ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-5/\W4-2025
Philippine Geomatics Symposium (PhilGEOS) 2025 "Enhancing Human Quality of Life through Geospatial Technologies",
24-25 November 2025, Quezon City, Philippines

Modeling urban expansion in the Philippines using a cellular automata—integrated
spatiotemporal machine learning framework

Joshua R. Dela Cruzl, Adrian Roy L. Valdez?

! Artificial Intelligence Program, University of the Philippines Diliman - delacruz.joshua.reyes @ gmail.com
2Scientific Computing Laboratory, University of the Philippines Diliman - alvaldez@up.edu.ph

Keywords: Urbanization, Spatiotemporal modeling, Cellular Automata, Long Short-Term Memory (LSTM), Machine learning,
Geospatial data

Abstract

Urbanization in the Philippines rapidly shift towards a certain critical level, yet there are only few established frameworks that
provide localized forecasts of urban growth across the Philippines, making it difficult to identify which specific cities are likely to
thrive or be left behind, a gap that poses significant challenges for effective urban planning. This study introduces a spatiotemporal
modeling framework that combines Long Short-Term Memory (LSTM) networks with Cellular Automata (CA) to simulate urban
expansion at a national scale. Using open-source geospatial data on land use, slope, transportation, and urban footprints, the
model generates dynamic urban transition probabilities through LSTM, which are then fed into a CA system that simulates urban
sprawl. After simulation, the comparison of the generated maps with the actual maps showed that hybrid approach outperformed
conventional methods such as standalone LSTM, and traditional Logistic-Regression CA, achieving a Fuzzy Similarity Rating
(FSR) of 38.20% and a figure of merit (FOM) of 55.37%, highlighting emerging urban hotspots such as Calamba, Carcar City, and
Davao City by 2030. The integrated LSTM-CA model captures spatial interactions and temporal dynamics more effectively than
static models, offering improved realism in simulating pixel-level transitions. By offering data-driven forecasts of urban growth,
this study supports a more informed spatial planning decisions, including infrastructure development and land conservation. With
more sustainable and inclusive urbanization, this aims to ensure that no city is left behind as the country moves toward its urban

future.

1. Introduction

By 2050, an estimated 84% of Filipinos are projected to reside
in urban areas UN-Habitat (2023), a significant increase from
just 54% in 2020 census Philippine Statistics Authority (PSA)
(2022). In less than three decades, the Philippines is expected
to experience a level of urban transformation that historically
occurred over centuries.

When well-planned and managed, urbanization can serve as
a powerful engine for economic growth, offering opportunit-
ies for poverty reduction and improved quality of life. How-
ever, despite its expanding economy, the Philippines has largely
failed to harness the full benefits of urbanization. Unplanned
urban growth has resulted in overcrowded neighborhoods,
traffic congestion, fragmented policy implementation, and in-
creasing vulnerability to climate-related risks Chaves et al.
(2022). Without strategic intervention, the country risks facing
an unsustainable urban future.

Despite the scale and urgency of the issue, there remains a
scarcity of studies offering localized, data-driven projections of
urban growth across the Philippine archipelago to understand
the behavior of urban growth and identify which cities will be
specifically affected by it. One of the few nationwide attempts
at modeling urban expansion was focused primarily on estim-
ating future flood hazards, rather than addressing urban growth
dynamics directly Johnson et al. (2021).

Most existing forecasting efforts are limited in scope, typically
concentrating on individual regions or metropolitan centers Es-
toque and Murayama (2012). Although the results of these sub-
national scale studies provide useful information for local plan-
ning processes, they largely overlook the broader spatial and
temporal dynamics necessary for understanding and managing

nationwide urban expansion necessary to support central gov-
ernment agencies.

This research seeks to address this critical gap by integrating
machine learning techniques with the widely adopted Cellular
Automata (CA) modeling approach with the goal of enhancing
both the accuracy and adaptability of urban growth simulations.
Specifically, the study proposes a framework capable of gen-
erating spatially explicit forecasts of urban expansion across
the entire Philippine archipelago. By doing so, it enables the
production of localized predictions that identify where urban
growth is most likely to occur, essential for helping cities ex-
pand more intelligently and sustainably.

