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Abstract 

This study examines the coastal dynamics of Dingalan, Aurora, Philippines, using geospatial tools such as remote sensing and GIS for 

evaluating land cover changes, shoreline movement, and relative bathymetry. Analysis of Sentinel-2 imagery reveals significant 

transitions in land cover classes over the years, indicative of the impacts of natural processes and human activities on the coastal 

landscape. Notably, built-up areas expanded by 175,975.34 m² (33.12%) from 2016 to 2020 and by another 32,365.52 m² (4.58%) 

from 2020 to 2024. During the same periods, vegetation cover experienced a decrease of 13.01% and 10.22%, respectively. These 

trends underscore the importance of balanced land use planning to mitigate the environmental impacts of rapid urbanization in coastal 

zones. Shoreline change detection using Landsat imagery reveals that the eastern portion has been stable throughout the years. In 

contrast, central and western portions show sediment accumulation, with mean Endpoint Rate and Linear Regression Rate values of 

0.97 and 0.98 in the central portion, and 0.79 and 0.82 in the western portion. This highlights the diverse dynamics of shoreline 

evolution in the area. The relative nearshore bathymetry was calculated using the natural logarithm ratio of blue-to-green spectral 

bands, yielding values from -0.28 to 0.22, which provide insights into the underwater topography and supports the characterization of 

shallow-water regions. This study contributes to a deeper understanding of coastal dynamics, providing information essential for 

effective coastal management and resilience planning in Dingalan and similar regions. It highlights the need for proactive measures to 

address ongoing environmental changes and underscores the significance of informed coastal management strategies in promoting 

sustainable development. 

1. Introduction

The coastal zone of Dingalan, Aurora, Philippines, presents a 

dynamic environment influenced by natural processes and human 

activities. Understanding the changes occurring in this coastal 

area is essential for effective coastal management and resilience 

planning. Dingalan, situated on the eastern coast of Luzon Island, 

boasts diverse coastal ecosystems, including mangroves, 

beaches, and rocky shores. However, like many coastal regions 

worldwide, Dingalan faces challenges such as erosion, land use 

changes, and shoreline alterations due to anthropogenic 

interventions (Sta. Rita, 2018). 

The objective of this research is to analyze changes in land cover 

and shoreline over time within the coastal area of Dingalan, 

Aurora, using geospatial tools such as remote sensing and GIS 

(Abualtayef et al., 2021). It further seeks to explore the relative 

bathymetry of the study area to enhance the understanding of 

coastal dynamics and support informed decision-making for 

coastal management in the Philippine context. 

Recent studies have highlighted notable transformations in the 

coastal regions throughout the Philippines. Coastal change 

detection along the urban coastline of Metro Manila revealed a 

decrease of approximately 1.5 kilometers over a 30-year period, 

attributed to rapid population increase and urbanization (Limbo-

Dizon et al., 2023). Similarly, variations in land cover and land 

use along the coastline of La Union were examined, revealing an 

evolving coastal landscape in the region (Rivera et al., 2024). 

In this study, satellite imagery and GIS tools are employed to 

conduct three main analyses: land cover change detection, 

shoreline change detection, and relative bathymetric extraction. 

Through these analyses, the researchers aim to identify temporal 

trends and spatial patterns in land cover, shoreline evolution, and 

bathymetric variations, providing valuable insights for coastal 

zone management. 

2. Methodology

The methodology adopted in this research combines geospatial 

approaches involving remote sensing and GIS to examine 

changes in land cover, shoreline position, and relative bathymetry 

within the coastal area of Dingalan, Aurora (Fig. 1). This 

integrated framework enables a detailed analysis by utilizing 

satellite images from multiple time periods together with 

geospatial processing techniques.  

Figure 1. Spatial extent of the study area. 

The research utilizes Sentinel-2 and Landsat satellite data to 

examine the spatiotemporal dynamics of the coastal 

environment. Fig. 2 illustrates the general workflow applied in 

this study. Figs. 3 to 8 display the true-color composites of the 

Sentinel-2 and Landsat datasets analyzed in the research. 

111111

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-5/W4-2025 
Philippine Geomatics Symposium (PhilGEOS) 2025 "Enhancing Human Quality of Life through Geospatial Technologies", 

24–25 November 2025, Quezon City, Philippines

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-5-W4-2025-27-2026 | © Author(s) 2026. CC BY 4.0 License.

