. However, the model lacks roof
geometry entirely, a direct consequence of occlusion from the
ground-based scan position. Smaller features, such as vents, are
also difficult to distinguish. On the other hand, the UAV-
generated model benefits from photogrammetric colorization,
which not only improves visual interpretability but also helps
highlight minor surface details like small vents. However, it
suffers from greater noise and evident data exclusions at the base
of the building—areas where UAV flight paths did not
adequately capture low-angle views. Reconstruction accuracy
also appears to be affected by surface reflectance and texture. In
particular, white or smooth walls, especially on the building’s left
facade, exhibit patchy reconstruction. Nevertheless, unlike the
TLS model, the UAV point cloud successfully includes the full
rooftop structure, offering a more complete volumetric
representation of the building. These complementary strengths
highlight how TLS excels in dense and accurate facade capture,

while UAV photogrammetry enhances overall coverage and
detail visibility, particularly for higher or occluded elements.

4. Conclusions and Recommendations

This study examined and compared the capabilities of TLS and
consumer UAV-based photogrammetry in capturing the
geometric features of a multi-facade building. Through a
combination of quantitative metrics such as RMSE, C2C
distance, surface area, density, planarity, roughness, and surface
variation, as well as qualitative visual inspections, we found that
both methods have distinct strengths and limitations. TLS
produced highly accurate and dense facade models with
consistent geometric surface quality, particularly in lower areas
close to the scanner. However, it suffered from occlusions,
especially in roof sections. Conversely, the UAV-derived point
cloud provided more complete coverage of rooftops and upper
walls due to its aerial vantage but exhibited increased surface
noise and incomplete ground-level detail. It also faced
reconstruction difficulties in areas with poor texture or limited
visibility.

Despite these differences, the results highlight the potential
benefits of a hybrid or targeted approach depending on the
specific application. For less detail-sensitive tasks such as solar
potential estimation, where capturing the roof structure and
general building envelope is more critical than fine facade details
and structure, the UAV-derived point cloud may already be
sufficient (Han et al., 2020). On the other hand, TLS is more
appropriate for applications demanding high geometric accuracy
and precision, such as as-built documentation, structural
deformation monitoring, or facade conservation, where fine
detail, surface smoothness, and accurate scale are essential
(Bouziani et al., 2021). Meanwhile, tasks that require both
complete coverage and accurate modeling—like heritage
digitization or energy modeling—may benefit most from a hybrid
method that combines TLS's ground-level precision with UAV's
aerial completeness (Le et al., 2022). Established workflows for
integrating UAV and TLS datasets typically involve point cloud
alignment through iterative closest point (ICP) registration,
followed by noise filtering, resolution harmonization (e.g., voxel
downsampling), and merging within software platforms such as
CloudCompare. These methods leverage UAV’s aerial coverage
and TLS’s detailed facade capture to produce complete, high-
accuracy building models. In all cases, aligning the data
collection strategy with the intended analytical goals ensures that
limitations in either method do not compromise the project
outcomes.

To support more consistent and reproducible assessments in
future work, we recommend the use of standardized parameter
settings for surface geometry metrics, as variations in scale were
shown to affect interpretability. If possible, automated feature
extraction and measurement tools should also be incorporated to
reduce potential human-induced errors. For both TLS and UAV
methods, strategic planning of scan positions or flight paths is
essential to reduce occlusions and improve completeness. Future
studies should also test diverse building forms, materials, and
settings to validate results across different urban environments.
Ultimately, the selection of a scanning method should be guided
by the specific spatial needs and resolution requirements of the
project.
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