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Abstract

The proximity of power plants to protected seascapes presents a significant environmental concern, yet research on thermal pollution
and its effects on marine ecosystems in the Philippines remains limited. This study examined the relationship of thermal pollution
from the Masinloc Power Plant on the marine ecosystem of Oyon Bay, Zambales, focusing on seagrass ecosystems. Remotely sensed
sea surface temperature (SST) data from Landsat satellites (5, 7, and 8) were used to track SST changes from the pre-operation
period (1993-1998) to the operational period (1999-2023). Time series decomposition of SST data indicates a gradual increase in
temperature, with emerging hotspots analysis identifying localized thermal pollution near the plant's outfall. A time-lagged
correlation analysis revealed a moderate negative relationship (R =-0.47) between increased SST and seagrass percent cover, with a
delayed response of approximately seven months. Seagrass cover significantly decreased after the plant started operating but showed
partial recovery over time. These findings highlight the adverse effects of thermal pollution on seagrass ecosystems, emphasizing the
need for effective management strategies to mitigate such impacts. This research contributes to the limited understanding of thermal

pollution in marine protected areas, offering valuable insights for environmental monitoring and policy development.

1. Introduction
1.1 Background of the Study

Despite the global push for renewable energy, the Philippines
remains heavily reliant on coal-fired power plants, which
accounted for 63.7% of the country’s gross power generation in
2023 (Department of Energy, 2024). One major contributor is
the Masinloc Power Plant located in Barangay Bani, Masinloc,
Zambales. Initially a two-unit 600 MW facility when it began
operations in 1998, it has since expanded to 1,019 MW. Like
other coal-fired plants, it requires large volumes of water for
cooling—often drawn from and discharged back into nearby
bodies of water. This process causes thermal pollution, which
poses significant threats to aquatic ecosystems (Mishra et al.,
2021).

The intake and outfall of the Masinloc Power Plant are located
within the Masinloc and Oyon Bay Protected Landscape and
Seascape (MOBPLS), or more commonly known as Oyon Bay.
This is an area rich in seagrass meadows, coral reefs, mangrove
forests, and fisheries (Paz-Alberto et al., 2015). These
ecosystems, especially seagrasses, are sensitive to temperature
changes. A 5°C increase can disrupt photosynthesis and
respiration in seagrasses, while prolonged exposure to heat can
cause physiological stress and sediment hypoxia (Jiang et al.,
2022). Although tropical seagrasses can tolerate 23°C-32°C,
extreme and sustained heat can reduce biomass and weaken
carbon storage capacity (Macreadie & Hardy, 2018). In fact,
Reyes et al. (2021) observed degraded seagrass meadows near
the plant, with low biomass and high organic carbon linked to
ash and warm wastewater.

Given this context, tools like the space-time cube can be used to
analyze spatiotemporal patterns of thermal pollution. This 3D
data visualization method represents spatial dimensions on the
horizontal plane and time on the vertical axis, helping to detect

trends, clusters, and changes across time and space (Bach et al.,
2014).

1.2 Research Objectives

The study generally aims to investigate the potential thermal
pollution caused by the Masinloc Power Plant in Oyon Bay and
its effect on the marine ecosystem of the area by using remote
sensing techniques. Specifically, it aims to: (1) Determine the
occurrence of thermal pollution in Oyon Bay through analysis
of historical SST data pre-operation (1993-1998) to present
operation (1999-2023) of the Masinloc Power Plant; (2)
Investigate the potential contribution of the Masinloc Power
Plant to the thermal pollution in the coastal region by
determining the spatiotemporal clustering using a space-time
cube and hotspot category through emerging hotspots analysis,
and (3) Determine the correlation between the change in
temperature and the seagrass cover in the study area through a
lagged correlation analysis.

