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Abstract 

Recently, unmanned aerial vehicle (UAV) photogrammetry has gained popularity as an alternative to terrestrial laser scanners (TLS) 
for collecting 3D information, particularly for building models. However, comprehensive comparative assessments of the two methods 
remain limited in the literature. This study compares TLS and UAV-based photogrammetry for 3D building modeling. 3D point cloud 
data is collected in a study area using both methods, with ground truth data collected using a total station. The resulting point clouds 
were evaluated through multiple quantitative metrics, including RMSE, cloud-to-cloud distance, surface area, point density, planarity, 
roughness, and surface variation, in addition to qualitative assessments of model completeness and feature reconstruction. Results show 
that TLS achieved lower RMSE and smoother, more accurate facade geometry, particularly in near-ground areas. However, this method 
failed to capture rooftop structures due to occlusion. The UAV model successfully captured upper structures and finer architectural 
features but showed noisier surfaces and missing data at the building base. Surface geometry analyses further revealed that TLS outputs 
were more planar and consistent. Meanwhile, UAV data exhibited greater variation and reconstruction artifacts. The findings highlight 
the strengths and limitations of each method depending on the modeling objective. While UAV photogrammetry may be sufficient for 
applications such as solar potential estimation or volume analysis, TLS is more suitable for high-precision tasks like facade 
documentation or structural monitoring. For projects requiring both accuracy and coverage, a hybrid approach is recommended. This 
study emphasizes their complementary value and offers guidance for urban-scale 3D data acquisition strategies. 

1. Introduction

1.1 Background of the Study 

As modern cities rapidly shift toward sustainable and smart 
infrastructure, digital twins and detailed 3d building models 
become increasingly important. Ketzler et al. (2020) stated that 
“3D city model” is still the most prominent term in the field of 
3D GIS and that the term “digital twin” has seen a significant 
increase in academic literature, particularly in the context of 
cities and built environment studies. Rightfully so, accurate and 
detailed 3D building models play a pivotal role in many modern 
geospatial applications, including but not limited to urban 
planning, infrastructure monitoring, disaster management, and 
climate change adaptation (Fan et al., 2021; Riaz et al., 2023).  

Among the many techniques available to produce accurate 3D 
building models, terrestrial laser scanners (TLS) and unmanned 
aerial vehicles (UAVs) are two of the most common. TLS can 
capture highly accurate, dense, and geometrically reliable point 
clouds. However, TLS comes with significant challenges, 
including price, technical know-how, and occlusions brought 
about by line-of-sight (LOS) limitations. On the other hand, UAV 
photogrammetry has gained popularity in recent years because of 
its portability, cost-effectiveness, and ability to rapidly collect 
data remotely from a range of perspectives (Dominici et al., 2017; 
Fernández-Hernández et al., 2015). With the emergence of 
consumer-grade drones, even non-expert users can now generate 
3D spatial data with ease. Still, the quality and accuracy of UAV-
derived point clouds will vary depending on factors such as 
camera quality, lighting conditions, target object properties, and 
flight path designs, to name a few. 

While, independently, both technologies are already well 
established, academic literature discussing the comparative 
assessment between TLS and UAV photogrammetry is scarce, 

particularly in the Philippines, where 3D modeling and digital 
twin technologies are still in the early stages of maturity. Most 
previous studies focus on less detailed but large-scale 3D 
mapping using high-end equipment such as Light Detection and 
Ranging (LiDAR) systems, leaving a gap in understanding how 
consumer-level UAV systems perform against TLS systems in 
micro-scale contexts (Santillan et al., 2015; Villanueva et al., 
2015). This paper addresses that gap by presenting a case study 
comparing 3D building point clouds generated using TLS and 
UAV photogrammetry. The comparison is supported by ground 
truth data collected via total station measurements. 

1.2 Significance of the Study 

This study contributes to the growing field of 3D geospatial data 
acquisition and analysis by providing a head-to-head comparison 
of TLS and low-cost UAV photogrammetry for building-scale 
modeling. While TLS has traditionally been viewed as the 
standard in accuracy and completeness, recent advancements in 
photogrammetry and drone camera technology suggest that even 
consumer-grade UAVs can produce, to some extent, competitive 
results. The findings of this study aim to support geospatial 
professionals, urban planners, and researchers in selecting 
appropriate data acquisition techniques for different types of 
applications. Understanding the trade-offs between these two 
methods is critical for digital twin development, urban planning, 
and 3D modeling, especially in contexts where cost, portability, 
and time constraints are significant considerations. This paper 
aims to help practitioners and researchers who must balance these 
competing factors in their workflows make informed decisions. 