2. Related Works

2.1 Cellular Automata for Forecasting Urban Expansion

Despite the inherent complexity of urban systems White and
Engelen (1993), CA has become one of the most widely adop-
ted modeling frameworks for simulating urban growth due to its
simplicity and flexibility. Urban CA models operate on the prin-
ciple that the evolution of land use is influenced by the current
and neighboring land-use states, aligning well with the idea that
historical patterns of development significantly influence future
expansion. As computing capabilities have advanced, CA mod-
els have evolved to incorporate a broader set of spatial and tem-
poral data, allowing for more sophisticated representations of
urban dynamics Santé et al. (2010).

A conventional urban CA model typically comprises four core
components: (1) transition rules, which determine how cells
change state; (2) neighborhood configuration, which defines the
spatial influence of adjacent cells; (3) simulation time steps;
and (4) stochastic perturbations to introduce randomness Yeh
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and Li (2006). Notable work in this field demonstrated the ro-
bustness of CA models through sensitivity analyses of these
key components. The study calibrated various transition rule
generators including logistic regression, decision trees, and en-
semble models, and evaluated the impact of different neigh-
borhood sizes and stochastic parameters. Their tuned model
achieved considerable good results on spatial metrics such as
PAFRAC, NLSI, CLUMPY, and Aggregation Index, highlight-
ing the capacity of CA to model complex urban phenomena Li
et al. (2014).

Further advancements were made through the incorporation of
temporal contextual information into CA models. A recent
study introduced the Logistic Trend-CA model, which lever-
ages historical urban sprawl trends to enhance long-term fore-
casting accuracy. The model achieved improvement in predict-
ive performance, as measured by the Figure of Merit (FoM),
over traditional CA approaches Li et al. (2020).

2.2 Integrating Machine Learning with Cellular Auto-
mata

Several recent works have enhanced the transition rule com-
ponent of CA by incorporating classical machine learning al-
gorithms to enable more data-driven estimation of urban change
suitability through analysis of a wide range of input features.
In a study that conducted a detailed calibration process using
different combinations of hyperparameters, ML algorithm vari-
ants such as Random Forest (RF) and Support Vector Machines
(SVM), sample sizes, and zoning configurations to simulate
urban sprawl from 2000 to 2030, simultaneous consideration of
various spatial determinants of urban growth setup enabled the
creation of more accurate transition probability maps, although
these maps were generated statically only for each simulation.
The study found that RF- and SVM-driven CA models achieved
superior performance when trained on larger sample sizes, val-
idating the potential of ML-enhanced transition functions for
sprawl modeling Rienow et al. (2021).

Despite these improvements, limitations remain in such frame-
works, particularly when applied at the national scale. One
key shortcoming lies in the use of static transition probabil-
ity surfaces, which fail to account for the temporal evolution
of spatial patterns. To address this, a more recent study pro-
posed a temporally dynamic CA-ML model incorporating a
rich set of 36 features, including time-lagged and spatial-lagged
variables Kim et al. (2022). This study leveraged Random
Forests, Artificial Neural Networks (ANN), and Extreme Gradi-
ent Boosting (XGBoost) to capture both spatial and temporal
dependencies more effectively.

The inclusion of multivariate spatial-temporal features signi-
ficantly improved predictive accuracy across multiple models,
thereby demonstrating the value of deeper feature engineering
in CA-ML frameworks. These advancements serve as critical
foundations and points of inspiration for the framework pro-
posed in this study, which seeks to produce reliable, spatially
explicit urban expansion forecasts at a national scale.

