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Abstract 

The existing methods for coconut mapping in the Philippines and globally are complex, necessitating the development of a simpler yet 
rapid and accurate classification technique. This study introduces the first spectral index for coconut mapping. Two Coconut Vegetation 
Indices were developed: one for dense Coconut Vegetation (CV) and another for sparse CV. 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 utilizes three Sentinel-2 bands 
in its equation (NIR1-SWIR1)/(SWIR1-SWIR2) to map coconut areas with densities >2.25 x10^6 sq.m. per 1km pixel. Meanwhile, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 incorporates four spectral bands in the equation (NIR1-Red)/(SWIR1-SWIR2) for areas with densities ≤ 2.25 x10^6 sq.m. 
per 1km pixel. The formulation of these indices is primarily based on previous studies involving band combinations and the analysis 
of spectral separability of the acquired coconut reflectance data. The extent of coconut vegetation was mapped using 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 with a 
minimum threshold of 1.094, while 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 was applied using a threshold range of 0.4774 to 1.094. The Balanced Accuracy (BA) 
metric was used to assess the accuracy, accounting for the imbalanced reference data between coconut and non-coconut classes. 
𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 proved highly effective with User’s Accuracy (UA) of 80%, Producer’s Accuracy (PA) of 88.89%, and BA of 88.90%, 
surpassing 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, which had accuracies of 32.00% (UA), 53.33% (PA), and 74.10% (BA). 

1. Introduction

The coconut (Cocos nucifera L.), a type of tree characterized 
as a fruit-bearing tree with a single stem and green, pinnate 
leaves, is native to tropical areas (Niral, V., et al., 2019). 
Coconut exerts a significant influence in the agricultural 
panorama of the Philippines, covering a total land area of 3.6 
million hectares - encompassing 69 out of 82 provinces in the 
country (Philippine Coconut Authority, 2018). With this 
amount of land, the industry produces 14.7 million metric tons 
of coconut annually and contributes average export earnings 
of 91.4 billion pesos from 2014 to 2018 (Philippine Coconut 
Authority, 2018), which made it the world’s top exporter (DA 
Press Office, 2023). These statistics underscore the Philippines 
as the second top coconut-producer in the world (Hoe, 2018). 

Providing the largest part in the coconut production of the 
Philippines is Quezon Province which has a 10% share in the 
total supply nationwide and harvesting from approximately 
60% of the province’s total agricultural land area (SEARCA, 
2023). More than 2,151 stakeholders in Quezon, including 
smallholder farmers, copra dealers, and traders in the province, 
rely directly on the coconut industry (SEARCA, 2023). 
Unfortunately, these stakeholders, specifically the farmers are 
struggling because of the climate crisis being evident in the 
extreme drought, intensified typhoons, and unexpected 
weather patterns (Lacerna, 2023). Infestation, low 
investments, limited research and development, and poor 
infrastructure were also determined as the factors that affect 
the declining farm yield that started in 2010 (DA Press Office, 
2023). Given all these factors that are detrimental in the 
industry, it is therefore significant to monitor the current extent 
of coconut as affected by the said disturbances and limitations. 
Accurate spatial information regarding coconut plantations is 
crucial for managing natural resources and land-use planning. 
It is well established how significant remotely sensed data is 
for mapping, inventorying, and monitoring of natural 
resources (Kannan et al., 2017). Current studies on coconut 

mapping explore the use of intensive and complex remote 
sensing techniques. These include the application of machine 
learning algorithms such as Convolutional Neural Network 
(CNN), Random Forest (RF), Support Vector Machine 
(SVM), and K-Nearest Neighbor (K-NN) (Ahmed et al., 2023; 
Vermote et al., 2020; Burnett et al., 2019). A recent study 
created a global density map of coconut plantations using a 
deep learning model, specifically semantic segmentation 
(Descals et al., 2023). Medium to very high-resolution images 
such as Sentinel-2 (Ahmed et al., 2023; Descals et al., 2023; 
Ian Jancinal et al., n.d.), WorldView-2 (Burnett et al., 2019) 
and WorldView-3 (Vermote et al., 2020) imageries have been 
used as sources of spatial information to map the extent of 
coconut vegetation in regional and global level. Other than 
this, Zheng et al. (2023) utilized Google Earth and deep 
learning models to detect individual coconut trees in remote 
atolls of the Pacific Ocean. 