1.3 Research Objectives 

This study aims to evaluate and compare the performance of 
terrestrial laser scanning (TLS) and UAV photogrammetry in 
generating 3D building models. It involves generating point 
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cloud datasets of the same structure using a DJI Mini 3 Pro drone 
and a terrestrial laser scanner. The study also assesses the 
accuracy and quality of the UAV-derived point cloud using TLS 
data and total station measurements as references and evaluates 
the models based on various spatial metrics. Finally, the study 
identifies the strengths and limitations of each method in terms 
of spatial quality and provides recommendations on their 
suitability for various geospatial modeling applications. 
 
1.4 Review of Related Work 

TLS has long been established as a benchmark for acquiring 
highly accurate and dense 3D data in the built environment 
(Sternberg et al., 2004). By emitting laser pulses and measuring 
their returns, TLS can capture precise geometric details with 
millimeter-level accuracy (Stenz et al., 2020), making it preferred 
for reliable as-built documentation and structural monitoring. 
However, it is limited by high equipment costs, restricted 
mobility, and occlusions from line-of-sight (LOS) obstructions. 
 
In contrast, UAV photogrammetry reconstructs 3D models from 
overlapping aerial images, with modern software automating 
image alignment and point cloud generation. Its affordability, 
ease of deployment, and rapid data acquisition have driven its 
popularity (Nex et al., 2022) and it has been successfully applied 
in construction monitoring, disaster response, and archaeology 
(Dominici et al., 2017; Fernández-Hernández et al., 2015). 
Compact, consumer-grade UAVs have made 3D spatial data 
collection more accessible, though quality remains dependent on 
environmental conditions, image resolution, surface texture, and 
flight planning. In urban settings, insufficient overlap, motion 
blur, and narrow-corridor occlusions may produce gaps in the 
data (Wu et al., 2018). 
 
Both TLS and UAV photogrammetry have proven valuable for 
3D building modeling, each with unique strengths. Comparative 
studies typically evaluate geometric accuracy, completeness, and 
structural fidelity, using metrics such as cloud-to-cloud (C2C) 
distance (Kamnik et al., 2019; Liu et al., 2023), root mean square 
error (RMSE) from ground control points or total station data, 
point density, completeness, and sometimes roughness, planarity, 
and volume deviation. Kersten & Lindstaedt (2012) found TLS 
denser and more accurate, while photogrammetry provided 
adequate detail for visualization. Fernández-Hernández et al. 
(2015) showed UAV photogrammetry could produce accurate, 
interpretable models with sufficient overlap and camera 
calibration. 
 
Most prior comparisons use high-end UAVs and TLS in open, 
controlled settings. Fewer assess low-cost drones, which lack 
RTK modules and are more sensitive to environmental 
conditions. Micro-scale studies such as on single buildings or in 
dense urban contexts are especially scarce, particularly in the 
Philippines. This study addresses these gaps by comparing point 
clouds from a consumer-grade UAV (DJI Mini 3 Pro) and a TLS 
unit for a single building in a micro-scale urban context. Ground 
truth from total station measurements provides an independent 
accuracy benchmark, offering a practical evaluation of low-cost 
3D data acquisition workflows in real-world conditions. 
 
 
 
 
 

2. Methodology 

This section discusses the methodology for this study, as 
illustrated and summarized in Figure 1. 
 

 
Figure 1. Overall methodology workflow. 

 
2.1 Study Area 
 
The study was conducted at the National Institute of Molecular 
Biology and Biotechnology (NIMBB), located within the 
University of the Philippines Diliman campus in Quezon City, 
Philippines (approximately 14.65072° N, 121.07157° E), as 
shown in Figure 2. 
 
The building was selected as the target structure due to its well-
defined geometry, multiple accessible facades, and relatively 
clear surrounding space, which are advantageous characteristics 
for both TLS and UAV photogrammetry. The building is a multi-
story facility composed of multiple rectangular artifacts and 
overhangs. It also has a uniform white paint with trees present in 
the surrounding area of the building, both of which introduce 
difficult but necessary challenges in aerial image acquisition and 
processing. This specific setting reflects common use-case 
scenarios for 3D building modeling in urban areas using TLS and 
UAV photogrammetry. It provides a relevant test for evaluating 
the performance and suitability of low-cost UAV 
photogrammetry compared to TLS in similar built environments. 
 