3. Methodology

Figure 1 illustrates the overall workflow of the study. It
shows the dataset used, their sources, and how they were pre-
processed. This also presents how the machine learning model
was trained and tested, and finally how the resulting outputs
were integrated into the cellular automata for simulation. The
following subsections describe each step in detail.
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Figure 1. Overall workflow of the study methodology.
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3.1 Study Area

The region of interest in this study is the entire Philippines,
officially the Republic of the Philippines. It is an archipela-
gic country in Southeast Asia located in the western Pacific
Ocean, comprising 7,641 islands that stretches about 1,150
miles (1,850 km) from north to south, with an east-west span
of up to 700 miles (1,130 km) at its widest point in the south.
It has a total land area of approximately 300,000 square kilo-
meters. These islands are grouped into three major geograph-
ical divisions: Luzon (north), Visayas (central), and Mindanao
(south).

The country’s archipelagic nature results in a highly fragmen-
ted spatial structure, characterized by regional disparities in
geography, infrastructure, and development. Major urban cen-
ters such as Metro Manila in Luzon, Cebu City in the Visayas,
and Davao City in Mindanao are geographically isolated from
one another, yet remain interconnected through national-level
policies and economic activities such as trade and transporta-
tion.

Given these spatial complexities, modeling urban growth across
the entire nation using a unified configuration presents both a
challenge and an opportunity. By applying a consistent set of
features and modeling parameters across all regions, this study
aims to capture the diverse urban dynamics at both local and
national scales. Such an approach is intended to yield more
coherent and comprehensive urban growth forecasts that can
inform nationwide spatial planning and policy development.

3.2 Data

This study utilizes four primary datasets, summarized in Table 1
and illustrated in Figures 2 to 5. Figures 4 and 5 additionally
present derived feature maps, which are further discussed in
Section 3.2.2.

3.2.1 Acquisition and Pre-processing: The GRIP, ESRI,
and SRTM datasets were accessed via Google Earth Engine
(GEE) provided by the community-contributed dataset catalog
Roy et al. (2025). Clipping to the Philippine boundary was the
first basic preprocessing done to reduce memory and storage re-
quirements, as the original datasets are global in scope. Mean-
while, the GAIA dataset was obtained from the iEarth Datahub
Observatory, which provides downloadable tiled raster data.
Unlike GEE, which requires some familiarity with JavaScript
for querying and preprocessing, iEarth offers a user-friendly
interface for selecting and downloading data tiles. However,
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Name Description Usage Feature Type Reference
Global Roads Inventory | Vector dataset of global roads in- | Used to compute dis- | Static Meijer et al.
Project (GRIP) v4 cluding highways, primary, and | tance to nearest road (2018)
local roads
ESRI 10m Annual Land | Global land use/land cover classi- | Used to extract loca- | Static Karra et al
Cover fication with 9 classes, produced | tion of water (2021)
by Impact Observatory
Shuttle Radar Topography | Global digital elevation model | Used as slope input | Static Reuter et al.
Mission (SRTM) v4.1 from NASA features (2007)
Global Artificial Impervi- | Annual global urban extent map- | Used as the dependent | Dynamic Gong et al
ous Areas (GAIA), v2024 ping (urban vs. non-urban) variable, and to derive | (2010-2024) (2020)
distance to urban areas
and urban clusters

Table 1. Summary of datasets used in the study

M 0 (others) -
W 1 (water) .-

(a) (b)

Figure 2. Visualization of ESRI water land classification data:
(a) nationwide map of the Philippines, and (b) zoomed-in view.

applied to enforce temporal consistency: once a pixel was
classified as urban in a given year, it remained urban in all
subsequent years. This reflects the assumption that urban
areas do not revert to non-urban over time.

e All raster files were reprojected from their original co-
ordinate system (CRS EPSG:4326) to UTM Zone 51N
(EPSG:32651), which is appropriate for the Philippine re-
gion. This conversion allowed for all spatial units to be in
meters.

o All images were resampled to a common spatial resolution
of 100 m x 100 m, selected based on the coarsest resolu-
tion among the datasets and to reduce the overall memory
requirement during processing.

e Finally, the rasters were clipped again using a more
detailed national boundary of the Philippines Faeldon
(2024). All areas outside this boundary including sur-
rounding water bodies were assigned a designated noData
value.

