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Abstract 
 
The proximity of power plants to protected seascapes presents a significant environmental concern, yet research on thermal pollution 
and its effects on marine ecosystems in the Philippines remains limited. This study examined the relationship of thermal pollution 
from the Masinloc Power Plant on the marine ecosystem of Oyon Bay, Zambales, focusing on seagrass ecosystems. Remotely sensed 
sea surface temperature (SST) data from Landsat satellites (5, 7, and 8) were used to track SST changes from the pre-operation 
period (1993-1998) to the operational period (1999-2023). Time series decomposition of SST data indicates a gradual increase in 
temperature, with emerging hotspots analysis identifying localized thermal pollution near the plant's outfall. A time-lagged 
correlation analysis revealed a moderate negative relationship (R = -0.47) between increased SST and seagrass percent cover, with a 
delayed response of approximately seven months. Seagrass cover significantly decreased after the plant started operating but showed 
partial recovery over time. These findings highlight the adverse effects of thermal pollution on seagrass ecosystems, emphasizing the 
need for effective management strategies to mitigate such impacts. This research contributes to the limited understanding of thermal 
pollution in marine protected areas, offering valuable insights for environmental monitoring and policy development. 
 

1.​ Introduction          
                                                                                           

1.1​ Background of the Study  
 
Despite the global push for renewable energy, the Philippines 
remains heavily reliant on coal-fired power plants, which 
accounted for 63.7% of the country’s gross power generation in 
2023 (Department of Energy, 2024). One major contributor is 
the Masinloc Power Plant located in Barangay Bani, Masinloc, 
Zambales. Initially a two-unit 600 MW facility when it began 
operations in 1998, it has since expanded to 1,019 MW. Like 
other coal-fired plants, it requires large volumes of water for 
cooling—often drawn from and discharged back into nearby 
bodies of water. This process causes thermal pollution, which 
poses significant threats to aquatic ecosystems (Mishra et al., 
2021). 
 
The intake and outfall of the Masinloc Power Plant are located 
within the Masinloc and Oyon Bay Protected Landscape and 
Seascape (MOBPLS), or more commonly known as Oyon Bay. 
This is an area rich in seagrass meadows, coral reefs, mangrove 
forests, and fisheries (Paz-Alberto et al., 2015). These 
ecosystems, especially seagrasses, are sensitive to temperature 
changes. A 5°C increase can disrupt photosynthesis and 
respiration in seagrasses, while prolonged exposure to heat can 
cause physiological stress and sediment hypoxia (Jiang et al., 
2022). Although tropical seagrasses can tolerate 23°C–32°C, 
extreme and sustained heat can reduce biomass and weaken 
carbon storage capacity (Macreadie & Hardy, 2018). In fact, 
Reyes et al. (2021) observed degraded seagrass meadows near 
the plant, with low biomass and high organic carbon linked to 
ash and warm wastewater.  
 
Given this context, tools like the space-time cube can be used to 
analyze spatiotemporal patterns of thermal pollution. This 3D 
data visualization method represents spatial dimensions on the 
horizontal plane and time on the vertical axis, helping to detect 

trends, clusters, and changes across time and space (Bach et al., 
2014). 
 
1.2​ Research Objectives 
 
The study generally aims to investigate the potential thermal 
pollution caused by the Masinloc Power Plant in Oyon Bay and 
its effect on the marine ecosystem of the area by using remote 
sensing techniques.​Specifically, it aims to: (1) Determine the 
occurrence of thermal pollution in Oyon Bay through analysis 
of historical SST data pre-operation (1993-1998) to present 
operation (1999-2023) of the Masinloc Power Plant; (2) 
Investigate the potential contribution of the Masinloc Power 
Plant to the thermal pollution in the coastal region by 
determining the spatiotemporal clustering using a space-time 
cube and hotspot category through emerging hotspots analysis, 
and (3) Determine the correlation between the change in 
temperature and the seagrass cover in the study area through a 
lagged correlation analysis. 
 