In the Philippines, coconut mapping is not a novel idea, 
however, it is still lacking with the very few studies exploring 
the accuracy of different detection and classification methods. 
The last land cover map of the Philippines to show the extent 
of coconut vegetation, together with other agricultural land 
cover, was made in 2016 through the Phil-LiDAR 2 program 
funded by the Department of Science and Technology (DOST) 
and jointly managed by the University of the Philippines 
Diliman (UPD) and the DOST Philippine Council for Industry, 
Energy, and Emerging Technology Research and 
Development (DOST-PCIEERD)(Pagkalinawan et al., 2017). 
One of its core projects, the Agricultural Resources 
Assessment (PARMap) project, focused on producing quality 
agricultural maps using Light detection and ranging (LiDAR) 
technology and Landsat data (Pagkalinawan et al., 2017). 
Bernales et al. (2016) also applied the use of LiDAR and SVM 
in coconut tree detection in the Municipality of Mambusao in 
Capiz, Philippines. The same LiDAR technology was utilized 
to assess and map agricultural resources, including coconuts, 
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in Bacolod, Lanao Del Norte (Guihawan et al., 2018), and the 
Davao Region (Novero et al., 2019).  
 
None of the previous projects and studies explored the 
feasibility, development, and application of a spectral index 
that is specific to coconut vegetation, which could provide 
simple, direct, and accurate mapping of coconut areas. 
Spectral indices used in mapping vegetation are called 
vegetation indices. The indices such as the Normalized 
Difference Vegetation Index (NDVI; Rouse et al., 1973), Soil 
Adjusted Vegetation Index (SAVI; Huete, 2004), and Leaf 
Area Index (LAI) are useful in highlighting intrinsic plant 
properties that are strongly associated with leaf greenness and 
vigor (Baloloy et al., 2020). There are also indices made for 
specific vegetation such as Mangrove Vegetation Index (MVI) 
(Baloloy et al., 2020) and Rice Growth Vegetation Index 
(RGVI) (Nuarsa et al., 2011), which made the mapping of 
vegetation easier and without the need for data-intensive 
methodologies, complex classifiers, and skill-dependent 
classification techniques. 
 
Lastly, given the complexities in the current coconut mapping 
techniques and the absence of vegetation index for coconut, 
this study proposed a simplified method using the first 
Coconut Vegetation Index (CVI) that uses the Red, NIR, 
SWIR-1, and SWIR-2 bands of Sentinel-2. Two CVIs specific 
to dense (closed-canopy) and to sparse (open-canopy) 
vegetation were developed in the study. The index was 
designed by analyzing the spectral signatures and 
characteristics of coconut (in dense and sparse vegetation) and 
non-coconut datasets for Quezon Province. 
 

2. Methodology 
 
For this study, the methodology was structured into two parts. 
The first part was dedicated to analyzing the varying spectral 
responses of Sentinel-2 bands between the coconut and non-
coconut pixels. Two CVIs were developed in this study, thus 
various combinations of bands were tested separately for dense 
and sparse coconut vegetation. Subsequently, the CVIs were 
applied to Sentinel-2 images covering the study site. The 
second part of this study focused on mapping coconut extent 
using the CVIs, along with accuracy assessment using 
available submeter satellite images. Figure 2 highlights the 
general workflow of this study. 
 
2.1 Study Site 
 
Quezon Province, centered at 13.9347 N, 121.9473 E, is the 
target area for this study. It is the 9th largest province in the 
country, with a total area of 8,743.84 sq. km., and the 13th 
most populated, home to 1,950,459 citizens as of 2020. The 
province has consistently been a leader in Region IV-A 
(CALABARZON) in terms of agricultural exports. The 
Philippine Statistics Authority (PSA) recorded that 35.3% of 
the 2022 Agricultural, Forestry, and Fishing (AFF) exports 
came from Quezon. 
 
Figure 1 illustrates the spatial distribution of coconut density 
across the province. The coconut industry is a major 
contributor to the province’s economy, with copra making 
being cited as “one of the largest income-generating 
agricultural activities in the province.” It has long been 
considered the coconut capital of the Philippines, and the 
largest coconut-producing province (Pabuayon et al., 2009). In 
2020, the Local Government Unit (LGU) of Quezon reported 
that the province produced 1,493,066.64 metric tons of 

coconuts. Quezon’s land area is mostly agricultural, occupying 
47.87% or 4,167.6421 sq. km. Out of these, 3,791.376 sq. km. 
are dedicated to coconut plantations, also making it the 
province with the largest coconut production area. 
 