1.3 Significance of the Study

Given its marine-protected status, monitoring water quality (
particularly temperature changes) is crucial to protecting the
bay from adverse effects of thermal pollution. By utilizing
Landsat satellite data, which provides high spatial resolution,
long-term, and large-scale sea surface temperature (SST) data,
this study addresses a gap in Philippine research where few
studies have focused on remote-sensed SST data to track
thermal pollution over time. The study of Yavari and Qaderi
(2018) on the determination of thermal pollution of water
resources caused by the Neka power plant in Iran used Landsat
8 satellite imagery in extracting the water temperature around
the outlet of the power plant through the thermal infrared
sensors (TIRS), which has two thermal bands — Bands 10 and
11.  Furthermore, data from this research can help the
municipal government craft informed policies and regulations
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to mitigate the impact of thermal pollution, preserve the bay’s
ecology, and support sustainable resource use. This research
aligns with the United Nations Sustainable Development Goal
(SDG) 14, particularly targeting 14.1, which focuses on
reducing marine pollution, and 14.2, which emphasizes
sustainably managing and protecting marine and coastal
ecosystems.

14 Scope and Limitation

This study focuses on assessing thermal pollution through SST
data in the MOBPLS and specifically examines the potential
impact of the Masinloc Power Plant on the bay’s seagrass
ecosystems. The temporal scope included both a
pre-operational period (1993—1998) and an operational period
(1999-2023), with SST data sourced from Landsat 5, 7, and 8
satellites. Data collection was dependent on the availability and
clarity of satellite imagery, which was constrained by cloud
cover and the revisit period of the mentioned satellite systems.
Moreover, seagrass cover was estimated without differentiating
between species, which limited the analysis of species-specific
spectral variability and thermal tolerance. Also, this study did
not take into account global climate models. The effects
brought by climate change were beyond the scope of the
analysis in this study.

2. Methodology

2.1 Study Area
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sourced from and the outfall where the heated byproducts are
dumped.

2.2 General Flowchart

The methodology of this study was structured into three main
phases as shown in Figure 2. The first phase involved the
extraction of SST data and the identification of thermal
hotspots. The second phase focused on the estimation of
seagrass percent cover. Both phases were preceded by essential
preprocessing steps and included appropriate validation
procedures to ensure data quality and accuracy. The outputs
generated from these initial phases served as the primary inputs
for the final phase, which entailed a time-lag correlation
analysis between SST and seagrass cover.

Figure 2. Flowchart of the study
2.3 Datasets Used

Table 1 shows the image data that were used in this study. The
same datasets were used for the retrieval of the SST and the
seagrass percent cover for uniformity. Since the data needed in
this study covers the period before and during the operation of
the Masinloc Power Plant, Landsat 5, 7, and 8 imagery were
used to cater this temporal need.

Figure 1. The study area

The Masinloc-Oyon Bay was designated as a marine protected
area (MPA) under Republic Act No. 7586, also known as the
National Integrated Protected Areas System Act on August 18,
1993. This declaration ensured the conservation of its unique
marine biodiversity, including mangroves, seagrass, and coral
reefs, which are crucial to the local ecosystem (Mayuga, 2021).
The area, officially known as the Masinloc-Oyon Bay Protected
Landscape and Seascape (MOBPLS), became the first marine
protected area (MPA) in Central Luzon. It spans 7,558 hectares
and has become a key site for environmental preservation in the
region. In Figure 1, the location of the Masinloc Power Plant
relative to MOBPLS is highlighted. Also shown in the figure
are the locations of the intake where the cooling water is

Data Band Used | Resolution | Source
(for SST)
1993-2000, 6 (Thermal 30 m USGS
2004-2010 Landsat Infrared)
5 TM Collection 2
Tier 1 Raw Scenes
(Level 1)
2001-2003, 6 (Thermal 30 m USGS
2011-2013 Landsat Infrared)
7 Collection 2 Tier
1 Raw Scenes
(Level 1)
2014-2023 Landsat 10 30 m USGS
8 Collection 2 Tier (Thermal
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| 1 Raw Scenes Infrared)

(Level 1) | |

Table 1. Image Datasets for SST and seagrass cover retrieval

2.4 Preprocessing

2.4.1 Scan Line Correction: To correct the scan line
errors, a custom function was applied in Google Earth Engine
(GEE). This approach works by identifying the missing pixels
in the image and estimating their values through spatial
interpolation. Specifically, it calculated the average of
surrounding valid pixels using a focal mean technique which
smooths over the gaps while preserving the general
characteristics of the image. The interpolated values were then
merged with the original data to create a corrected image.