1.3​ Significance of the Study 
 
Given its marine-protected status, monitoring water quality ( 
particularly temperature changes) is crucial to protecting the 
bay from adverse effects of thermal pollution. By utilizing 
Landsat satellite data, which provides high spatial resolution, 
long-term, and large-scale sea surface temperature (SST) data, 
this study addresses a gap in Philippine research where few 
studies have focused on remote-sensed SST data to track 
thermal pollution over time. The study of Yavari and Qaderi 
(2018) on the determination of thermal pollution of water 
resources caused by the Neka power plant in Iran used Landsat 
8 satellite imagery in extracting the water temperature around 
the outlet of the power plant through the thermal infrared 
sensors (TIRS), which has two thermal bands – Bands 10 and 
11.  Furthermore, data from this research can help the 
municipal government craft informed policies and regulations 
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to mitigate the impact of thermal pollution, preserve the bay’s 
ecology, and support sustainable resource use. This research 
aligns with the United Nations Sustainable Development Goal 
(SDG) 14, particularly targeting 14.1, which focuses on 
reducing marine pollution, and 14.2, which emphasizes 
sustainably managing and protecting marine and coastal 
ecosystems.  
 
1.4​ Scope and Limitation  
 
This study focuses on assessing thermal pollution through SST 
data in the MOBPLS and specifically examines the potential 
impact of the Masinloc Power Plant on the bay’s seagrass 
ecosystems. The temporal scope included both a 
pre-operational period (1993–1998) and an operational period 
(1999–2023), with SST data sourced from Landsat 5, 7, and 8 
satellites. Data collection was dependent on the availability and 
clarity of satellite imagery, which was constrained by cloud 
cover and the revisit period of the mentioned satellite systems. 
Moreover, seagrass cover was estimated without differentiating 
between species, which limited the analysis of species-specific 
spectral variability and thermal tolerance. Also, this study did 
not take into account global climate models. The effects 
brought by climate change were beyond the scope of the 
analysis in this study.  
 

2.​ Methodology 
 

2.1​ Study Area 
 

 
Figure 1. The study area 

 
The Masinloc-Oyon Bay was designated as a marine protected 
area (MPA) under Republic Act No. 7586, also known as the 
National Integrated Protected Areas System Act on August 18, 
1993. This declaration ensured the conservation of its unique 
marine biodiversity, including mangroves, seagrass, and coral 
reefs, which are crucial to the local ecosystem (Mayuga, 2021). 
The area, officially known as the Masinloc-Oyon Bay Protected 
Landscape and Seascape (MOBPLS), became the first marine 
protected area (MPA) in Central Luzon. It spans 7,558 hectares 
and has become a key site for environmental preservation in the 
region. In Figure 1, the location of the Masinloc Power Plant 
relative to MOBPLS is highlighted. Also shown in the figure 
are the locations of the intake where the cooling water is 

sourced from and the outfall where the heated byproducts are 
dumped. 
 
2.2​ General Flowchart 
 
The methodology of this study was structured into three main 
phases as shown in Figure 2. The first phase involved the 
extraction of SST data and the identification of thermal 
hotspots. The second phase focused on the estimation of 
seagrass percent cover. Both phases were preceded by essential 
preprocessing steps and included appropriate validation 
procedures to ensure data quality and accuracy. The outputs 
generated from these initial phases served as the primary inputs 
for the final phase, which entailed a time-lag correlation 
analysis between SST and seagrass cover. 
 

 
Figure 2. Flowchart of the study  

 
2.3​ Datasets Used 
 
Table 1 shows the image data that were used in this study. The 
same datasets were used for the retrieval of the SST and the 
seagrass percent cover for uniformity. Since the data needed in 
this study covers the period before and during the operation of 
the Masinloc Power Plant, Landsat 5, 7, and 8 imagery were 
used to cater this temporal need.  
 