 
27



 

 

Sentinel-2 data were obtained from the Copernicus Open Access 

Hub, while Landsat data were downloaded from the USGS Earth 

Explorer platform. A review of related literature was conducted 

to identify effective methodologies for achieving the study’s 

objectives. The analysis for this study was performed using QGIS 

plugins, and ArcGIS Pro 3.4 was utilized for map preparation and 

layout. 

 
 

Figure 2. Overview of the methodological framework used in 

the study. 

 

 
Figure 3. Sentinel-2 true-color composite of the study area from 

October 25, 2016. 

 

 
Figure 4. Sentinel-2 true-color composite of the study area from 

November 23, 2020. 

 

 
Figure 5. Sentinel-2 true-color composite of the study area from 

March 7, 2024. 

 
Figure 6. True-color Landsat 7 ETM+ image of the study area 

obtained on February 17, 2003. 

 

 
Figure 7. True-color Landsat 8 OLI image of the study area 

obtained on February 7, 2014. 

 

 
Figure 8. True-color Landsat 8 OLI image of the study area 

obtained on March 6, 2024. 

 

2.1 Land Cover Change Detection 

The analysis of land cover changes employed Sentinel-2 Level-

1C images from 2016, 2020, and 2024. This dataset was selected 

mainly for its fine spatial resolution (10 m), which enables 

detailed identification of land cover categories. Initially, the 

imagery underwent pre-processing that included atmospheric 

correction through the Sen2Cor processor (Louis et al., 2016), 

converting Level-1C products to Level-2A and providing 

bottom-of-atmosphere reflectance. The Level-2A images were 

then processed using the Semi-Automatic Classification Plugin 

(SCP) in QGIS (Congedo, 2023), where they were clipped to 

match the extent of the study area. During classification, the blue, 

green, red, and near-infrared spectral bands were selected due to 

their effectiveness in distinguishing different land cover types. 

 

Training samples representing five classes: sea, vegetation, 

sediments, bare soil, and built-up were selected for each image 

corresponding to its respective year. The maximum likelihood 

algorithm, a supervised classification algorithm, was applied to 

classify the land cover classes. Following classification, an 

accuracy assessment was conducted on the classified images in 

QGIS using the Semi-Automatic Classification Plugin (SCP), 

with reference data derived from digitized training samples based 

on historical Google Earth imagery. The resulting classified 

rasters were then converted to vector format to facilitate the 

calculation of area per land cover class using the Intersect tool. 

Land cover changes between the years were subsequently 

computed. 
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2.2 Shoreline Change Detection 

Since Sentinel-2 has only been operational since 2015, it offers a 

limited temporal range that restricts long-term shoreline change 

analysis. To extend the observation period, Landsat data were 

utilized instead. Specifically, imagery from Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) acquired in 2003, and Landsat 8 

Operational Land Imager (OLI) acquired in 2014 and 2024, were 

used for shoreline change assessment. The Normalized 

Difference Water Index (McFeeters, 1996) was derived from 

respective spectral bands to produce binary images for each year, 

which were subsequently converted into vector polygon layers. 

From these polygons, shorelines were extracted, and a baseline 

was established by buffering the most recent shoreline by 80 

meters. Transects were spaced at 40-meter intervals using the 

QGIS Shoreline Change Analysis Tool (QSCAT). The tool then 

computed several shoreline change indicators, namely the 

Shoreline Change Envelope (SCE), Net Shoreline Movement 

(NSM), End Point Rate (EPR), and Linear Regression Rate 

(LRR), to quantify the magnitude and rate of shoreline shifts over 

time. 

 

 𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
   (1) 

 

where 

NDWI = Normalized Difference Water Index, 

Green = digital number of the green band, 

NIR = digital number of the near-infrared band. 

 

2.3 Relative Nearshore Bathymetric Extraction 

For the relative bathymetric extraction, a straightforward 

approach was employed using the natural logarithm ratio of blue-

to-green bands from atmospherically corrected Sentinel-2 

imagery of the study area in 2024, acquired from the Copernicus 

Open Access Hub (Copernicus, 2024). This log-ratio approach, 

based on Stumpf et al. (2003), was applied to derive relative 

nearshore bathymetric information and assess underwater terrain 

variations. Despite its simplicity, this analysis provides valuable 

knowledge of the underwater landscape, complementing the 

broader understanding of coastal dynamics. 