Mt. Arayat
!fnt. Pinatubo

3.2.2 Feature Engineering: To extract relevant spatial
characteristics from the raw datasets and enhance the dynamic
modeling capabilities of machine learning model in generating
the transition probability surface, the following feature engin-
eering procedures were performed:

(a) (b)

Figure 3. Visualization of SRTM slope data: (a) nationwide map
of the Philippines, and (b) zoomed-in view.

the process of downloading specific annual layers must be done
manually per year. All datasets were then pre-processed us-
ing the rasterio Python library, allowing for automated pro-
cessing across multiple files. The pre-processing pipeline in-
cluded the following steps:

e The GRIP dataset, originally in vector format, was raster-
ized. Each pixel intersected by a road segment was as-
signed a value of 1.

e The ESRI land cover dataset contained nine land use
classes; only the class corresponding to water bodies was
extracted and saved as a binary raster mask.

e GAIA, which was downloaded as multiple raster tiles, was
mosaicked into a single image for each year. An addi-
tional step called pixel correction Gémez et al. (2020) was

e Studies on diffusion models though often focusing on pop-
ulation spread, suggest that in densely populated regions,
where centroids are close together, urban expansion typ-
ically occurs over shorter distances from the center. In
contrast, in rural areas where urban clusters are more
dispersed, expansion tends to occur across broader dis-
tances Wu and Martin (2002). This is intuitive: in densely
built-up regions such as Metro Manila, most land near
the centroid is already urbanized, so new development is
likely to emerge only at a certain distance away from the
centroid. Conversely, in rural regions where the centroid of
small clusters is located far from these clusters, urban de-
velopment tends to emerge far from the centroid and near
these more isolated clusters.

Clustering of urban areas was implemented using the k-
means algorithm from the cuML Python library, utilizing
default initialization parameters.

To determine the optimal number of clusters k, a grid
search was conducted for each regional urban map (Luzon,
Visayas, Mindanao) per year, using silhouette score as the
selection criterion. The optimal k was then fixed and used
throughout the simulation. The silhouette score evaluates
the cohesion and separation of the resulting clusters and is
especially effective when ground-truth labels are unavail-
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Figure 4. Visualization of nationwide distance maps from the GRIP dataset for different road classification: (a) highways, (b) primary
roads, (c) secondary roads, (d) tertiary roads, and (e) local roads; (f) zoomed-in view of local road distance.
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Figure 5. Visualization of nationwide maps from the GAIA dataset: (a) urban extent, (b) distance to urban areas, (c) zoomed-in view
of distance to urban areas, (d) distance to urban cluster centroids, and (e) zoomed-in view of distance to urban cluster centroids.

able, as in this study. Higher silhouette scores indicate
better-defined clusters Rousseeuw (1987).

e Using the rasterized road maps and the urban centroids,
new feature maps were generated by calculating the Euc-
lidean distance of each pixel to the nearest target pixel. To
handle the large memory size of the dataset efficiently, this
was implemented using a parallelized method.

The operation was implemented using RAPIDS cuCIM’s
morphology function distance_transform_edt, which
calculates the shortest distance from each foreground
(non-zero) pixel to the nearest background (zero) pixel.
The approach uses parallel banding for computational ef-
ficiency Cao et al. (2010).

e Time lag is a common temporal variable used in autore-
gressive models, based on the idea that the current value
of a time series can be approximated as a linear combin-
ation of its past values plus some random noise. Previous
studies have shown that spatio-temporal lags are crucial in
capturing the variability of urban expansion and are easily
integrable into land-use change models Kim et al. (2022).

However, unlike conventional time series models dealing
with continuous values, this study focuses on binary clas-
sification. Hence, no autocorrelation studies were conduc-
ted to determine the optimal number of lag years. Instead,
a simple lag-1 approach was adopted: the urban footprint
map at time ¢ is used as an input for predicting the state at
time ¢ + 1, and so on.

e After generating and finalizing all feature maps with
metadata presented in Table 2, standardization was applied

to ensure that features with different units and scales do
not disproportionately influence the model. Standardiz-
ation rescales features to have a mean of 0 and a stand-
ard deviation of 1. This was implemented using RAPIDS
cuML’s StandardScaler module.