Data Band Used 
(for SST) 

Resolution Source 

1993-2000, 
2004-2010 Landsat 
5 TM Collection 2 
Tier 1 Raw Scenes 

(Level 1) 

6 (Thermal 
Infrared) 

30 m  USGS 

2001-2003, 
2011-2013 Landsat 
7 Collection 2 Tier 

1 Raw Scenes 
(Level 1) 

6 (Thermal 
Infrared) 

30 m  USGS 

2014-2023 Landsat 
8 Collection 2 Tier 

10 
(Thermal 

30 m USGS 
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1 Raw Scenes 
(Level 1) 

Infrared) 

 
Table 1. Image Datasets for SST and seagrass cover retrieval 

 
2.4​ Preprocessing 
 
2.4.1​ Scan Line Correction: To correct the scan line 
errors, a custom function was applied in Google Earth Engine 
(GEE). This approach works by identifying the missing pixels 
in the image and estimating their values through spatial 
interpolation. Specifically, it calculated the average of 
surrounding valid pixels using a focal mean technique which 
smooths over the gaps while preserving the general 
characteristics of the image. The interpolated values were then 
merged with the original data to create a corrected image. 
 
2.4.2​ Cloud Mask: The presence of clouds and its shadows 
within the dataset obscured the features below it, preventing the 
satellite from detecting the said features. Hence, using the 
QA_Pixel band of the Landsat imagery, clouds, shadows, and 
cirrus clouds were detected. Then, a binary mask was created to 
mask out clouds and cloud shadows where pixels affected by 
these said features became null. 
 
2.4.3​ Land Mask: The water body was separated from the 
land through Land Masking by creating a binary mask using the 
JRC Global Surface Water dataset which was run on GEE. This 
said dataset was derived from Landsat imagery hence, it has a 
spatial resolution of 30 meters, and covered the temporal need 
of the study.  
 
2.4.4​ Water Column Correction using Depth Invariant 
Index (DII): To minimize depth-related reflectance variation, 
the Depth Invariant Index (DII) was computed in GEE using 
surface reflectance imagery. Selected band pairs were used, and 
three sand pixels at varying depths were manually identified to 
estimate the slope (k), representing the ratio of attenuation 
coefficients. These values were then applied to normalize 
reflectance using the DII formula, enhancing the accuracy of 
seagrass classification in optically shallow waters. 
 
2.4.5​ Dark Object Subtraction for Atmospheric 
Correction: To improve spectral clarity and classification 
accuracy, atmospheric haze was corrected in GEE using dark 
object subtraction. Deep water pixels served as reference dark 
objects, with the 1st percentile reflectance values from the 
visible bands subtracted across the image to reduce atmospheric 
scattering. 
 
2.4.6​ Shallow Water Delineation: To ensure that SST 
values reflected conditions relevant to seagrass ecosystems in 
Oyon Bay, the analysis focused on shallow coastal areas, where 
dominant seagrass species typically occur (Paz-Alberto et al., 
2015). These zones were delineated through supervised 
classification using recent Landsat 8 imagery, selected over 
older sensors like Landsat 5 to better capture current shoreline 
configurations—especially important in areas like Masinloc 
where coastal development may have altered the coastline. 
 
2.5​ SST Retrieval 
 
Since Landsat 5 and 7 each have only one thermal band (band 
6), the single-channel (SC) algorithm was utilized. This 
algorithm, based on the Radiative Transfer Model, is commonly 
employed for retrieving surface temperature from Landsat 

series data (Wang et al., 2018). While Landsat 8 includes an 
additional thermal band (band 11), calibration issues make it 
unsuitable for multi-band atmospheric corrections, such as the 
split-window algorithm. Radiance values were first extracted 
from the thermal band of the satellite images using Equation 
(1). 
 

                                                         (1) 𝐿 =  𝑀 × 𝐷𝑁 +  𝐴
 
where​ L: Radiance 

M: Radiance multiplicative scaling factor (specific to 
satellite and band) 
A: Radiance additive scaling factor (specific to 
satellite and band) 
DN: Digital number from the thermal band 

 
Consequently, the radiance values were used to compute the 
brightness temperature using Planck's Inverse Function shown 
in Equation (2). 
 

                                                                (2)  𝑇
𝑠𝑒𝑛
2 =

𝐾
2

𝑙𝑛(
𝐾

1

𝐿 +1)

 
where​ ​: Brightness temperature (Kelvin) 𝑇

𝑠𝑒𝑛
2

: Thermal calibration constants (specific to 𝐾
1
, 𝐾

2
satellite and band) 

: Radiance 𝐿
 
Atmospheric correction was then applied in computing SST, 
using a coefficient matrix derived from the SAFREE 
atmospheric sounding database, which is specific to each 
Landsat platform. The coefficient matrices for the thermal band 
of each satellite system are shown in Table 2 (Jiménez-Muñoz 
et al., 2009). 
 