 
Figure 1. Map of Quezon Province with an overlay of 
coconut density distribution from Descals et al. (2023) 

 
2.2 Datasets 
 

Data Source Resolution Time 
Period 

Sentinel-2 – 
L2A Images 

Copernicus 
Data Space 
Ecosystem 

10m; 20m 2020 

Training Data 
for Spectral 
Analysis and 
Threshold 
Development 

Google 
Earth - - 

Reference/ 
Validation Data 

Google 
Earth - - 

Global Closed-
Canopy 
Coconut Map 

Descals et 
al. (2023) 20m 2020 

 
Table 1. Summary of Data 

 
To conduct this study, Sentinel-2 L2A images with minimal 
cloud cover were downloaded from the Copernicus Data Space 
Ecosystem. L2A was preferred over L1C for its open access 
and atmospheric correction. Coconut and non-coconut 
samples for spectral signature generation and validation were 
extracted from Google Earth, which offers open-access, high-
resolution imagery. Additionally, the global closed-canopy 
coconut map by Descals et al. (2023) was used to guide sample 
selection across varying vegetation densities. A summary of 
all datasets used in this study is presented in Table 1. 
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2.3 Workflow 

 
Figure 2. General workflow that highlights the main parts of the methodology: formulation of CVIs and its application 

 
2.4 Formulation of CVIs 
 
2.4.1 Spectral Analysis and Development of CVIs: The 
spectral bands that were mainly assessed in the formulation of 
the index were derived from the resampled Sentinel-2 images 
(10m resolution) acquired over Quezon Province. The training 
points were selected using Google Earth. One hundred training 
points (100) (Baloloy et al., 2020) were collected for coconut 
(dense and sparse) and non-coconut pixels (forest and non-
terrestrial vegetation). The Sentinel Application Platform 
(SNAP) was utilized to generate the spectral profiles and 
extract the reflectance of the points from Sentinel-2 images. 
 
Since the spectral signature of dense and sparse coconut 
vegetation has a huge difference that coincides with other non-
coconut classes (See Figure 4), this study created two spectral 
indices not only specific for coconut vegetation but also to its 
density and structure of tree cover. 
 
2.4.2 CVIs Threshold: Using Sentinel-2 images, Google 
Earth, and the global closed-canopy coconut map (Descals et 
al., 2023), 50 training samples (Baloloy et al., 2020) for each 
land-use and land-cover class were selected within the 
boundaries of Quezon Province.  Each training pixel represents 
a pure sample of the given class, and its spectral profiles were 
also considered in developing the CVIs. Each pixel's purity 
was assessed using the following criteria: 

1. Sub-meter satellite images are available to identify 
the vegetation. 

2. The pixel should be within the center of the 
vegetation’s extent to ensure that no other land cover 
will affect its purity. 

3. In the case of the dense CV, the pixel should fall 
within the area with > 2.25 x 10^6 sq. m. of coconut 
per pixel defined by Descals et al.'s (2023) coconut 
density map. 

However, in the case of sparse CV where it is highly 
influenced by other vegetation or non-vegetation classes and 
the purity of its pixel does not adhere to the standard definition, 

the following criteria was set in this study to achieve 
consistency: 

1. A sub-meter satellite image is available to identify 
the sparse CV pixel. 

2. It falls within the area with ≤ 2.25 x 10^6 sq. m. of 
coconut per pixel defined by Descals et al.'s (2023) 
coconut density map. 

3. Only one coconut tree is within the 10-m pixel 
range. 

The mean, upper, and lower thresholds for sparse coconut, 
dense coconut, and non-coconut were determined by 
producing CVIs for the following classes: coconut (sparse and 
dense), terrestrial vegetation (forest and non-forest), bare soil, 
water, built-up, and clouds (Baloloy et al., 2020).  
 
2.5 Application of CVIs to Sentinel-2 Images 
 
For the index computation, the mosaic of resampled (into 10m 
resolution) Sentinel-2 L2A images was used as the input. The 
CVI formulas were applied to the image using the Raster 
Calculator in QGIS Firenze 3.28.15. Following that, the CVI 
outputs were filtered to select just the pixels within the dense 
and sparse coconut using the determined threshold values. The 
results of both CVIs were integrated into a single image to 
assess the combined accuracy. 
 