Parameter Value

CRS EPSG: 32651

Bounds left = -221000, bottom = 504000,
right = 927700, top = 2355900

Resolution 100m x 100m

Shape 11,487 x 18,519

Table 2. Standard metadata information for the raster datasets
used in the study.

3.3 LSTM Model

3.3.1 Model Architecture: Recurrent Neural Networks
(RNNSs) Elman (1990) are a class of neural architectures de-
signed for modeling sequential data by maintaining a hidden
state that evolves over time, allowing the model to capture tem-
poral dependencies within sequences. This makes RNNs par-
ticularly suitable for time series forecasting, natural language
processing, and other tasks where the context of previous time
steps influences current predictions.

However, because of their recurrent structure, traditional RNNs
suffer from vanishing and exploding gradient problems, which
occur when gradients shrink or grow exponentially through suc-
cessive weight updates thereby impairing the model’s ability
to capture long-term dependencies in sequential data. To ad-
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dress this limitation, an augmented version of the RNN known
as the Long Short-Term Memory (LSTM) network Hochreiter
and Schmidhuber (1997) was used in this study.

LSTM capture long-range dependencies in sequences by incor-
porating a memory cell and a set of gating mechanisms. These
gates regulate the flow of information, enabling the network to
retain or discard information over long periods.

The LSTM computations at each time step ¢ are defined as fol-
lows:

fe = o(Wylze, he—1] + by) @))]
iy = o(Wilze, he—1] + bi) )
¢ = tanh(We[ze, he—1] + be) (3)
ot = o(Wo[xt, ht—1] + bo) “4)
ct=ftOc—1+1OC )]
ht = o: ® tanh(cy) (6)

where x; = input vector at time step ¢

h:—1 = previous hidden state

c¢—1 = previous cell state

ft, 1+, 0, = forget, input, and output gates

¢; = candidate cell state

o(-) = sigmoid activation function

tanh(-) = hyperbolic tangent activation function
® = element-wise multiplication

W, b, = weight matrices and bias vectors

By maintaining both a hidden state h; and a cell state c¢;, the
LSTM module is able to carry information over longer se-
quences. This gating structure ensures that gradients remain
stable during backpropagation.

3.3.2 Training and Validation: The LSTM framework was
implemented using PyTorch with the hyperparameters listed in
Table 3. The model was trained on an A100 GPU using CUDA,
as the dataset was considerably large approximately 30 GB in
memory and has over 29 million datapoints for the whole coun-
try. To facilitate efficient preprocessing prior to model training,
libraries such as cudf from RAPIDS and cupy were utilized.

Hyperparameter Value
Number of layers 3
Size of hidden layer 64
Dropout rate 0.30
Learning rate 0.001

Table 3. LSTM model hyperparameter settings.

The GAIA dataset from 2010 to 2020, concatenated with static
features, served as the training data. A time series cross-
validation approach was used to validate the model’s perform-
ance on a per-year basis. Given the highly imbalanced nature
of the dataset (i.e., non-urban pixels vastly outnumber urban
pixels), techniques were explored to create a model that gener-
alized better. First was undersampling of the majority class but
this led to overprediction of urban areas during simulation. To
better reflect the natural class imbalance observed in real-world
scenarios, class weighting was ultimately used.

As discussed in Section 3.4.5, two main approaches can be used
to convert potential probabilities into binary urban classifica-
tions: allocation using economic drivers and direct threshold-
ing. Although population growth was also modeled and projec-

ted on a nationwide scale, it was difficult to establish a stable re-
lationship between urban expansion and population trends. This
difficulty was primarily due to the abrupt changes observed dur-
ing the COVID-19 pandemic, particularly in 2021, which intro-
duced a discontinuity in the urbanization trend Department of
Trade and Industry (DTI) (2021). Consequently, the study re-
stricted the training data to the 2010-2020 period and employed
thresholding as the primary classification approach.