Satellite Coefficient Matrix 

Landsat  5 

0.05261 0.05933 1.01123 

-0.36368 -2.20569 0.55116 

-0.07237 1.76355 -0.47457 

Landsat  7 

0.04597 0.06269 1.00818 

-0.32297 -2.16801 0.55698 

-0.06397 1.69324 -0.45747 

Landsat  8 

0.04019 0.02916 1.01523 

-0.38333 -1.50294 0.20324 

0.00918 1.36072 -0.27514 

Table 2. Coefficient Matrix Used per Satellite image 
 

                                           (3) 
 

where​ : atmospheric functions Ψ
w: water vapor content 
c: matrix coefficients 
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The average water vapor content of the study area during the 
specific time step corresponding to the satellite image was 
derived using data from the National Centers for Environmental 
Prediction (NCEP). This value was used to construct the water 
vapor vector, shown in Equation (3), which was then multiplied 
by the coefficient matrix to obtain the psi matrix. The entries of 
the psi matrix were used to calculate the gamma and delta 
values, which were subsequently used in the estimation of SST, 
as shown in Equation (4). 
 

                   ​           (4) 𝑇
𝑠

= γ 1
ε ψ

1
𝐿

𝑠𝑒𝑛
+ ψ

2( ) + ψ
3

⎡⎢⎣
⎤⎥⎦ + δ

 

           ​ ​ ​                (5) γ =
𝑇

𝑠𝑒𝑛
2

𝑏
γ
𝐿

𝑠𝑒𝑛

 

        ​ ​                (6) δ = 𝑇
𝑠𝑒𝑛

−
𝑇

𝑠𝑒𝑛
2

𝑏
γ

 
where​  : Surface emissivity ε

 : At-sensor radiance 𝐿
𝑠𝑒𝑛
: Gamma parameter γ
: Delta parameter δ
: K2 thermal constant 𝑏

γ
: Sea surface temperature 𝑇

𝑠
: At-sensor brightness temperature 𝑇

𝑠𝑒𝑛
 
2.6​ Time Series Decomposition 
 

 
Figure 3. Delineated shallow areas 

 
The SST time series was decomposed into three fundamental 
components: trend, seasonality, and residual. The 
decomposition used an additive model, expressed as: 
 

           (7) 𝑆𝑆𝑇(𝑡) =  𝑇
𝑡𝑟𝑒𝑛𝑑

 (𝑡) + 𝑇
𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

 (𝑡) + 𝑇
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

 (𝑡) 

where​  =  trend component of the SST time series 𝑇
𝑡𝑟𝑒𝑛𝑑

 = seasonal component of the SST time series 𝑇
𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

 = residual component of the SST time series 𝑇
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

The area of interest was filtered such that the classified shallow 
waters were extracted (see Figure 3). A time series 
decomposition was conducted in RStudio using SST data 
derived from Landsat imagery. A time series object was then 
created with monthly frequency, starting from the earliest year 
and month in the dataset. To break down the SST values into 
interpretable components, STL decomposition was performed 
using the stl() function. 
 
2.7​ Spatiotemporal Analysis of SST 
 
To identify SST hotspots, a space-time cube (STC) was created 
using yearly median SST composites from 1998 to 2023, which 
helped reduce seasonality and data gaps. The STC was built in 
ArcGIS Pro by stacking annual SST raster files with 30x30 m 
pixel resolution, setting temporal intervals to the first day of 
each year, and using spline interpolation to fill missing data. 
 
Emerging Hotspots Analysis was then applied to detect 
spatiotemporal clusters of high SST values linked to the plant’s 
operations. The method used the K nearest neighbors algorithm 
with eight spatial neighbors (surrounding pixels) and a one-year 
temporal step. This setup allowed precise identification of 
thermal plumes while minimizing overgeneralization. By 
focusing on changes within a one-year window, the analysis 
highlighted the localized thermal effects of the power plant, 
distinguishing them from broader climate trends. 
 