 
Figure 2. Study area (Google Earth, 2025) 
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2.2 Data Collection 

2.2.1 UAV Data Collection: The data acquisition process for 
the building followed a segmented approach. The building was 
divided into five main sections: a nadir (top-down) view of the 
building and its immediate surroundings and one view for each 
of the four cardinal sides. As a result, aerial image acquisition 
was not continuous; the drone was manually repositioned 
between segments to capture each facade individually. This 
strategy was necessary due to space limitations and the presence 
of surrounding trees on all sides of the building, which restricted 
continuous flight paths. All flights were conducted during 
favorable weather conditions—either around 10:00 AM or 1:00 
PM—under clear skies and bright sunlight, providing adequate 
illumination for capturing surface details. 
 
Initially, flight automation and pre-programmed waypoints using 
advanced drone software were heavily considered to streamline 
data collection. However, this approach proved virtually 
impossible in practice due to the physical constraints of the study 
site. The presence of narrow gaps, tight corners, and tree 
branches extending close to the building walls made it difficult 
to define safe flight paths with adequate clearance. Furthermore, 
flight planning involved not only horizontal trajectories for nadir 
views but also vertical paths for capturing building facades, 
further complicating the process and increasing operational risk. 
These challenges, combined with the potential for GPS signal 
degradation and collision hazards during automated flights, led 
to the decision to carry out all image acquisition through manual 
piloting. This approach provided precise control over both drone 
positioning and camera orientation, thereby ensuring data quality 
and equipment safety during close-range image captures. 
 
UAV-based imagery was acquired using the DJI Mini 3 Pro, a 
compact, consumer-grade remotely piloted aircraft (RPA) 
equipped with a 1/1.3” CMOS camera capable of capturing 48 
MP still images. A total of 1,392 images were collected during 
the mission and distributed across five main building sections: 50 
images for the nadir view, 406 for the front facade (south-facing), 
527 for the back facade (north-facing), 265 for the right facade 
(east-facing), and 144 for the left facade (west-facing). The 
number of images per facade varied due to differences in wall 
dimensions, drone-to-surface distance, and shooting density 
driven by on-the-fly overlap estimation. 
 
Because the image acquisition was performed manually, overlap 
percentages were only estimated based on flight trajectory and 
shooting intervals. An approximate 60% forward overlap and 
60% side overlap were achieved across most segments. Image 
capture for the facades followed a vertical sweeping approach in 
which the drone was flown up and down to capture multiple 
height levels per wall. As a result, the altitude varied 
continuously throughout this process, in contrast to the nadir 
segment, which was captured at a relatively constant altitude of 
approximately 50 meters. Additionally, the drone’s lateral 
distance from the facades was dynamically adjusted to avoid 
nearby obstructions, such as tree branches, which posed collision 
risks. While these adjustments ensured safe proximity and 
equipment protection, they also contributed to variations in 
acquisition geometry. Nevertheless, these adaptations were 
necessary due to the tight spatial constraints and environmental 
obstructions present at the study site. 
 

2.2.2 TLS Data Collection: TLS data collected from a 
previous study (Ingles et al., 2024) in the same area was used in 
this paper. The TLS data collection was conducted using a 
handheld Foxtech SLAM100 device. It utilizes simultaneous and 
localization mapping technology for mobile 3D point cloud 
acquisition. The scanning followed a predefined walking route 
around the building. One operator carried the scanner, and 
another monitored the trajectory using the SLAM GO 
application. A steady walking pace of approximately 5km/h was 
ensured under clear weather conditions to ensure optimal data 
quality, and a 60-second initialization phase was completed 
before scanning. To reduce the noise in the point cloud, the best 
effort was made to minimize movement during acquisition. This 
method allowed access to areas difficult to capture using tripod-
mounted scanners. However, care was taken to maintain 
consistent motion and scanner orientation. 
 