2.4.2 Cloud Mask: The presence of clouds and its shadows
within the dataset obscured the features below it, preventing the
satellite from detecting the said features. Hence, using the
QA_Pixel band of the Landsat imagery, clouds, shadows, and
cirrus clouds were detected. Then, a binary mask was created to
mask out clouds and cloud shadows where pixels affected by
these said features became null.

243 Land Mask: The water body was separated from the
land through Land Masking by creating a binary mask using the
JRC Global Surface Water dataset which was run on GEE. This
satd dataset was derived from Landsat imagery hence, it has a
spatial resolution of 30 meters, and covered the temporal need
of the study.

244 Water Column Correction using Depth Invariant
Index (DII): To minimize depth-related reflectance variation,
the Depth Invariant Index (DII) was computed in GEE using
surface reflectance imagery. Selected band pairs were used, and
three sand pixels at varying depths were manually identified to
estimate the slope (k), representing the ratio of attenuation
coefficients. These values were then applied to normalize
reflectance using the DII formula, enhancing the accuracy of
seagrass classification in optically shallow waters.

24.5 Dark Object Subtraction for Atmospheric
Correction: To improve spectral clarity and classification
accuracy, atmospheric haze was corrected in GEE using dark
object subtraction. Deep water pixels served as reference dark
objects, with the 1% percentile reflectance values from the
visible bands subtracted across the image to reduce atmospheric
scattering.

2.4.6 Shallow Water Delineation: To ensure that SST
values reflected conditions relevant to seagrass ecosystems in
Oyon Bay, the analysis focused on shallow coastal areas, where
dominant seagrass species typically occur (Paz-Alberto et al.,
2015). These zones were delineated through supervised
classification using recent Landsat 8 imagery, selected over
older sensors like Landsat 5 to better capture current shoreline
configurations—especially important in areas like Masinloc
where coastal development may have altered the coastline.

2.5 SST Retrieval

Since Landsat 5 and 7 each have only one thermal band (band
6), the single-channel (SC) algorithm was utilized. This
algorithm, based on the Radiative Transfer Model, is commonly
employed for retrieving surface temperature from Landsat

series data (Wang et al., 2018). While Landsat 8 includes an
additional thermal band (band 11), calibration issues make it
unsuitable for multi-band atmospheric corrections, such as the
split-window algorithm. Radiance values were first extracted
from the thermal band of the satellite images using Equation

().
L = MXDN + A (1)

L: Radiance

M: Radiance multiplicative scaling factor (specific to
satellite and band)

A: Radiance additive scaling factor (specific to
satellite and band)

DN: Digital number from the thermal band

where

Consequently, the radiance values were used to compute the
brightness temperature using Planck's Inverse Function shown
in Equation (2).

K
sen In(—-+1)

where Tjen: Brightness temperature (Kelvin)

K v K 5 Thermal calibration constants (specific to

satellite and band)
L: Radiance

Atmospheric correction was then applied in computing SST,
using a coefficient matrix derived from the SAFREE
atmospheric sounding database, which is specific to each
Landsat platform. The coefficient matrices for the thermal band
of each satellite system are shown in Table 2 (Jiménez-Muiioz
et al., 2009).

Satellite Coefficient Matrix
0.05261 0.05933 1.01123
Landsat 5 -0.36368 -2.20569 0.55116
-0.07237 1.76355 -0.47457
0.04597 0.06269 1.00818
Landsat 7 -0.32297 -2.16801 0.55698
-0.06397 1.69324 -0.45747
0.04019 0.02916 1.01523
Landsat 8 -0.38333 -1.50294 0.20324
0.00918 1.36072 -0.27514

Table 2. Coefficient Matrix Used per Satellite image
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W': atmospheric functions
W: water vapor content
c: matrix coefficients

where
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The average water vapor content of the study area during the
specific time step corresponding to the satellite image was
derived using data from the National Centers for Environmental
Prediction (NCEP). This value was used to construct the water
vapor vector, shown in Equation (3), which was then multiplied
by the coefficient matrix to obtain the psi matrix. The entries of
the psi matrix were used to calculate the gamma and delta
values, which were subsequently used in the estimation of SST,
as shown in Equation (4).