 

This log-ratio of blue-to-green bands operates on the principle 

that blue light penetrates water more deeply than green light. In 

shallower waters, there is more reflectance from the blue band 

compared to the green band, leading to higher index values. 

Conversely, in deeper waters, blue-band reflectance decreases 

more rapidly than green-band reflectance, resulting in lower 

index values. These index values effectively represent relative 

bathymetry, distinguishing between shallower and deeper 

regions without providing exact depth measurements. This 

method is effective for estimating relative bathymetry in shallow 

waters and is commonly used in coastal studies due to its 

simplicity and the widespread availability of multispectral 

satellite data. It offers a practical approach for environmental 

monitoring and coastal management, particularly in nearshore 

environments. 

 

3. Results and Discussion 

The results of the study are presented and discussed in the 

following subsections, encompassing land cover change 

detection, shoreline change detection, and relative nearshore 

bathymetric extraction, all of which contribute to a 

comprehensive understanding of the coastal processes within the 

study area. 

3.1 Land Cover Change Detection 

Table 1 summarizes the accuracy assessment results for the land 

cover classification for the years 2016, 2020, and 2024. These 

results provide important evaluations of the reliability of the 

classification. For 2016, the overall accuracy was 98.52%, 

indicating a high degree of reliability. The producer's accuracy 

for built-up areas was 96.39%, with a user's accuracy of 98.77%, 

reflecting the model's strong performance in identifying and 

classifying built-up areas correctly. However, some built-up and 

sediment features appeared in the middle of the sea (Fig. 9), 

which is unlikely to occur. These anomalies may be attributed to 

the ocean surfaces that display wave foam, which exhibits 

spectral values similar to built-up and sediment features. This 

spectral ambiguity can mislead the classifier, resulting in ocean 

areas being incorrectly classified as built-up or sediment. 

Recognizing these discrepancies is crucial for refining future 

analyses and improving the accuracy of land cover change 

detection. For 2020, the overall accuracy dropped to 86.51%, 

with the producer's accuracy for built-up areas decreasing to 

76.19% and the user's accuracy to 95.81%. This decline suggests 

some challenges in accurately capturing built-up areas during this 

period. Lastly, for 2024, the overall accuracy improved to 

98.35%, with the producer's accuracy for built-up areas reaching 

100% and the user's accuracy at 84.52%. The consistently high 

accuracy values support the reliability of the change detection 

results, making the findings dependable for coastal management 

decision-making. 

 

 
Figure 9. Built-up and sediment features appearing in the 2016 

classified map. 

 

Year Land class 

Producer's 

accuracy 

(%) 

User's 

accuracy 

(%) 

Overall 

accuracy 

(%) 

2016 

Sea 100.00 100.00 

98.52 

Vegetation 99.27 100.00 

Sediments 100.00 60.00 

Bare soil 85.71 100.00 

Built-up 96.39 98.77 

2020 

Sea 100.00 100.00 

86.51 

Vegetation 98.46 100.00 

Sediments 96.43 34.18 

Bare soil 74.00 86.05 

Built-up 76.19 95.81 

2024 
Sea 99.72 100.00 

98.35 
Vegetation 96.83 100.00 
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Sediments 99.90 78.99 

Bare soil 92.49 99.31 

Built-up 100.00 84.52 

Table 1. Accuracy assessment summary of land cover 

classification. 

 

The land cover classification results for Dingalan, Aurora, show 

significant changes in land cover from 2016 to 2024 (Figs. 10-

12). The land cover distribution in terms of area and percentage 

and results of the change detection analysis are summarized in 

Tables 2 to 4. These results reveal dynamic transitions among 

various land cover classes, indicating the effects of both natural 

processes and human activities. The classification was conducted 

using a substantial number of training samples for each year: 499 

samples in 2016, 566 samples in 2020, and 183 samples in 2024 

as shown in Table 5. Validation samples were randomly digitized 

to evaluate the quality of the classification. The number of 

samples used for the accuracy assessment is displayed in Table 

6. 

 
Figure 10. Land cover classification results for 2016. 

 

 
Figure 11. Land cover classification results for 2020. 