2.2.3 Ground Truth Measurements: Ground truth 
measurements were obtained using a total station (TS). The TS 
was operated in reflector-less mode, providing an independent 
reference dataset for evaluating the geometric accuracy of the 
point clouds generated by UAV photogrammetry and TLS. 
Establishing a conventional geodetic or project control network 
using known reference points for TS setup was not feasible for 
the study due to environmental constraints such as dense 
vegetation and obstructed sightlines. Instead, the TS was 
positioned at stable and site-appropriate locations near each 
building facade. It was operated locally to collect the relative 
coordinates of identifiable structural features and artifacts, such 
as building corners and window edges. This process was 
conducted separately for each facade, resulting in four distinct 
local coordinate systems—each internally consistent but not 
references to a global reference network. While this approach did 
not allow for absolute georeferencing of the ground truth 
measurements, it enabled the collection of dimensionally valid 
and reliable measurements within each localized setup. This 
adaptive methodology, though unconventional, was appropriate 
for the study’s primary goal of evaluating the geometric fidelity 
of the 3D reconstructions rather than their absolute positioning. 
The relative coordinates collected were sufficient for calculating 
physically meaningful dimensions such as object length and 
widths used for quantitative assessment of model accuracy in 
relation to real-world building geometry. 
 
2.3 Processing Workflow 

2.3.1 UAV Photogrammetry Processing: First, a custom 
Python script was used to group the captured UAV images based 
on the acquisition time stamps, effectively segregating them into 
five sets corresponding to the nadir view and each of the four 
building facades. All the UAV photogrammetric data were 
processed using Agisoft Metashape following a structured and 
semi-automated workflow. The image groups were imported into 
separate chunks within the Metashape project to allow for 
independent processing. Within each chunk, images were aligned 
using medium accuracy settings that enabled both generic and 
reference preselection. After alignment, dense point clouds were 
generated via depth map computation with medium quality and 
mild filtering. This process was repeated for each of the five 
chunks. To integrate the datasets, shared markers were manually 
placed on common architectural features across the chunks for a 
marker-based chunk alignment. Finally, the chunks were then 
merged into a unified project while preserving their respective 
point clouds and tie points. 
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2.3.2 TLS Point Cloud Integration: The initially 
unreferenced TLS-derived point cloud was also imported into 
Metashape as a separate chunk. Using the same marker-based 
alignment method, it was aligned to the UAV model. Markers 
were placed on visually identifiable features (e.g., building 
corners and facade edges) present in both datasets. The alignment 
was performed without adjusting the scale of the TLS point cloud 
to ensure that the original dimensions of both the datasets were 
preserved. This method allowed for a meaningful comparison 
between the UAV and TLS point clouds. 
 
2.3.3 Ground Truth Data Processing: The ground truth data 
from the total station contains relative ENZ (Easting, Northing, 
Elevation) coordinates. Using these coordinates, linear distances 
between structural features, such as wall lengths and window 
spans, were computed directly. Although not georeferenced, 
these measurements were dimensionally accurate and provided a 
reliable basis for comparing real-world dimensions against those 
derived from point cloud reconstructions. 
 
2.4 Point Cloud Assessment 

The accuracy and quality of the 3D building models were 
assessed using selected metrics. All evaluations were conducted 
using CloudCompare, an open-source point cloud analysis 
platform. The first metric was the completeness assessment. It 
involved a visual comparison of both datasets to identify missing 
or occluded regions. Then, the root mean squared error (RMSE) 
of measured distances was calculated by comparing real-world 
lengths obtained from total station measurement data with 
equivalent dimensions extracted from the UAV- and TLS-
derived models. Key features such as wall windows and wall 
lengths were measured. Second, C2C deviation analysis was 
performed to quantify the spatial differences between UAV and 
TLS point clouds. The TLS dataset was used as the reference. 
The statistical outputs were generated to assess consistency 
across surfaces. Finally, point cloud density was calculated to 
compare the resolution of each dataset. This calculation provided 
insight into the level of surface detail captured by each method. 
 
The point clouds were also converted into triangulated mesh 
models, which were manually segmented by building sections 
using 3D processing software to calculate surface areas. 
Planarity, roughness, and surface variation analyses were 
performed using neighborhood-based geometric descriptors to 
quantify surface flatness, local texture deviations, and changes in 
surface normal orientation, respectively. Scalar field 
visualizations and histograms were used to interpret geometric 
characteristics. Additionally, a qualitative assessment was 
conducted by visually inspecting the models’ structure, 
completeness, and mesh quality, with attention to occlusions, 
artifacts, and fine architectural features. All data processing and 
analysis were performed using Agisoft Metashape and 
CloudCompare. 
 