To calibrate the appropriate threshold, the RAPIDS cuML met-
rics’ Python library Precision-Recall (P-R) curve was used dur-
ing validation. For each year, the precision and recall output-
ted by the function were used to compute the F1 score across
various thresholds. The threshold yielding the highest average
F1 score was then selected as the calibrated threshold for sub-
sequent testing and simulation.

3.4 CA Model

As outlined in Section 2.1, CA models comprise several core
components: the transition probability surface, neighborhood
effects, geographical constraints, and stochastic perturbations.
These components are integrated as follows:

t t t t
Upolential,ij = Uansition,i; X Uq,i;j X SPij x Cyj @)

3.4.1 Transition probability: Utﬁansmonyij denotes the suit-
ability of pixel p;; for urban transition, based on multiple spatial
factors—commonly referred to as transition rules. Early CA-
based urban models implemented these rules through explicit
“if-then” logic, consistent with classical CA theory. Over time,
these rules evolved into probabilistic formulations—termed
suitability surfaces which integrate diverse spatial factors Li
and Gong (2016); Santé et al. (2010). Such surfaces are of-
ten generated using logistic regression models, calibrated with
explanatory variables like distance to transport infrastructure,
water bodies, and urban centers Yang et al. (2020); Li and and
(2004). The local literature Johnson et al. (2021), which serves
as the main basis for this study, employs a similar logistic re-
gression framework to derive a static transition probability sur-
face, assumed static over time.

This study, however, tries to improve the simulation method-
ology by incorporating a machine learning model specifically
LSTM networks, as elaborated in Section 3.3. The objective is
to produce a dynamic transition probability matrix that evolves
over time, thereby reflecting the changing likelihood of land
undergoing urban transition. This is achieved by incorporating
spatiotemporal features such that, given the simulation output
at time ¢, a set of spatial urban features is computed and used as
input for predicting urban transition at ¢ + 1.

3.4.2 Neighborhood effects: Ué,ij represents the influence
of neighborhood configurations technically referred to as spa-
tial lag effects Feng et al. (2018). This component is typically
computed using a predefined neighborhood structure, such as
Moore’s neighborhood, and its spatial extent. This study build
the CA system as presented on the on the recent trend-adjusted
neighborhood framework Li et al. (2020) which incorporates
historical urbanization data. Here, more recently urbanized
neighbors exert greater influence than those developed earlier.

. .
Wh=1- =2, ®)
Condition(p;; = urban) x W/,
Ugtz = ZmX'm (p J ) J (9)
’ mxm—1
where W}; = temporal weighting factor for cell (4, 5)
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N{% = number of years cell (¢, j) has been urban
N = total simulation period

Condition() = returns 1 if neighbor cell is urban,
0 otherwise

m = neighborhood window size

3.4.3 Stochastic perturbations: SPfj simulates the real-
world randomness. There are two primary approaches used for
calculating this factor, Monte Carlo-based methods Yeh and Li
(2006), and the disturbance function White and Engelen (1993).
This study adopts the latter due to its simplicity yet prevalence
in studies of urban CA models:

SPj; =1+ (—In\)® (10)

A =random variate drawn from a uniform
distribution [0, 1]

« = hyperparameter controlling perturbation
intensity

where

The resulting distribution is highly skewed as most resulting
values are near 1, with occasional larger deviations to ensure
that the transition probabilities and neighborhood components
remain as dominant components in the urban sprawl simulation.

3.4.4 Constraints: C;; defines static factors that prohibit
urban development. These include natural barriers such as bod-
ies of water, steep slopes, and protected areas. In this study, the
constraint factor is limited only to water and defined as:

0,
Cij = {17

3.4.5 Potential probability: U;otemial’ij represents the com-
bined suitability of pixel (¢, 7) for urban change after integrat-
ing transition rules, spatial influence, randomness, and physical
constraints. This potential surface can be operationalized using

two dominant transformation strategies:

if cell (i,j) = water (an

otherwise

e Allocation-based approach, which allocates a fixed num-
ber of urban transitions based on external indicators,
most often projected population, to maintain target ratios
between urban extent and used indicator Johnson et al.
(2021).