T = y[%(q; L, +U,)+ ¢3]+ § @

1 sen

vy =g )

§=T — - (©)

where € : Surface emissivity

L : At-sensor radiance
sen

y: Gamma parameter
§: Delta parameter
by: K, thermal constant

Ts: Sea surface temperature

Tsen: At-sensor brightness temperature

2.6 Time Series Decomposition
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Figure 3. Delineated shallow areas

The SST time series was decomposed into three fundamental
components:  trend, seasonality, and residual. The
decomposition used an additive model, expressed as:

SST(t) = Ttrend (t) + Tseasonal (t) + Tresidual (t) (7)
where Tmm i trend component of the SST time series
= seasonal component of the SST time series
seasonal
. =residual component of the SST time series
residual

The area of interest was filtered such that the classified shallow
waters were extracted (see Figure 3). A time series
decomposition was conducted in RStudio using SST data
derived from Landsat imagery. A time series object was then
created with monthly frequency, starting from the earliest year
and month in the dataset. To break down the SST values into
interpretable components, STL decomposition was performed
using the stl() function.

2.7 Spatiotemporal Analysis of SST

To identify SST hotspots, a space-time cube (STC) was created
using yearly median SST composites from 1998 to 2023, which
helped reduce seasonality and data gaps. The STC was built in
ArcGIS Pro by stacking annual SST raster files with 30x30 m
pixel resolution, setting temporal intervals to the first day of
each year, and using spline interpolation to fill missing data.

Emerging Hotspots Analysis was then applied to detect
spatiotemporal clusters of high SST values linked to the plant’s
operations. The method used the K nearest neighbors algorithm
with eight spatial neighbors (surrounding pixels) and a one-year
temporal step. This setup allowed precise identification of
thermal plumes while minimizing overgeneralization. By
focusing on changes within a one-year window, the analysis
highlighted the localized thermal effects of the power plant,
distinguishing them from broader climate trends.

2.8 SST Accuracy Assessment

Due to the lack of in situ sea surface temperature (SST) data,
proxy validation was used to assess the SST retrieval method.
Instead of directly validating SST, the study examined the
correlation between satellite-derived land surface temperature
(LST) and air temperature data from the nearby PAGASA
station in Iba, Zambales. Maximum monthly air temperatures
from 1993 to 2023 were compared to LST retrieved using the
same single-channel algorithm as SST, differing only in
emissivity estimation.

2.9 Seagrass Mapping

Seagrass percent cover was estimated using linear spectral
unmixing in Google Earth Engine (GEE), which decomposed
each pixel into fractional contributions from four endmember
classes: seagrass, coral, sand, and deep water. Seagrass
endmembers were identified using field data, NAMRIA, the
Allen Coral Atlas, and maps from Reyes et al. (2021). Coral
endmembers were selected through spatial overlays, while sand
and deep water were identified through manual image
interpretation. Due to limited spatial and temporal availability
of ground truth data, conventional accuracy assessments such
as confusion matrices were not feasible. Instead, a
threshold-based classification was performed using >50% and
>75% membership values to define seagrass pixels, following
Hill et al. (2024). The classified maps were vectorized in GEE
and exported to QGIS for spatial validation. There, the results
were compared with the existing datasets by computing the area
of spatial overlap as a proxy for classification accuracy.

2.10 SST and Seagrass
Analysis

Time-Lagged Correlation

To take into account the delayed response of seagrass towards
the increase of temperature, a time-lagged correlation analysis
was done. In the study of Zhang et al. (2021), “individual 1
month lag” refers to the values of the dependent variable which
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are lagged by a month and are affected by the values of the
independent variable of the preceding month. In this case, the
dependent variable was the seagrass percent cover while the
independent variable was the SST. Equation (8) obtained the
correlation coefficient between the said variables.

nk o
.;1 %) Oy Vi)
- ®)

ik nk —
\/ X (x—x)e 21 (SO )
i=1 i=

r(6y) =

where X = time series of the seagrass percent cover

y. = time series of the sea surface temperature
L

= length of time series
k = time lag (in months)

Shallow water areas were intersected with regions identified as
intensifying and persistent SST hot spots, reducing the area of
interest to locations with statistically significant spatial and
temporal clustering of high SST values. These areas also
represent zones where seagrass can survive. Each correlation
coefficient was determined for every month lag and the highest
correlation coefficient determined the best time lag, indicating
the length of the delayed response of the seagrass percent cover
to the SST. After the best time lag was determined, the values
of the seagrass cover was adjusted according to the number of
months of its supposed delayed response to solidify further
possible relationships of the increased SST, manifested by the
determined hotspots, to the seagrass cover.