3. Results and Discussion 

This section presents a comparative analysis of the 3D data 
generated from UAV photogrammetry and TLS. These datasets 
were also evaluated against ground truth data obtained from the 
total station survey. Quantitative metrics were checked, and 
qualitative assessments were performed to evaluate geometric 
fidelity, surface quality, and completeness. These results 
collectively provide insight into the relative performance and 
limitations of UAV- and TLS-derived point clouds. 
 

3.1 Visual Comparison of Point Clouds 

Figure 3 shows the point clouds produced from UAV 
photogrammetry and TLS. These outputs exhibit contrasting 
qualities that reflect their respective acquisition methods. The 
UAV-derived model captures comprehensive top-down and 
angled views. It effectively reproduced roof geometry and facade 
textures with realistic color. However, occlusion due to 
vegetation and the presence of floating artifacts slightly 
diminishes its structural definition. On the other hand, the TLS 
point cloud resulted in clearer wall and base geometry because of 
its close-range and ground-based acquisition. Still, it suffers from 
substantial vegetation obstruction, introducing extraneous points, 
and lacks color information, which limits visual interpretability. 
These visual and structural differences formed the basis for the 
succeeding quantitative and qualitative assessments. 
 

   
Figure 3. Point clouds derived from UAV (left) and TLS (right) 
 
3.2 RMSE of Measured Distances 

A total of 23 architectural features across all the building façades 
were measured and compared against total station ground truth 
data to evaluate the dimensional accuracy of the UAV- and TLS-
derived point clouds. The resulting overall RMSE is 0.120 meters 
for the UAV and 0.070 meters for the TLS, as shown in Table 1. 
The TLS consistently achieved lower absolute errors across most 
features, especially in horizontal spans such as façade and 
window widths. These errors indicate that, overall, TLS provided 
a more accurate representation of real-world distances. For 
context, previous UAV-based building modeling studies have 
reported RMSE values as low as 0.015 m when conditions are 
optimal (Sani et al., 2022). 
 

Facade UAV RMSE (m) TLS RMSE (m) 
Back Facade 0.1106 0.0601 
Right Facade 0.0189 0.0753 
Left Facade 0.1216 0.0305 
Front Facade 0.1613 0.0882 
Overall 0.1195 0.0697 

Table 1. RMSE Comparison per Facade 
 
The most pronounced UAV error was recorded on the front 
facade (0.1613 m), likely due to visual obstructions such as trees 
near the building entrance. In contrast, the TLS data showed the 
highest error on the right facade (0.0753 m). However, this is still 
relatively low compared to UAVs. Interestingly, the left facade 
showed the most favorable result for TLS (0.0305 m RMSE), 
possibly due to minimal obstructions and simpler geometry on 
that side. While the UAV-derived model demonstrated slightly 
higher RMSE overall, the deviations remained within the 
commonly accepted tolerance of a few centimeters for building 
modeling, considering equipment grade and environmental 
limitations during acquisition (Mirza et al., 2023; Sani et al., 
2022). The above results emphasize the strength of TLS in 
accurate facade reconstruction while also demonstrating the 
UAV model’s adequacy in areas with less occlusion. 
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3.3 Cloud-to-Cloud (C2C) Distance Analysis 

To evaluate geometric alignment between the UAV- and TLS-
derived point clouds, a C2C distance analysis was conducted 
using the TLS dataset as the reference, resulting in the top-down 
C2C scalar field map in Figure 4 and the histogram of C2C 
distances shown in Figure 5. While the TLS dataset lacked point 
coverage for the roof due to its ground-based acquisition 
perspective, the top-view comparison was still conducted to 
assess alignment across the building’s visible horizontal and 
upper façade structures. Roof regions in the TLS dataset appear 
as high-deviation zones in the C2C results; however, these 
differences are not indicative of modeling errors in either dataset, 
but rather a direct consequence of occlusion and incomplete 
overlap. This reinforces the complementary nature of the two 
methods and highlights the potential benefits of integrating 
UAV-derived roof data with TLS-acquired facade detail for 
complete building coverage.  
 

 
Figure 4. Top View C2C Absolute Distance Visualization 

 
As visualized in Figure 4, most deviations fall within the blue-to-
green spectrum. These deviations correspond to sub-meter 
differences. However, significant deviations were observed in the 
roof—represented by circular zones with higher C2C values. 
This result was primarily caused by the TLS dataset lacking point 
coverage for the roof area, leading to exaggerated discrepancies 
in those areas when compared to the fully captured UAV model.  
 