2.6 Validation of Reference Points 
 
Six hundred (600) reference points (Burnett et al., 2019) were 
randomly sampled over Quezon Province using the Random 
Points in QGIS Firenze 3.28.15. These points were then 
validated in two levels. The first one is the validation by the 
author and the second level is the validation by an independent 
interpreter (Descals et al., 2023). Table 2 shows the criteria for 
classifying the reference points as adapted from the study of 
(Descals et al., 2023). 
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Class Description 
0 Land Cover could not be determined because 

sub-meter resolution data were not available, or 
it is partially or fully covered by clouds. 

Non-Vegetation Area but with coconut tree/s 
within 10 m pixel 

Vegetation Area but with coconut tree/s within 
10m pixel 

1 Non-Vegetation Area (e.g. bare soil / built-up) 
indicates that vegetation coverage is < 50% and 

coconut trees are not within the 10 m pixel 
2 Vegetation Area (e.g. forest or non-forest trees) 

indicates that vegetation coverage is > 50% and 
coconut trees are not within the 10 m pixel 

3 Sparse coconut trees indicate a low density of 
coconut vegetation. 

There are one or two coconut trees within the 
10m pixel. 

The point is within the light yellow area (≤ 2.25 
x 10^6 sq. m. of coconut per pixel) of the 

Coconut Density Map of Descals et al. (2023). 
4 Dense coconut tree indicates a high density of 

coconut vegetation. 
There are more than two coconut trees within 

the 10m pixel. 
The point is within the orange area (> 2.25 x 

10^6 sq. m. of coconut per pixel) of the Coconut 
Density Map of Descals et al. (2023). 

Table 2. Criteria for Point Validation as adapted from the 
study of Descals et al. (2023) 

Reference images, as shown in Figure 3, were incorporated 
into the level 2 validation to help limit the potential errors in 
image interpretation. In cases where there was a mismatch 
between the interpretation of the author and the independent 
interpreter, both individuals deliberated to come up with the 
final class to assign. 

Figure 3. Reference photos that were used for validation by 
the independent interpreter. The number in the photos 

correspond to its class 

2.7 Index Accuracy Assessment 

A separate assessment for the two CVIs was conducted to 
determine their individual performance. Other than the 
Producer’s Accuracy (PA), User’s Accuracy (UA), and 
Overall Accuracy (OA), the Balanced Accuracy (BA) was also 
computed to consider the imbalance number of reference 
points between the coconut and non-coconut classes. The 
metric accounts for both false positive and false negative errors 
that have a direct impact on the targeted class (Mower, 2005). 
Equation 1 shows the necessary parameters in the computation 
of the BA. 

  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝐵𝐵𝐵𝐵) =  
𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇

2
,   (1) 

where: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑇𝑇𝑇𝑇𝑇𝑇) =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇)
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 (2) 

and 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑇𝑇𝑇𝑇𝑇𝑇) =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑇𝑇𝑇𝑇)
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (3) 

In this study, a true positive refers to the number of reference 
coconut pixels that were also classified as coconut using the 
indices, while true negative is the number of misclassified 
coconut pixels. Furthermore, false negative is the number of 
reference non-coconut pixels that were classified as coconut, 
and a false positive refers to the number of non-coconut pixels 
that were also classified as its class using the indices.   

To further address the classification accuracy of the indices, 
omission errors and commission errors were also computed 
through the following equations: 

 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  100% − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   (4) 

  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  100% − 𝑈𝑈𝑈𝑈𝑈𝑈𝑟𝑟′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   (5) 

Accuracy assessment of the result upon application of the two 
CVIs in one image was also conducted to determine the overall 
performance of its integration. 

3. Results and Discussion

3.1 Coconut Vegetation Indices 

This study proposed to use the following spectral bands: red, 
NIR1, SWIR1, and SWIR2, as components of the coconut 
vegetation index. Ahmed et al. (2023) and Descals et al. (2023) 
demonstrated that these bands can accurately classify coconut 
vegetation from other land cover using different classification 
algorithms. 

On the other hand, as observed in Figure 4, the spectral 
signatures of dense and sparse coconut vegetation (CV) have 
huge differences in the visible region as well as in SWIR1 and 
SWIR2 bands, which can be attributed to the background 
environment of these vegetations. Thus, this study developed 
two vegetation indices that are specific to dense CV and sparse 
CV. 