2.8​ SST Accuracy Assessment 
 
Due to the lack of in situ sea surface temperature (SST) data, 
proxy validation was used to assess the SST retrieval method. 
Instead of directly validating SST, the study examined the 
correlation between satellite-derived land surface temperature 
(LST) and air temperature data from the nearby PAGASA 
station in Iba, Zambales. Maximum monthly air temperatures 
from 1993 to 2023 were compared to LST retrieved using the 
same single-channel algorithm as SST, differing only in 
emissivity estimation.  
 
2.9​ Seagrass Mapping 
 
Seagrass percent cover was estimated using linear spectral 
unmixing in Google Earth Engine (GEE), which decomposed 
each pixel into fractional contributions from four endmember 
classes: seagrass, coral, sand, and deep water. Seagrass 
endmembers were identified using field data, NAMRIA, the 
Allen Coral Atlas, and maps from Reyes et al. (2021). Coral 
endmembers were selected through spatial overlays, while sand 
and deep water were identified through manual image 
interpretation. Due to limited spatial and temporal availability 
of ground truth data, conventional accuracy assessments such 
as confusion matrices were not feasible. Instead, a 
threshold-based classification was performed using ≥50% and 
≥75% membership values to define seagrass pixels, following 
Hill et al. (2024). The classified maps were vectorized in GEE 
and exported to QGIS for spatial validation. There, the results 
were compared with the existing datasets by computing the area 
of spatial overlap as a proxy for classification accuracy. 
 
2.10​ SST and Seagrass Time-Lagged Correlation 
Analysis 
 
To take into account the delayed response of seagrass towards 
the increase of temperature, a time-lagged correlation analysis 
was done. In the study of Zhang et al. (2021), “individual 1 
month lag” refers to the values of the dependent variable which 
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are lagged by a month and are affected by the values of the 
independent variable of the preceding month. In this case, the 
dependent variable was the seagrass percent cover while the 
independent variable was the SST. Equation (8) obtained the 
correlation coefficient between the said variables.  
 

                   ​                  (8) 𝑟
𝑘
(𝑥, 𝑦) =  𝑖=1

𝑛−𝑘

∑ (𝑥
𝑖
−𝑥

𝑖
) (𝑦

𝑖+𝑘
−𝑦

𝑖+𝑘
)

𝑖=1

𝑛−𝑘

∑ (𝑥
𝑖
−𝑥

𝑖
)• 

𝑖=1

𝑛−𝑘

∑ (𝑦
𝑖+𝑘

−𝑦
𝑖+𝑘

) 

 
where​  = time series of the seagrass percent cover 𝑥

𝑖
 = time series of the sea surface temperature 𝑦

𝑖
n = length of time series 
k = time lag (in months) 

 
Shallow water areas were intersected with regions identified as 
intensifying and persistent SST hot spots, reducing the area of 
interest to locations with statistically significant spatial and 
temporal clustering of high SST values. These areas also 
represent zones where seagrass can survive. Each correlation 
coefficient was determined for every month lag and the highest 
correlation coefficient determined the best time lag, indicating 
the length of the delayed response of the seagrass percent cover 
to the SST.  After the best time lag was determined, the values 
of the seagrass cover was adjusted according to the number of 
months of its supposed delayed response to solidify further 
possible relationships of the increased SST, manifested by the 
determined hotspots,  to the seagrass cover. 
 

3.​ Results and Discussion 
 

3.1​ SST Profile of MOBPLS 
 
Based on the DENR’s 29.5°C baseline and 3°C thermal limit, 
satellite-derived SST data showed 28 instances above 32.5°C 
after the plant began operating in 1998, compared to only two 
in the six years prior. In the six years post-operation, there were 
seven such instances. While this suggests a potential impact 
from the plant, further investigation is needed to confirm 
causality. 
 