 
Figure 5. Distribution of C2C Distances between Point Clouds 

 
In contrast, the facade walls exhibit consistent alignment with 
only minimal variation along vertical surfaces where both 
datasets have complete overlap. The histogram in Figure 5 
confirms this spatial observation. The distribution is right-
skewed, with a peak around 1.2 meters and a long tail extending 
to higher values, further supporting the presence of localized 
outliers and roof deviations. The computed mean distance of 
1.217 m and standard deviation (SD) of 1.301 m reflects 
moderate geometric variation, primarily due to the absence of 

TLS data on the roof.  Since the TLS scan lacked visibility for 
elevated horizontal surfaces such as the roof, large discrepancies 
in those regions are expected and do not necessarily indicate 
modeling error. Instead, these results underscore the need for 
integrating complementary datasets when full coverage is 
required. These results affirm that while both datasets are mostly 
aligned in the building’s primary geometry, further refinement is 
needed in occlusion-prone zones. 
 
3.4 Point Cloud Density 

Surface density analysis reveals significant contrasts between the 
TLS and UAV-derived point clouds in terms of data resolution, 
completeness, and spatial coverage. The TLS dataset showed 
extremely high-density values, particularly concentrated near the 
scanner’s position—primarily at the base of the scan box—where 
oversampling often occurred, while very few points were 
captured on the roof. This uneven distribution is a result of the 
TLS scanner’s ground-based position, which leads to dense point 
capture near the scanner but limited visibility and data loss in 
higher, occluded areas such as the roof. These patterns 
underscore the occlusion-sensitive limitation of TLS when used 
alone for capturing complex vertical structures. 
 
The UAV dataset, as reflected in the surface density distribution 
shown in Figure 6, demonstrated a more consistent point density 
overall. Unlike the TLS model, which exhibited a widespread due 
to localized high-density clusters near the scanner, the UAV point 
cloud shows a tighter range of values with fewer extreme outliers. 
This consistency can be attributed to uniform flight coverage and 
overlapping image acquisition. While the UAV’s maximum 
density was lower than that of TLS, the reduced SD suggests 
more reliable coverage across the building envelope. However, 
the density near ground-level facade sections remained limited 
due to the difficulty of safely piloting the UAV at low altitudes 
while maintaining sufficient overlap. Overall, the histogram 
supports the UAV’s strength in producing a more balanced and 
predictable data distribution despite its lower peak density. 
 

 
Figure 6. UAV point cloud surface density value distribution 

 
3.5 Surface Area 

Surface area measurements for each building section were 
extracted from both UAV- and TLS-derived meshes and are 
summarized in Table 2. The UAV model recorded the highest 
surface area for the roof (1495.11 m²), while the TLS reported no 
roof data due to its limited vertical field of view. On the facades, 
the TLS generally produced larger surface areas, notably on the 
back facade (1007.95 m² TLS vs. 869.67 m² UAV) and right 
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facade (325.17 m² TLS vs. 256.78 m² UAV). These 
measurements suggest that the TLS system more effectively 
captured lower facade sections and vertical geometry, likely due 
to its closer proximity to the structure. In contrast, the UAV had 
difficulty capturing near-ground areas, which were affected by 
altitude restrictions and obstructions such as trees. 
 

Facade Surface Area 
(m²) – UAV 

Surface Area 
(m²) – TLS 

Front (South) 744.82 774.475 
Back (North) 869.668 1007.95 
Left (West) 149.944 143.741 
Right (East) 256.779 325.168 
Roof (Top) 1495.11 0 
Table 2. Surface area per facade derived from the point clouds 

 
These discrepancies may also have resulted from residual mesh 
artifacts and the manual nature of surface segmentation, where 
boundary delineation was subject to researcher judgment and 
software limitations. Overestimated values in the TLS model, 
especially along tree-covered facades, may reflect fused 
vegetation rather than true wall geometry. Meanwhile, the UAV 
model likely underestimates facade areas due to missing lower 
segments. Overall, UAV data performed better in capturing 
elevated and roof structures, while TLS excelled in vertical and 
near-ground coverage. This complementarity reinforces the value 
of integrating both methods for full-envelope structural coverage. 

 
3.6 Local Surface Geometry 

3.6.1 Planarity: The planarity analysis for the back facade 
reveals marked differences between the UAV- and TLS-derived 
point clouds. As shown in Figure 7, the UAV dataset exhibits a 
histogram skewed toward higher planarity values. It also has a 
pronounced peak around 0.73 and an SD of 0.21, indicating that 
most of its points lie on geometrically consistent flat surfaces.  
 