 

 
Figure 12. Land cover classification results for 2024. 

 

 

Class Area 2016 

(m2) 

Area 2020 

(m2) 

Area 2024 

(m2) 

Built-up 531,310.62 707,285.96 739,651.48 

Vegetation 7,407,908.62 6,444,182.42 5,785,358.22 

Bare Soil 1,081,247.74 1,635,901.19 2,594,469.69 

Sediments 1,085,621.41 1,362,821.03 887,501.65 

Sea 2,877,913.60 2,833,810.94 2,977,020.80 

Total:  12,984,001.99 12,984,001.54 12,984,001.84 

Table 2. Land cover area (m²) for the years 2016, 2020, and 

2024. 

 

Class Area 2016 

(%) 

Area 2020 

(%) 

Area 2024 

(%) 

Built-up 4.09% 5.45% 5.70% 

Vegetation 57.05% 49.63% 44.56% 

Bare Soil 8.33% 12.60% 19.98% 

Sediments 8.36% 10.50% 6.84% 

Sea 22.17% 21.83% 22.93% 

Total:  100.00% 100.00% 100.00% 

Table 3. Percentage distribution of land cover for the years 

2016, 2020, and 2024. 

 

Land cover change 

(2016 - 2020) 

Area change 

(m2) 

Percent change 

(%) 

Bare Soil - Built-up 164,593.86 15.22 

Bare Soil - Sediments 252,002.18 23.31 

Bare Soil - Vegetation 347,041.58 32.1 

Built-up - Bare Soil 73,104.71 13.76 

Built-up - Sea 600.04 0.11 

Built-up - Sediments 156,410.05 29.44 

Built-up - Vegetation 57,398.50 10.8 

Sea - Bare Soil NA NA 

Sea - Built-up 100.01 0 

Sea - Sediments 68,404.50 2.38 

Sediments - Bare Soil 90,287.20 8.32 

Sediments - Built-up 164,002.52 15.11 

Sediments - Sea 23,801.81 2.19 
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Sediments - Vegetation 84,802.50 7.81 

Vegetation - Bare Soil 1,154,899.15 15.59 

Vegetation - Built-up 134,792.27 1.82 

Vegetation - Sediments 163,276.92 2.2 

 

Land cover change 

(2020 - 2024) 

Area change 

(m2) 

 Percent 

change (%) 

  Bare Soil - Built-up 109,604.46 6.7 

Bare Soil - Sediments 110,201.13 6.74 

Bare Soil - Vegetation 759,692.31 46.44 

Built-up - Bare Soil 231,992.22 32.8 

Built-up - Sea 1,600.10 0.23 

Built-up - Sediments 122,195.66 17.28 

Built-up - Vegetation 19,697.54 2.78 

Sea - Bare Soil 100.01 0 

Sea - Built-up 1,000.08 0.04 

Sea - Sediments 1,800.14 0.06 

Sediments - Bare Soil 367,896.27 27 

Sediments - Built-up 222,691.98 16.34 

Sediments - Sea 144,509.98 10.6 

Sediments - Vegetation 40,702.59 2.99 

Vegetation - Bare Soil 1,338,077.91 20.76 

Vegetation - Built-up 74,554.52 1.16 

Vegetation - Sediments 66,284.50 1.03 

  

Land cover change 

(2016 - 2024) 

Area change 

(m2) 

 Percent 

change (%) 

Bare Soil - Built-up 144,868.39 13.4 

Bare Soil - Sediments 159,104.76 14.71 

Bare Soil - Vegetation 202,003.27 18.68 

Built-up - Bare Soil 151,806.81 28.57 

Built-up - Sea 8,300.53 1.56 

Built-up - Sediments 109,002.60 20.52 

Built-up - Vegetation 19,298.90 3.63 

Sea - Bare Soil 100.01 0 

Sea - Built-up 900.07 0.03 

Sea - Sediments 1,300.10 0.05 

Sediments - Bare Soil 245,101.05 22.58 

Sediments - Built-up 200,407.93 18.46 

Sediments - Sea 93,106.84 8.58 

Sediments - Vegetation 36,092.91 3.32 

Vegetation - Bare Soil 1,622,190.50 21.9 

Vegetation - Built-up 150,573.30 2.03 

Vegetation - Sediments 107,181.53 1.45  

Table 4. Land cover changes from 2016 to 2020, from 2020 to 

2024, and from 2016 to 2024. 