3. Results and Discussion
3.1 SST Profile of MOBPLS

Based on the DENR’s 29.5°C baseline and 3°C thermal limit,
satellite-derived SST data showed 28 instances above 32.5°C
after the plant began operating in 1998, compared to only two
in the six years prior. In the six years post-operation, there were
seven such instances. While this suggests a potential impact
from the plant, further investigation is needed to confirm
causality.

3.1.1 Time Series Decomposition of SST: Figure 4 shows
the decomposed SST time series into seasonal, trend, and
remainder components. The seasonal part reflects natural
cyclical fluctuations, while the remainder captures irregularities
likely from sensor changes or environmental events. The trend
component, the study’s main focus, shows a steady SST
increase from 1993 to 2023 across the shallow areas of the
MOBPLS.

STL Decomposition of SST
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Figure 4. STL decomposition of SST in MOBPLS from 1993 to

2023. The Data panel shows the raw SST values, while the
Seasonal, Trend, and Residual panels represent the
corresponding decomposed time series components
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Figure 5. Overlay of the original time series and its
decomposed trend component in MOBPLS from 1993 to 2023.

Meanwhile, Figure 5 displays the decomposed trend component
overlaid on the original time series. Also shown is a linear trend
line with a positive slope, which reinforces the observed
increasing temperature trend over the years. The graph
additionally marks the commencement of the plant’s operation
in 1998. While no specific month was indicated in existing
literature, this visualization assumes the plant began operations
as early as January 1998 for consistency.
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Figure 6. Location of the sites.

To better understand the behavior of SST in the area, a time
series decomposition was conducted for SST values across
several localized sites within the Masinloc-Oyon Bay Protected
Landscape and Seascape. Specifically, the analysis focused on:
(1) outfall: the area near the outfall, (2) east: a site within Oyon
Bay that shares similar depth and bathymetric characteristics
with the outfall, and (3) south: a site outside the bay to the
south which also has a comparable profile. The exact locations
of these areas are indicated in Figure 6. These locations were
selected to assess whether elevated temperatures are consistent
across these areas or if the outfall remains significantly warmer.

Figure 7 presents the trend components of SST in the selected
locations. It is evident that SST values near the outfall are
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significantly higher than those in other locations, particularly
after the power plant began operations in 1998. This suggests
the significant influence of the power plant on the elevated
temperature in its surrounding area.

Overlay of SST Trend Components
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Figure 7. SST trend in the three selected locations

3.1.2 SST Hotspots: Figure 8 zooms into the power plant
site on the peninsula west of Oyon Bay. In 1994, before the
plant’s operation, no significant SST patterns were observed.
By 2003, five years post-operation, a cluster of elevated SST
values appeared at the peninsula’s tip, coinciding with the
plant’s outfall. This thermal plume persisted through 2023,
indicating a long-term localized warming effect likely caused
by the plant’s discharge of heated effluent. The plume’s extent
illustrates the spatial reach of the thermal influence before the
elevated temperatures dissipate into surrounding waters.
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Figure 8. Zoomed in SST along the outfall of the plant
pre-operation (1994) and SST along the outfall of the plant
during the operational period (2003, 2013, 2023)

The SST hotspot map (Figure 9) reveals a progressively
expanding hotspot at the plant’s outfall, with 23 of the 26
operational years showing significant clustering which indicates
an intensifying rise in SST directly in the discharge area. Along
the coastlines of the study area, persistent hotspots were
likewise detected. However, their clustering has remained
relatively stable, suggesting that while these areas have
consistently exhibited elevated temperatures since the start of
the plant’s operation, the trend has not intensified further. In
contrast, sporadic hotspots surrounding the intensifying outfall
region—defined as intermittent yet statistically
significant—likely reflect the dispersal of heated effluent
waters. This pattern supports the interpretation that thermal
influence weakens gradually with distance from the outfall as it
diffuses.