 

 
Figure 7. Planarity comparison between TLS and UAV point 

clouds for the back facade. (Top-left: TLS planarity histogram. 
Top-right: UAV planarity histogram. Bottom-left: TLS point 
cloud visualization with planarity scalar field. Bottom-right: 
UAV point cloud visualization with planarity scalar field.) 

 
This result is visually affirmed by the dense red-to-yellow color 
gradient in the scalar field map, representing high planarity 
across large contiguous regions. This result aligns with the 
UAV's aerial vantage, which facilitates clearer capture of 
uniform wall structures, especially on unobstructed surfaces like 
the back facade. In contrast, the TLS dataset yields a histogram 
with a near-normal distribution centered around a mean planarity 

of 0.48 and a comparable spread (std. Dev. 0.22). This value 
suggests a more diverse spread of geometric surface conditions. 
The corresponding point cloud map reflects this with more 
scattered mid-range planarity values, particularly in areas near 
windows and vegetation intrusions at the base. These results 
emphasize that while TLS provides high-resolution data, it is 
more sensitive to local structural and textural variations, 
especially in occluded or cluttered regions, whereas the UAV 
data benefits from its holistic visibility, producing smoother 
facade representations in open areas like the building’s rear. 
 
3.6.2 Roughness: The comparison of the surface roughness of 
the back facade, illustrated in Figure 8, reveals a clear distinction 
between TLS and UAV datasets in terms of localized surface 
irregularities. Cooler blue tones dominate the TLS-derived point 
cloud (bottom-left). This result indicates consistently low 
roughness values across most of the facade surface. This visual 
uniformity is supported by the TLS histogram (top-left), where 
values are distributed more broadly but still skewed toward the 
lower end. The broader spread may reflect geometric details 
captured by the scanner, such as window frames, vertical edges, 
and surface protrusions that produce slight variability but do not 
compromise the overall smoothness of the wall plane. 
 

  

    
Figure 8. Comparison of surface roughness for the back facade. 
(Top-left: TLS roughness histogram. Top-right: UAV roughness 

histogram. Bottom-left: TLS roughness point cloud. Bottom-
right: UAV roughness point cloud.) 

 
In contrast, the UAV-derived roughness visualization (bottom-
right) exhibits a broader spatial distribution of green and yellow 
hues, signifying higher roughness in certain regions. This 
distribution is particularly noticeable in flat wall areas that ideally 
should be smoother. The UAV histogram (top-right) appears 
more sharply peaked near zero, yet this statistical concentration 
hides the rougher appearance in the spatial data. This pattern 
suggests that while most points have low roughness, the 
photogrammetric model introduces noise artifacts more visibly 
across otherwise flat areas. This discrepancy may be due to visual 
limitations during image matching, particularly in low-texture 
surfaces. Overall, TLS provides a more visually coherent and 
geometrically stable surface for the back facade. In contrast, the 
UAV data, although adequate, shows increased susceptibility to 
reconstruction noise in smooth, texture-poor surfaces. 
 
3.6.3 Surface Variation: Surface variation is a measure of 
local geometric complexity and change in normal direction 
within a neighborhood, providing additional insight into the 
structural roughness of a point cloud surface. In Figure 9, the TLS 
dataset (top-left and bottom-left) shows a narrower histogram 
distribution with a lower mean of 0.0121 and an SD of 0.0266. 
These values suggest that the TLS point cloud had relatively less 
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surface variation, indicating more uniform and smoother surfaces 
on the back facade. This pattern is supported by the TLS point 
cloud visualization, where the dominant color is deep blue, 
corresponding to very low surface variation values across most 
of the wall area. 
 

 

    
Figure 9. Comparison of surface variation for the back facade. 
(Top-left: TLS surface variation histogram. Top-right: UAV 

surface variation histogram. Bottom-left: TLS surface variation 
point cloud. Bottom-right: UAV surface variation point cloud.) 

 
In contrast, the UAV dataset (top-right and bottom-right) 
recorded a slightly higher mean of 0.0209 and an SD of 0.0305. 
These values mean that there is greater variability in local surface 
orientations of the UAV dataset. While the difference in average 
values may seem small, it is visually evident in the point cloud 
visualization, displaying more green tones interspersed with blue. 
This result is especially true around window edges and other finer 
architectural features. Understandably, these regions are 
typically more geometrically complex and more likely to exhibit 
higher variation in point orientation due to occlusion, 
reconstruction artifacts, or limitations in image overlap. 
Nonetheless, the UAV model still captured the overall facade 
structure with sufficient geometric stability, although with 
slightly more noise and local irregularities than the TLS model. 
 