Figure 4. Spectral profile of coconut and non-coconut classes. 
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3.1.1 Coconut Vegetation Index for Dense Plantation: The 
CVI for dense coconut plantations utilized NIR1, SWIR1, and 
SWIR2, with central wavelengths of 0.842 µm, 1.610 µm, and 
2.190 µm, respectively. Figure 4 shows that dense CV has the 
lowest reflectance in SWIR bands among all land covers. With 
this, the sum of the SWIR bands will always be smaller in 
dense CV compared to the other land covers. This 
combination, given that SWIR bands are sensitive to moisture, 
enhances the detection of coconut trees, which have naturally 
waxy cuticles covering their leaves to maintain the moisture 
content as a unique adaptation response to drought (Carr, 
2011). 
 
Since dense CV is defined as a closed canopy with high density 
of coconut trees, the environment below the canopy cover will 
not greatly affect the reflectance values, and only the features 
of the tree crown will be reflected. Equation 6 shows the CV 
index for dense coconut areas. 
 

                            𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑁𝑁𝑁𝑁𝑁𝑁1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2                     (6) 

 
where: 
       NIR1 = Near Infrared 1 Reflectance (0.842 µm) 
       SWIR1 = Short-Wave Infrared 1 Reflectance (1.610 µm) 
       SWIR2 = Short-Wave Infrared 2 Reflectance (2.190 µm) 
 
Meanwhile, the spread of NIR1 reflectance of dense CV might 
overlap with terrestrial vegetation (TV) in forest and sparse 
CV as shown in Figure 4. This can be attributed to the same 
amount of chlorophyll concentration and health condition of 
the vegetation types (see Figure 5). To resolve this, SWIR1 
was combined with NIR to treat the latter like a constant for 
all classes since the former is more separable and has narrower 
spread based on its standard error. 
 

 
Figure 5. Modified Chlorophyll Absorption in Reflectance 

Index (MCARI) of coconut and terrestrial vegetation. 
 
3.1.2 Coconut Vegetation Index for Sparse Plantation: In 
this study, sparse CV is defined as the open canopy and low-
density coconut tree plantation. With this, its background 
environment significantly affects its reflectance values. The 
high values of SWIR bands could be attributed from the soil or 
the ground within the background. 
 

                           𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑁𝑁𝑁𝑁𝑁𝑁1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2                     (7) 
 
where:   
       NIR1 = Near Infrared 1 Reflectance (0.842 µm) 
       Red = Red Reflectance (0.665 µm) 
       SWIR1 = Short-Wave Infrared 1 Reflectance (1.610 µm) 
       SWIR2 = Short-Wave Infrared 2 Reflectance (2.190 µm) 
 
For the case of sparse CV, the sum of its SWIR bands will 
always be higher than the other land covers. Meanwhile, the 
average difference between the NIR1 and Red (with a central 

wavelength of 0.665 µm) will always be smaller compared to 
the other classes. The inclusion of NIR1 and Red considers the 
effects of the background environment to the register of the 
tree cover in satellite images since sparse CVs are usually 
surrounded by bare soil or grassy areas. 
 
The proposed indices in this study are the first coconut indices 
for coconut mapping. Existing studies show the use of LiDAR 
or satellite images with machine or deep learning models 
(Candare et al., 2016; Saavedra et al., 2016; Guihawan et al., 
2018; Burnett et al., 2019; Novero et al., 2019; Bernales et al., 
2022; Descals et al., 2023; Ahmed et al., 2023, Xi et al., 2023) 
which are way complex and data-intensive compared to using 
a spectral index. 
 
3.2 CVIs Threshold 
 

 
Figure 6. Separation of selected bands per class 

 
3.2.1 Threshold for 𝑪𝑪𝑪𝑪𝑪𝑪𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅: The 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 values of pixels 
identified as coconut (dense and sparse), terrestrial vegetation 
(forest and non-forest), bare soil, built up, water and clouds 
were plotted in Figure 6. The mean of CVI values for dense 
plantation is 1.2549, with maximum value of 1.6052 and 
minimum value of 1.0940. The whole extent of this threshold 
is separated from the threshold of terrestrial forest and non-
forest vegetation, with maximum threshold up to 0.9885. This 
is the result of the distinct spectral response of dense coconut 
vegetation in the NIR1, SWIR1, and SWIR2 wavelengths. 
Maximizing the numerator (NIR1-SWIR1) and minimizing 
the denominator (SWIR1 + SWIR2) yields higher 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
values. Figure 7 provides a comparative summary of index 
threshold values applied across different classes. 
 