EMERGING HOTSPOTS OF SEA
SURFACE TEMPERATURE (SST)
WITHIN THE MASINLOC AND
OYON BAY PROTECTED
LANDSCAPES AND SEASCAPES
(1998-2023)
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Figure 9. SST Hotspots based on the analysis of SST data from
1998 to 2023

3.1.3 SST Validation: As seen in Figure 10, although the
values do not exactly match, the trends in land surface
temperature (LST) and air temperature showed similar overall
patterns. This difference in values is expected since LST and air
temperature measure different aspects of temperature. The
consistently higher LST values reflect the known difference due
to the physical properties of the surfaces where heat is
measured. Additionally, the trend line shows that LST increased
at a faster rate than air temperature, which aligns with
established findings (do Nascimento et al., 2022). Both data
sets exhibited a general upward trend, supporting the reliability
of the retrieval method when compared with observed
temperature records. By extension, this also provides indirect
validation for the SST wvalues derived using the same
single-channel technique.
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Figure 10. Satellite-derived LST and air temperature of
PAGASA Iba, Zambales station

3.2 Seagrass Cover in the MOBPLS

Figure 11 shows the yearly seagrass percent cover in shallow
water areas identified as intensifying and persistent SST hot
spots. Before the power plant began operations, seagrass cover
in the study area was about 50%. When the plant started in
1998, cover sharply declined to 27%, reaching a low of 17% in
2001. Between 2001 and 2006, the cover fluctuated but
stabilized, indicating some adaptation resistance to thermal
stress. From 2007 onward, seagrass cover increased to around
30% and remained fairly stable until 2023, peaking at 40% in
2010. Although it never returned to pre-operational levels, this
pattern suggests partial adaptation despite ongoing exposure to
heated effluent.
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Figure 11. Yearly Seagrass Percent Cover in Intensifying and
Persistent Hot Spot Areas. The red line marks the start of the
power plant's operation.

This trend aligns with studies showing thermal stress reduces
photosynthetic yield in seagrass species. The dominant species
in the area, Enhalus acoroides, is relatively heat-tolerant, which
may have enabled greater capacity for thermal acclimation, as
suggested by the prolonged resistance phase and gradual
recovery observed in this study.

3.2.1 Seagrass Validation: In 1999, seagrass classified by
spectral unmixing covered about 3.85 km? at the 50% threshold,
with 68.83% overlapping a reference map; at the 75%
threshold, coverage increased to 7.98 km? with 72.31% overlap.
For 2020, the 50% threshold yielded 8.47 km? with 66%
overlap, while the 75% threshold showed 4.74 km? with 73%
overlap. These overlaps support the spatial validity of the
spectral unmixing method in detecting seagrass presence.
Although precise accuracy assessment was not possible due to
limited reference data, the consistent spatial agreement across
years and thresholds suggests the method effectively identifies
seagrass areas, making it suitable for temporal and ecological
analysis.

33 Time-Lagged Correlation

3.3.1 Best Time Lag: Figure 12 shows the lagged
correlation between the SST and seagrass percent cover within
the study area across different time periods. The areas identified
as intensifying and persistent hotspots were mostly located
around the outfall of the plant and the shorelines of MOBPLS.
Given that the seagrass percent cover had already increased by
2007 and had been stable until 2023, a different lagged
correlation was obtained for 1998-2006 and 1998-2023 to
account for the immediate and the long term effects,
respectively. The period from 1998-2006 saw the highest
correlation at R=-0.33 and had a seven-month lag, while the
period from 1998-2023 had a six to seven-month lag as both
time lags have a correlation coefficient of R=-0.19, the highest
in the said period. The correlation coefficient indicates that the
SST and seagrass percent cover are inversely proportional to
each other and that there was a seven month delay in the
response of the seagrass to the change in SST. Moreover, there
was a higher correlation when considering the more recent
period relative to the start of the plant’s operations. Meanwhile
in the areas identified as intensifying hot spots, which were
mostly concentrated around the outfall of the plant, both
periods had the highest correlation coefficient in the
eight-month lag. The period from 1998 to 2006 had the highest
correlation coefficient at R=-0.23, while the period from
1998-2023 had the highest correlation coefficient at R=-0.19.
However, in this case, there was a lower correlation between

the two variables and there was an eight-month delay in the
response of the seagrass to the change in SST.