e Threshold-based approach, which classifies pixels as
urban if U}, exceeds a specified threshold, typically

potential,ij

0.5 Li et al. (2014).

3.4.6 Testing and Simulation: As mentioned in Sec-
tion 3.3.2, a major discontinuity occurred in 2021 in the urb-
anization trend across the country. Due to this, the testing and
simulation phase began with input data from 2021 to simulate
urban maps from 2022 to 2030. During simulation, the output
map for year ¢ was used as input for year ¢ + 1. For example,
urban map of year 2021 was used to predict the urban map for
2022, which was then used to derive the map for year 2023, and
so on. Since the available dataset only extended to 2024, model
predictions were compared against actual data only for the years
2022 to 2024 using the two evaluation metrics commonly used
in urban change literatures:

1. Fuzzy Similarity Rating (FSR) evaluates spatial neigh-
borhood agreement rather than per-pixel exact matches.
It calculates the maximum of a set of exponentiated pre-
dictions as shown in belowm where d is the Manhattan
distance from a predicted pixel to the actual target pixel.
This was applied to all newly predicted urban from 2022

to 2024, compared with the actual newly urbanized areas
over the same period (aggregated into a single map).

- Z max ((1/2)0/27 o (1/2)4/2)
urben, e Z 1

3 € Purban, actual

FSR (%) =

(12
1, ifcell (4, 7) in the predicted map has the

o same land-use class within a neighborhood of
b = radius d in the actual map

0, otherwise
13)
2. Figure of Merit (FOM) measures the overlap between
modeled and observed maps, focusing on changed pixels.
It is widely used in land change studies as it offers a more
robust performance evaluation:

TP
FOM (%) = TP 4 FN + FP (14)

where TP = correctly predicted urbanized pixels
FP = pixels incorrectly predicted

FN = actual urban pixels not predicted
4. Results and Discussion

4.1 Model Calibration

The hyperparameters for the CA model are summarized in
Table 4. These values were selected after an extensive calibra-
tion process that balanced prediction quality and generalization.

Hyperparameter Value
Stochastic a 1
Neighborhood Window 3
Trend Years 10

Calibrated Threshold 0.90

Table 4. Calibrated hyperparameter settings for the CA model.

4.2 Model Performance Metrics

The performance of the LSTM-based models based on FSR is
shown in Table 5. The LSTM-CA model outperformed both the
standalone LSTM and reference literature. Luzon and Visayas
recorded notably high FSR scores for LSTM-CA at 48.15% and
47.91%, respectively, whereas Mindanao showed more mod-
erate performance (18.53%). This suggests that while LSTM-
CA effectively captures spatial patterns in denser urban regions,
challenges remain in more dispersed areas.

Regi Model
egion

LSTM-CA LSTM CA
Luzon 48.15 9.63 10.18
Visayas 4791 12.39 5.63
Mindanao 18.53 19.50 11.78
Average 38.20 13.84 9.20

Table 5. Comparison of FSR scores across Philippine island
groups for different urban growth models.

FOM values from 2022 to 2024 are presented in Table 6.
The LSTM-CA model achieved the highest FOM scores for
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Figure 7. Validation and Testing Result for Visayas.

all years, with an average of 0.5537, reflecting its stronger
alignment with observed newly urbanized areas. The stan-
dalone LSTM and CA models consistently underperformed,
emphasizing the benefit of hybrid ML-CA model.

Year Model

LSTM-CA LSTM CA
2022 0.5603 0.3594  0.3077
2023 0.5524 0.3529  0.2805
2024 0.5485 0.3480 0.2570
Average 0.5537 0.3534 0.2817

Table 6. FOM scores from 2022 to 2024 for each model.

Figures 6, 7, and 8 show yearly trends in urban pixel counts
during both validation and simulation phases. In Luzon, the
validation results closely follow the actual urban growth trend
with minor underprediction, while the test results exhibit strong
alignment with actual values. This indicates good generaliza-
tion of the model in more urbanized areas.