3.7 Qualitative Assessment 

Visual inspection of the two models offers further qualitative 
insights into their respective strengths and limitations. The TLS-
derived point cloud, though uncolored, exhibits a notably cleaner 
structure with well-preserved geometric details across the 
facades. Its strength lies in capturing large-scale architectural 
elements with minimal noise. The majority of the wall features 
are also consistently represented. However, the model lacks roof 
geometry entirely, a direct consequence of occlusion from the 
ground-based scan position. Smaller features, such as vents, are 
also difficult to distinguish. On the other hand, the UAV-
generated model benefits from photogrammetric colorization, 
which not only improves visual interpretability but also helps 
highlight minor surface details like small vents. However, it 
suffers from greater noise and evident data exclusions at the base 
of the building—areas where UAV flight paths did not 
adequately capture low-angle views. Reconstruction accuracy 
also appears to be affected by surface reflectance and texture. In 
particular, white or smooth walls, especially on the building’s left 
facade, exhibit patchy reconstruction. Nevertheless, unlike the 
TLS model, the UAV point cloud successfully includes the full 
rooftop structure, offering a more complete volumetric 
representation of the building. These complementary strengths 
highlight how TLS excels in dense and accurate facade capture, 

while UAV photogrammetry enhances overall coverage and 
detail visibility, particularly for higher or occluded elements. 
 

4. Conclusions and Recommendations 

This study examined and compared the capabilities of TLS and 
consumer UAV-based photogrammetry in capturing the 
geometric features of a multi-facade building. Through a 
combination of quantitative metrics such as RMSE, C2C 
distance, surface area, density, planarity, roughness, and surface 
variation, as well as qualitative visual inspections, we found that 
both methods have distinct strengths and limitations. TLS 
produced highly accurate and dense facade models with 
consistent geometric surface quality, particularly in lower areas 
close to the scanner. However, it suffered from occlusions, 
especially in roof sections. Conversely, the UAV-derived point 
cloud provided more complete coverage of rooftops and upper 
walls due to its aerial vantage but exhibited increased surface 
noise and incomplete ground-level detail. It also faced 
reconstruction difficulties in areas with poor texture or limited 
visibility. 
 
Despite these differences, the results highlight the potential 
benefits of a hybrid or targeted approach depending on the 
specific application. For less detail-sensitive tasks such as solar 
potential estimation, where capturing the roof structure and 
general building envelope is more critical than fine facade details 
and structure, the UAV-derived point cloud may already be 
sufficient (Han et al., 2020). On the other hand, TLS is more 
appropriate for applications demanding high geometric accuracy 
and precision, such as as-built documentation, structural 
deformation monitoring, or facade conservation, where fine 
detail, surface smoothness, and accurate scale are essential 
(Bouziani et al., 2021). Meanwhile, tasks that require both 
complete coverage and accurate modeling—like heritage 
digitization or energy modeling—may benefit most from a hybrid 
method that combines TLS's ground-level precision with UAV's 
aerial completeness (Le et al., 2022). Established workflows for 
integrating UAV and TLS datasets typically involve point cloud 
alignment through iterative closest point (ICP) registration, 
followed by noise filtering, resolution harmonization (e.g., voxel 
downsampling), and merging within software platforms such as 
CloudCompare. These methods leverage UAV’s aerial coverage 
and TLS’s detailed façade capture to produce complete, high-
accuracy building models. In all cases, aligning the data 
collection strategy with the intended analytical goals ensures that 
limitations in either method do not compromise the project 
outcomes. 
 
To support more consistent and reproducible assessments in 
future work, we recommend the use of standardized parameter 
settings for surface geometry metrics, as variations in scale were 
shown to affect interpretability. If possible, automated feature 
extraction and measurement tools should also be incorporated to 
reduce potential human-induced errors. For both TLS and UAV 
methods, strategic planning of scan positions or flight paths is 
essential to reduce occlusions and improve completeness. Future 
studies should also test diverse building forms, materials, and 
settings to validate results across different urban environments. 
Ultimately, the selection of a scanning method should be guided 
by the specific spatial needs and resolution requirements of the 
project.  
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