Time Lag Correlation between SST and Seagrass Percent Cover
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Figure 12. Time Lag Correlation between SST and seagrass
percent cover

3.3.2 Relationship Between SST and Seagrass Cover:
The computed correlation coefficient of the SST and the
adjusted seagrass cover based on its 7-month delayed response
was calculated to be at R=-0.47 (Figure 13). The negative
correlation implied that as the SST increased, the seagrass
cover consequently decreased.
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Figure 13. Scatter plot of the SST and the adjusted 7-month
lagged seagrass cover

However, given the value of the correlation coefficient which

was in between zero to 1, this implied a moderate negative
correlation between the two variables. Hence, the SST does not
necessarily have any correlation with the seagrass cover.
Furthermore, the computed R? value of 0.22 indicates a weak
linear relationship between SST and seagrass percent cover in
the current dataset. In the context of this study, this may imply
that other factors may be playing a more significant role in
influencing seagrass variability. The moderate correlation
between the SST and the seagrass percent cover was expected
as there are various factors that affect seagrass health and
eventually, seagrass cover. In the study of Reyes et al. (2021),
water quality, measured through parameters such as dissolved
oxygen, salinity, turbidity, pH, and nutrient concentrations
(phosphate and nitrate), was found to correlate with seagrass
biomass, a key indicator of seagrass health. While temperature
was only one of the factors considered in their analysis, the
present study specifically focuses on the effect of elevated SST,
attributed to heated effluents from the power plant, on seagrass
cover. Hence, despite the moderate correlation, the influence of
SST should not be discounted as it remains a significant factor
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in water quality, further affecting seagrass health and seagrass
cover.

4. Conclusion

This study investigated the occurrence of thermal pollution in
the Masinloc and Oyon Bay Protected Landscapes and
Seascapes (MOBPLS) due to heated effluent discharged by the
Masinloc Power Plant, and its correlation with changes in
seagrass percent cover. SST data from shallow waters, where
seagrass typically thrives, was analyzed through time series
decomposition, revealing a gradual long-term increase in SST.
To distinguish local thermal pollution from global climate
change, spatiotemporal hotspot analysis was performed. Results
showed intensifying hot spots near the plant’s outfall, persistent
hotspots in the coastal areas, and sporadic hotspots in
surrounding waters, indicating localized thermal impacts. These
patterns suggest that the SST increase is related to the power
plant rather than solely to broader climate trends. Seagrass
cover in areas with persistent and intensifying SST hotspots
showed a sharp decline, dropping to half its pre-operational
levels shortly after the plant began operations. While partial
recovery was observed, it remained below original levels,
suggesting limited resilience potentially linked to thermal stress
but not exclusively determined by it. Meanwhile, a time-lag
correlation analysis revealed a weak negative correlation
(R=-0.33) between SST and seagrass cover, with the latter
responding about seven months after the temperature rise. This
delayed response underscores a potential indicative relationship
between thermal stress and seagrass decline, though other
environmental factors such as water quality and turbidity also
influence seagrass health, highlighting a key limitation of this
study. In addition to that limitation, the study is also constrained
by the absence of long-term in situ SST and seagrass
measurements. Air temperature data from PAGASA were used
as a proxy for validation, which, while suitable for long-term
consistency, is an indirect approach.