3.1.1​ Time Series Decomposition of SST: Figure 4 shows 
the decomposed SST time series into seasonal, trend, and 
remainder components. The seasonal part reflects natural 
cyclical fluctuations, while the remainder captures irregularities 
likely from sensor changes or environmental events. The trend 
component, the study’s main focus, shows a steady SST 
increase from 1993 to 2023 across the shallow areas of the 
MOBPLS. 
 

Figure 4. STL decomposition of SST in MOBPLS from 1993 to 

2023. The Data panel shows the raw SST values, while the 
Seasonal, Trend, and Residual panels represent the 
corresponding decomposed time series components 

 

 
Figure 5. Overlay of the original time series and its 

decomposed trend component in MOBPLS from 1993 to 2023. 
 

Meanwhile, Figure 5 displays the decomposed trend component 
overlaid on the original time series. Also shown is a linear trend 
line with a positive slope, which reinforces the observed 
increasing temperature trend over the years. The graph 
additionally marks the commencement of the plant’s operation 
in 1998. While no specific month was indicated in existing 
literature, this visualization assumes the plant began operations 
as early as January 1998 for consistency. 
 

 
Figure 6. Location of the sites.  

 
To better understand the behavior of SST in the area, a time 
series decomposition was conducted for SST values across 
several localized sites within the Masinloc-Oyon Bay Protected 
Landscape and Seascape. Specifically, the analysis focused on: 
(1) outfall: the area near the outfall, (2) east: a site within Oyon 
Bay that shares similar depth and bathymetric characteristics 
with the outfall, and (3) south: a site outside the bay to the 
south which also has a comparable profile. The exact locations 
of these areas are indicated in Figure 6. These locations were 
selected to assess whether elevated temperatures are consistent 
across these areas or if the outfall remains significantly warmer. 

 
Figure 7 presents the trend components of  SST in the selected 
locations. It is evident that SST values near the outfall are 
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significantly higher than those in other locations, particularly 
after the power plant began operations in 1998. This suggests 
the significant influence of the power plant on the elevated 
temperature in its surrounding area. 
 

 
Figure 7. SST trend in the three selected locations 

 
3.1.2​ SST Hotspots: Figure 8 zooms into the power plant 
site on the peninsula west of Oyon Bay. In 1994, before the 
plant’s operation, no significant SST patterns were observed. 
By 2003, five years post-operation, a cluster of elevated SST 
values appeared at the peninsula’s tip, coinciding with the 
plant’s outfall. This thermal plume persisted through 2023, 
indicating a long-term localized warming effect likely caused 
by the plant’s discharge of heated effluent. The plume’s extent 
illustrates the spatial reach of the thermal influence before the 
elevated temperatures dissipate into surrounding waters. 
 

 
Figure 8. Zoomed in SST along the outfall of the plant 

pre-operation (1994) and SST along the outfall of the plant 
during the operational period (2003, 2013, 2023) 

 
The SST hotspot map (Figure 9) reveals a progressively 
expanding hotspot at the plant’s outfall, with 23 of the 26 
operational years showing significant clustering which indicates 
an intensifying rise in SST directly in the discharge area. Along 
the coastlines of the study area, persistent hotspots were 
likewise detected. However, their clustering has remained 
relatively stable, suggesting that while these areas have 
consistently exhibited elevated temperatures since the start of 
the plant’s operation, the trend has not intensified further. In 
contrast, sporadic hotspots surrounding the intensifying outfall 
region—defined as intermittent yet statistically 
significant—likely reflect the dispersal of heated effluent 
waters. This pattern supports the interpretation that thermal 
influence weakens gradually with distance from the outfall as it 
diffuses. 
 

 
Figure 9. SST Hotspots based on the analysis of SST data from 

1998 to 2023 
 
3.1.3​ SST Validation: As seen in Figure 10, although the 
values do not exactly match, the trends in land surface 
temperature (LST) and air temperature showed similar overall 
patterns. This difference in values is expected since LST and air 
temperature measure different aspects of temperature. The 
consistently higher LST values reflect the known difference due 
to the physical properties of the surfaces where heat is 
measured. Additionally, the trend line shows that LST increased 
at a faster rate than air temperature, which aligns with 
established findings (do Nascimento et al., 2022). Both data 
sets exhibited a general upward trend, supporting the reliability 
of the retrieval method when compared with observed 
temperature records. By extension, this also provides indirect 
validation for the SST values derived using the same 
single-channel technique. 
 