In Visayas and Mindanao, validation results similarly match the
actual trends starting 2017. However, in the testing and simula-
tion period, the model tends to overpredict urban pixel counts.
This discrepancy can be attributed to the stagnation observed in
actual urbanization during this period likely influenced by post-
pandemic slowdowns in construction and infrastructure devel-
opment. Since the model is trained on pre-2020 trends, it con-
tinues to forecast growth that did not manifest in reality.

In addition to accuracy-based metrics, the computational effi-
ciency of the models were also monitored. Results show that
the hybrid LSTM-CA model is almost twice as slow as the stan-
dalone CA approach, largely due to the additional training re-
quirements of the LSTM component. However, the runtime of
LSTM-CA and standalone LSTM models is nearly the same,
indicating that the integration of CA contributes only minimal
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Figure 8. Validation and Testing Result for Mindanao.
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Figure 9. Projected top urban growth hotspots by 2030 for each
major region of the Philippines: Calamba (Luzon), Carcar
(Visayas), and Davao (Mindanao).

computational overhead beyond what is already required for
LSTM training.

4.3 Simulation of Urban Sprawl in the Philippines by 2030

Using the localized predictions, simulation maps were gener-
ated to identify the year in which each pixel transitioned to an
urban state. These maps were then aggregated at the city level
using the official Philippine boundary dataset Faeldon (2024).
From this aggregation, various urbanization metrics were de-
rived, including the cities that experienced the most significant
increase in urban pixels.

Figure 9 presents examples of such trends, highlighting
Calamba City, which showed an increase from 4,389 urban
pixels in 2025 to 5,317 by 2030. Similarly, Carcar increased
from 1,809 to 2,162 pixels, while Davao expanded from 1,651
to 2,161 pixels over the same period. Additional analyses
from the simulated maps may include identifying cities with
the highest percentage increase in urban area or those that did
not experience any new urbanization.

It is important to note that the current simulation relies solely on
a physical expansion model. Urban growth is modeled based on
spatial trends, specifically how the GAIA dataset defines urban-
ity (i.e., built-up areas). Socioeconomic or policy-driven factors
are not incorporated at this stage.

5. Conclusion and Recommendations

The combined LSTM-CA model demonstrated superior per-
formance over the traditional Logistic Regression-CA model,
underscoring the advantage of employing a dynamic suitab-
ility surface that evolves through time. This approach sig-
nificantly enhanced the model’s capability to simulate pixel-
level urban transitions, capturing complex spatio-temporal pat-
terns more realistically. Additionally, it outperformed the
standalone LSTM by incorporating spatial perturbations and
neighborhood-weighted factors, which contributed to a more
context-aware representation of urban growth.
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These results can be further utilized for broader spatial planning
applications. For instance, the predicted urban expansion maps
can be overlaid with agricultural land-use layers to quantify the
extent and location of agricultural land conversion, helping as-
sess risks to food security. Similarly, by integrating the simu-
lated urban growth with road network data, urban connectivity
can be evaluated through measures such as changes in travel
time or accessibility indices, thereby identifying areas requir-
ing transport infrastructure investment. Furthermore, the out-
puts can be linked with socio-economic datasets to estimate
productivity impacts of urban expansion by analyzing how new
urban areas coincide with economic zones or labor markets. In
this way, the dynamic forecasts generated by the LSTM-CA
framework can directly feed into scenario-based spatial plan-
ning, providing planners and policymakers with actionable in-
sights for balancing development, mobility, and sustainability.

To improve the study further, one key direction is the refine-
ment of metrics used to determine urban expansion rates. Cur-
rently, the model uses the increase in urban pixels as a proxy
for expansion intensity, which may not fully capture underlying
dynamics. A more robust approach would involve integrating
population growth or economic indicators.

Enhancing the model’s accuracy can also be achieved through
comprehensive hyperparameter tuning of the LSTM compon-
ent.

Finally, exploring alternative model architectures such as
Attention-Based LSTM or Transformer models may further
enhance the model’s ability to capture more intricate spatial-
temporal interactions in urban development patterns.
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