 

Class 

Year 

2016 2020 2024 

Ocean 80 113 48 

Vegetation 218 236 25 

Sediments 100 59 36 

Bare soil 24 74 32 

Built-up 77 84 42 

Total 499 566 183 

Table 5. Land cover classification training samples. 

 

Class 

Year 

2016 2020 2024 

Ocean 20 20 21 

Vegetation 20 20 21 

Sediments 20 20 35 

Bare soil 20 20 16 

Built-up 20 20 21 

Total 100 100 114 

Table 6. Land cover classification validation samples. 
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Between 2016 and 2020, the most notable change was the 

transformation of vegetation to bare soil, with an area of 

1,154,899.15 m2 (15.59%) undergoing this change. This indicates 

a negative trend in vegetation cover, potentially due to land 

clearing, urban expansion, or other forms of environmental 

disturbance. The built-up land area also expanded significantly, 

with 164,593.86 m2 (15.22%) of bare soil converting to built-up 

areas. This trend continued from 2020 to 2024, as built-up areas 

expanded further, transforming 109,604.46 m2 (6.70%) of bare 

soil and 74,554.52 m2 (1.16%) of vegetation into built-up land. 

 

For built-up areas, the data show a consistent increase over the 

eight-year period. From 2016 to 2020, built- up areas expanded 

by 175,975.34 m2 (33.12%), and from 2020 to 2024, they 

increased by another 32,365.52 m2 (4.58%). This significant 

growth in built-up areas highlights ongoing urbanization and 

infrastructure development in the coastal zone of Dingalan. Such 

expansion may lead to various environmental impacts, including 

increased runoff and potential loss of biodiversity. The change 

detection analysis also reveals a notable increase in bare soil, 

particularly from 2020 to 2024, when 1,338,077.91 m2 (20.76%) 

of bare soil replaced vegetation. Additionally, vegetation cover 

in the area significantly decreased by 13.01% from 2016 to 2020, 

indicating possible deforestation. This trend continued from 2020 

to 2024, though at a slightly lower rate (10.22%), suggesting a 

need for mitigation strategies to prevent further forest loss.  

 

3.2 Shoreline Change Detection 

A comprehensive shoreline change analysis within the study area 

was conducted using Landsat 7 ETM+ imagery for 2003 and 

Landsat 8 imagery for 2014 and 2024. NDWI was applied to 

generate binary images, which were then converted into vector 

polygons for shoreline extraction and baseline construction. Fig. 

13 shows the extracted shorelines for 2003, 2014, and 2024 along 

with the constructed baseline. Transects were delineated at 40-

meter intervals (Fig. 14).  

 

 
Figure 13. Digitized shoreline for the years 2003, 2014, 2024, 

and the constructed baseline. 

 

 
Figure 14. Cast transects along the shoreline. 

Statistical analysis further illustrates the complexity of shoreline 

change, with metrics such as Shoreline Change Envelope (SCE), 

Net Shoreline Movement (NSM), Endpoint Rate (EPR), and 

Linear Regression Rate (LRR) used to quantify the magnitude 

and direction of change (Figs. 15-18). SCE quantifies the range 

of variability in shoreline position over a specified time period. 

NSM calculates the difference between the shoreline’s endpoints, 

indicating the overall direction and magnitude of movement. 

Moreover, EPR measures the average annual rate of change at 

specific endpoints along the shoreline. Lastly, LRR employs a 

linear regression model to estimate the rate of shoreline change 

over time, facilitating the identification of long-term trends. The 

eastern portion of the shoreline, with mean EPR and LRR values 

of 0.04, shows modest results across all metrics, indicating 

minimal net movement or stability over the study period, in line 

with the visual assessment of shoreline positions. The central and 

western sections exhibit dominant values indicating significant 

shoreline change. In the central portion, mean EPR and LRR 

values of 0.97 and 0.98, respectively, indicate increasing 

accretion or progradation. Similarly, the western section is 

characterized by mean values of 0.79 for EPR and 0.82 for LRR, 

suggesting consistent trends of shoreline advancement.  

 

 
Figure 15. Shoreline change envelope (SCE) statistical analysis. 

 

 
Figure 16. Net shoreline movement (NSM) statistical analysis. 