 

Figure 10. Satellite-derived LST and air temperature of 
PAGASA Iba, Zambales station 

 
3.2​ Seagrass Cover in the MOBPLS 
 
Figure 11 shows the yearly seagrass percent cover in shallow 
water areas identified as intensifying and persistent SST hot 
spots. Before the power plant began operations, seagrass cover 
in the study area was about 50%. When the plant started in 
1998, cover sharply declined to 27%, reaching a low of 17% in 
2001. Between 2001 and 2006, the cover fluctuated but 
stabilized, indicating some adaptation resistance to thermal 
stress. From 2007 onward, seagrass cover increased to around 
30% and remained fairly stable until 2023, peaking at 40% in 
2010. Although it never returned to pre-operational levels, this 
pattern suggests partial adaptation despite ongoing exposure to 
heated effluent. 
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Figure 11. Yearly Seagrass Percent Cover in Intensifying and 
Persistent Hot Spot Areas. The red line marks the start of the 

power plant's operation. 
 

This trend aligns with studies showing thermal stress reduces 
photosynthetic yield in seagrass species. The dominant species 
in the area, Enhalus acoroides, is relatively heat-tolerant, which 
may have enabled greater capacity for thermal acclimation, as 
suggested by the prolonged resistance phase and gradual 
recovery observed in this study. 
 
3.2.1​ Seagrass Validation: In 1999, seagrass classified by 
spectral unmixing covered about 3.85 km² at the 50% threshold, 
with 68.83% overlapping a reference map; at the 75% 
threshold, coverage increased to 7.98 km² with 72.31% overlap. 
For 2020, the 50% threshold yielded 8.47 km² with 66% 
overlap, while the 75% threshold showed 4.74 km² with 73% 
overlap. These overlaps support the spatial validity of the 
spectral unmixing method in detecting seagrass presence. 
Although precise accuracy assessment was not possible due to 
limited reference data, the consistent spatial agreement across 
years and thresholds suggests the method effectively identifies 
seagrass areas, making it suitable for temporal and ecological 
analysis. 
 
3.3​ Time-Lagged Correlation 
 
3.3.1​ Best Time Lag: Figure 12 shows the lagged 
correlation between the SST and seagrass percent cover within 
the study area across different time periods. The areas identified 
as intensifying and persistent hotspots were mostly located 
around the outfall of the plant and the shorelines of MOBPLS. 
Given that the seagrass percent cover had already increased by 
2007 and had been stable until 2023, a different lagged 
correlation was obtained for 1998-2006 and 1998-2023 to 
account for the immediate and the long term effects, 
respectively. The period from 1998-2006 saw the highest 
correlation at R=-0.33 and had a seven-month lag, while the 
period from 1998-2023 had a six to seven-month lag as both 
time lags have a correlation coefficient of R=-0.19, the highest 
in the said period. The correlation coefficient indicates that the 
SST and seagrass percent cover are inversely proportional to 
each other and that there was a seven month delay in the 
response of the seagrass to the change in SST. Moreover, there 
was a higher correlation when considering the more recent 
period relative to the start of the plant’s operations. Meanwhile 
in the areas identified as intensifying hot spots, which were 
mostly concentrated around the outfall of the plant, both 
periods had the highest correlation coefficient in the 
eight-month lag. The period from 1998 to 2006 had the highest 
correlation coefficient at R=-0.23, while the period from 
1998-2023 had the highest correlation coefficient at R=-0.19. 
However, in this case, there was a lower correlation between 

the two variables and there was an eight-month delay in the 
response of the seagrass to the change in SST. 
 

 
Figure 12. Time Lag Correlation between SST and seagrass 

percent cover 
 
3.3.2​ Relationship Between SST and Seagrass Cover: 
The computed correlation coefficient of the SST and the 
adjusted seagrass cover based on its 7-month delayed response 
was calculated to be at R=-0.47 (Figure 13). The negative 
correlation implied that as the SST increased, the seagrass 
cover consequently decreased.  
 