5. Recommendations

While the study provides valuable insights on the hot spots of
SST values along the study area and its correlation to the
seagrass percent cover through time, further research is needed
to build on the findings and address the limitations of this study.
Hydrodynamic modelling of the water system within the
Masinloc and Oyon Bay Protected Landscapes and Seascapes
(MOBPLS) can be done to better understand the dispersion of
heated effluents from the power plant. Modelling currents and
mixing patterns can reveal how thermal plumes spread spatially
and temporally. Additionally, incorporating in situ temperature
measurements would enable a more detailed analysis of
localized anomalies. Moreover, other factors affecting seagrass
health in the area can be further explored. Furthermore, modern
technologies should be utilized by the Masinloc Power Plant to
better treat the cooling water such that its effects to the
environment where it is discharged would be minimized. Given
that the MOBPLS is a protected area under the law, the
protection of benthic habitats, including seagrass meadows
should be of priority as the health of the marine ecosystems
ensure a rich marine biodiversity, which further contributes to
the livelihood of the nearby communities relying on fisheries
and eco-tourism.

References

Bach, B., Dragicevic, P., Archambault, D., Hurter, C., &
Carpendale, S., 2016. A descriptive framework for temporal

data visualizations based on generalized space-time cubes.
Computer Graphics Forum, 36(6), 36-61.
doi.org/10.1111/cgf.12804

do Nascimento, A. C. L., Galvani, E., Gobo, J. P. A., &
Wollmann, C. A., 2022. Comparison between Air Temperature
and Land Surface Temperature for the City of Sdo Paulo,
Brazil. Atmosphere, 13(3), 491.
doi.org/10.3390/atmos 13030491

Department of Energy, 2024. Monthly Gross Generation in
MWh (Separate Grid / Off-Grid) For 2023. 2023 Power
Statistics

Hill, V. J., Zimmerman, R. C., Byron, D. A., & Heck, K. L.,
2024. Mapping Seagrass Distribution and Abundance:
Comparing Areal Cover and Biomass Estimates Between
Space-Based and Airborne Imagery. Remote Sensing, 16(23),
4351. doi.org/10.3390/rs16234351

Jiang, W.-Y., Zhang, Y.-H., Liu, Y.-C., Li, W.-T., Xu, J.-G., &
Zhang, P.-D., 2022. The effect of abrupt increase in water
temperature on the survival and growth of eelgrass Zostera
marina. Aquatic Botany, 183, 103572.
doi.org/10.1016/j.aquabot.2022.103572

Jimenez-Munoz, J. C., Cristobal, J., Sobrino, J. A., Soria, G.,
Ninyerola, M., & Pons, X., 2009. Revision of the
single-channel algorithm for land surface temperature retrieval
from Landsat thermal-infrared data. /EEE Transactions on
Geoscience and  Remote  Semsing, 47(1), 339-349.
doi.org/10.1109/tgrs.2008.2007125

Macreadie, P., & Hardy, S., 2018. Response of seagrass 'blue
carbon' stocks to increased water temperatures. Diversity,
10(4), 115. doi.org/10.3390/d10040115

Mishra, S., Ghosh, A., Rai, K., Jaiswal, B., Yadav, D. S.,
Agrawal, M., & Agrawal, S. B., 2021. Dimensions of climate
change and its consequences on ecosystem functioning. Global
Climate Change, 109-149.
doi.org/10.1016/b978-0-12-822928-6.00003-4

Paz-Alberto, A. M., Pakaigue-Hechanova, M., & Sigua, G.,
2015. Assessing diversity and phytoremediation potential of
seagrass in tropical region. International Journal of Plant,
Animal, and Environmental Sciences, 5(4), 24-35.

Reyes, A. G. B., Salmo, S. G., Vergara, Ma. C. S., & Blanco, A.
C., 2021. Seagrass biomass and sediment carbon in conserved
and disturbed seascape. Ecological Research, 37(1), 67-79.
doi.org/10.1111/1440-1703.12272

Wang, M., Zhang, Z., Hu, T., & Liu, X., 2018. A practical
single-channel algorithm for land surface temperature retrieval:
Application to Landsat series data. Journal of Geophysical
Research: Atmospheres. doi.org/10.1029/2018jd029330

Zhang, B., Zhang, Y., Wang, Z., Ding, M., Liu, L., Li, L., ... &
Zhang, H., 2021. Factors driving changes in vegetation in Mt.
Qomolangma (Everest). Remote Sensing, 13(22), 4725.
doi.org/10.3390/rs13224725

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-5-W4-2025-261-2026 | © Author(s) 2026. CC BY 4.0 License. 268