 

 
Figure 17. End Point Rate (EPR) statistical analysis. 
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Figure 18. Linear Regression Rate (LRR) statistical analysis. 

 

3.3 Relative Nearshore Bathymetric Extraction 

The output raster of the bathymetric index shows pixel values 

ranging from -0.28 to 0.22, indicating depth variations within the 

study area (Fig. 19). Deeper parts of the ocean exhibit lower 

index values, while shallower regions display higher index 

values. The gradient effectively maps the relative depth of the 

nearshore waters, providing valuable insights into the underwater 

topography of the area. 

 

Shoreline progradation in the central and western sections 

corresponds to areas where the bathymetric index values show a 

sharp transition from shallow to deep, indicating a steep 

underwater slope. This sharp gradient can reduce wave energy 

near the shore and promote sediment deposition, helping the 

shoreline to advance. In contrast, the eastern section shows more 

uniform index values, reflecting a gentler seabed slope. This 

stable underwater profile likely allows wave energy to dissipate 

more evenly, resulting in minimal shoreline change. 

 

The combined analysis of land cover change, shoreline dynamics, 

and nearshore bathymetry in Dingalan, Aurora, reveals a linked 

system where terrestrial and marine processes influence each 

other. Rapid urban expansion and vegetation loss affect sediment 

supply and runoff, contributing to the observed shoreline 

progradation in the central and western zones, where steeper 

nearshore slopes promote sediment deposition. In contrast, the 

gentler eastern slopes correspond with shoreline stability. These 

relationships underscore the need for integrated coastal 

management that considers land use planning, shoreline 

protection, and bathymetric conditions to maintain coastal 

stability and resilience. 

 

 
Figure 19. Relative nearshore bathymetry map of the area. 

 

4. Conclusion and Recommendations 

Based on a comprehensive remote sensing and GIS-based 

analysis of the coastal zone of Dingalan, Aurora, Philippines, this 

research provides valuable findings into the land cover dynamics, 

shoreline changes, and relative bathymetry of the area. The land 

cover change detection analysis revealed significant transitions 

among various land cover classes over the years, reflecting the 

impacts of both natural processes and anthropogenic activities on 

the coastal landscape. Notably, built-up areas expanded by 

175,975.34 m² (33.12%) from 2016 to 2020 and by another 

32,365.52 m² (4.58%) from 2020 to 2024. During the same 

periods, vegetation cover experienced a decrease of 13.01% and 

10.22%, respectively. These trends underscore the importance of 

balanced land use planning to mitigate the environmental impacts 

of rapid urbanization in coastal zones. Additionally, shoreline 

change detection using Landsat imagery reveals that the central 

and western portions of the shoreline in the study area are 

experiencing sediment accumulation, with mean EPR and LRR 

values of 0.97 and 0.98 in the central portion, and 0.79 and 0.82 

in the western portion. The relative nearshore bathymetric 

extraction using the log-ratio of blue-to-green bands provided 

valuable insights into the underwater topography, enabling the 

characterization of shallow and deep-water regions within the 

study area. The resulting index values ranged from -0.28 to 0.22, 

revealing a gentle nearshore slope in the eastern portion and 

steeper nearshore zones in the central and western portions. This 

pattern is consistent with the observed relative shoreline stability 

in the eastern area and shoreline advancement in the central and 

western areas. 

 

For future studies, it is recommended to incorporate tidal data 

when selecting the date and time for image acquisition to ensure 

a more reliable shoreline change analysis. Moreover, if available, 

use fine- or high-resolution imagery to improve the accuracy and 

precision of the land cover classification and shoreline 

delineation. Finally, obtaining true depth values is recommended 

to facilitate regression analysis for relative nearshore bathymetric 

extraction. 

 

The findings of this study can support local government units 

(LGUs) and coastal planners in identifying priority areas for 

shoreline protection, vegetation conservation, and sustainable 

land use zoning. The observed link between urban expansion, 

vegetation loss, shoreline dynamics, and bathymetric profiles 

highlights the need for integrated coastal zone management 

strategies. Incorporating these results into hazard mapping, 

climate adaptation plans, and environmental monitoring 

programs will enable decision-makers to more effectively 

balance development goals with the preservation of coastal 

resilience in Dingalan and similar coastal environments. 
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