 
Figure 13. Scatter plot of the SST and the adjusted 7-month 

lagged seagrass cover 
 

However, given the value of the correlation coefficient which 
was in between zero to 1, this implied a moderate negative 
correlation between the two variables. Hence, the SST does not 
necessarily have any correlation with the seagrass cover. 
Furthermore, the computed R² value of 0.22 indicates a weak 
linear relationship between SST and seagrass percent cover in 
the current dataset. In the context of this study, this may imply 
that other factors may be playing a more significant role in 
influencing seagrass variability. The moderate correlation 
between the SST and the seagrass percent cover was expected 
as there are various factors that affect seagrass health and 
eventually, seagrass cover. In the study of Reyes et al. (2021), 
water quality, measured through parameters such as dissolved 
oxygen, salinity, turbidity, pH, and nutrient concentrations 
(phosphate and nitrate), was found to correlate with seagrass 
biomass, a key indicator of seagrass health. While temperature 
was only one of the factors considered in their analysis, the 
present study specifically focuses on the effect of elevated SST, 
attributed to heated effluents from the power plant, on seagrass 
cover. Hence, despite the moderate correlation, the influence of 
SST should not be discounted as it remains a significant factor 
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in water quality, further affecting seagrass health and seagrass 
cover.  
 

4.​ Conclusion 
 

This study investigated the occurrence of thermal pollution in 
the Masinloc and Oyon Bay Protected Landscapes and 
Seascapes (MOBPLS) due to heated effluent discharged by the 
Masinloc Power Plant, and its correlation with changes in 
seagrass percent cover. SST data from shallow waters, where 
seagrass typically thrives, was analyzed through time series 
decomposition, revealing a gradual long-term increase in SST. 
To distinguish local thermal pollution from global climate 
change, spatiotemporal hotspot analysis was performed. Results 
showed intensifying hot spots near the plant’s outfall, persistent 
hotspots in the coastal areas, and sporadic hotspots in 
surrounding waters, indicating localized thermal impacts. These 
patterns suggest that the SST increase is related to the power 
plant rather than solely to broader climate trends. Seagrass 
cover in areas with persistent and intensifying SST hotspots 
showed a sharp decline, dropping to half its pre-operational 
levels shortly after the plant began operations. While partial 
recovery was observed, it remained below original levels, 
suggesting limited resilience potentially linked to thermal stress 
but not exclusively determined by it. Meanwhile, a time-lag 
correlation analysis revealed a weak negative correlation 
(R=-0.33) between SST and seagrass cover, with the latter 
responding about seven months after the temperature rise. This 
delayed response underscores a potential indicative relationship 
between thermal stress and seagrass decline, though other 
environmental factors such as water quality and turbidity also 
influence seagrass health, highlighting a key limitation of this 
study. In addition to that limitation, the study is also constrained 
by the absence of long-term in situ SST and seagrass 
measurements. Air temperature data from PAGASA were used 
as a proxy for validation, which, while suitable for long-term 
consistency, is an indirect approach.  
 

5.​ Recommendations 
 

While the study provides valuable insights on the hot spots of 
SST values along the study area and its correlation to the 
seagrass percent cover through time, further research is needed 
to build on the findings and address the limitations of this study. 
Hydrodynamic modelling of the water system within the 
Masinloc and Oyon Bay Protected Landscapes and Seascapes 
(MOBPLS) can be done to better understand the dispersion of 
heated effluents from the power plant. Modelling currents and 
mixing patterns can reveal how thermal plumes spread spatially 
and temporally. Additionally, incorporating in situ temperature 
measurements would enable a more detailed analysis of 
localized anomalies. Moreover, other factors affecting seagrass 
health in the area can be further explored. Furthermore, modern 
technologies should be utilized by the Masinloc Power Plant to 
better treat the cooling water such that its effects to the 
environment where it is discharged would be minimized. Given 
that the MOBPLS is a protected area under the law, the 
protection of benthic habitats, including seagrass meadows 
should be of priority as the health of the marine ecosystems 
ensure a rich marine biodiversity, which further contributes to 
the livelihood of the nearby communities relying on fisheries 
and eco-tourism.   
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