 
Figure 7. Mean, minimum and maximum 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 values of 
dense coconut and non-coconut pixels: terrestrial vegetation – 
forest (TV Forest), terrestrial vegetation-non forest (TV Non-

Forest), bare soil, built-up, water, and clouds 
 
Meanwhile, the 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 values of bare soil and built-up 
ranges from -0.2506 to -0.0006 and -0.3177 to 0.4159, 
respectively. Both classes exhibit high reflectance values in the 
SWIR region. The SWIR reflectance of soil is significantly 
influenced by the mineral composition, organic matter, and 
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surface water content (Sykas, 2020). The high reflectance of 
built-up areas in the SWIR region is primarily due to urban 
surfaces and artificial materials (Baloloy et al., 2020). With 
higher SWIR1 values than NIR1, the numerators of the 
𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for soil and built-up classes are smaller. However, 
the 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑’s denominator is smaller because the SWIR2 
values are either smaller (in bare soil) than or almost the same 
(in built-up) of the SWIR1. 
 
3.2.2 Threshold of 𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔: Unlike the dense coconut 
vegetation, the threshold of sparse coconut vegetation is 
between terrestrial vegetation and the other land cover, as 
clearly illustrated in Figure 8. The mean of 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 values is 
0.7956, with maximum of 1.0940 and minimum of 0.4774. 
This is smaller than the TV forest which has a minimum of 
1.2302. This is because of the high SWIR2 reflectance that 
makes the denominator of the index higher than those of the 
other classes. The whole extent of this threshold is separated 
from all the other land covers. This is the result of combining 
NIR1, Red, and SWIR bands that reveal distinct spectral 
signatures for sparse CV. To generate more separable 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 values, the band combinations should produce 
values that are closer to the mean. 
 

 
Figure 8. Mean, minimum and maximum 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 values of 
dense coconut and non-coconut pixels: terrestrial vegetation – 
forest (TV Forest), terrestrial vegetation-non forest (TV Non-

Forest), bare soil, built-up, water, and clouds 
 
Meanwhile, bare soil and built-up shows lower values than the 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with a maximum of 0.3112 and 0.3324, 
respectively. These classes register smaller index values than 
the sparse CV. This could be attributed to the high values of 
the component bands, which are all higher than the coconut 
and terrestrial vegetation. 
 
3.3 Generated CVI-Based Map and Images 
 

 
Figure 9. Maps showing the extent of (1) whole coconut 

vegetation in Quezon Province using CVIs and the (2) 20-m 

resolution coconut density map created by Descals et al. 
(2023) using data from the same year as this study, 2020 

 

 
Figure 10. Maps showing the extent of coconut vegetation 

which were produced using (1) Landsat-8 and SVM 
Classifier (Tañada et al., 2023), and (2) CVIs. Despite 

method (1) utilizing a satellite image from 2013-2015 and the 
other using images from 2020, significant similarities in 

coconut vegetation extent are observed across Alabat Island, 
Cabalete Island, and areas in Calauag 

 
As shown in Figures 9 and 10, dense coconut areas in Calauag 
and on the islands of Alabat, Cabalete, Polillo, and 
Patnanungan were also classified using 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, consistent 
with the coconut density map by Descals et al. (2023) and the 
coconut vegetation map by Tañada et al. (2023). Some dense 
areas, however, remained unclassified due to persistent cloud 
cover in the imagery (see Figure 11). Since this study used 
Sentinel-2 images with remaining cloud cover, clouds likely 
obscured portions of the canopy, resulting in missed or 
misclassified pixels. This limitation emphasizes the need for 
cloud-free composites or multi-temporal imagery in future 
analyses to improve classification completeness. In the upper 
part of the classified map, the non-coconut pixels correspond 
to those identified by Descals et al. (2023). However, the area 
within the Bondoc Peninsula shows classified sparse 
vegetation which is barely present in the reference map. The 
10m spatial resolution of Sentinel-2 allows finer delineation of 
sparse CV. Figures 12 and 13 illustrate finer spatial details of 
the classified dense and sparse coconut vegetation. 
 

 
Figure 11. CVI-based maps with cloud cover 
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Figure 12. 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑-classified coconut plantations that are 

within the sites of highest coconut density according to 
Descals et al. (2023) 

 

 
Figure 13. Coconut plantations that were classified using 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
 
3.4 Index Accuracy 
 

Spectral 
Index UA PA OA BA 

𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 80.00% 88.89% 94.60% 88.90% 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 32.00% 53.33% 74.10% 60.83% 
Integrated 
CVI 

51.20% 71.11% 73.07% 69.03% 

 
Table 3. Accuracy of the mapped coconut areas using CVIs 

 
After examining the sampled reference points, a total of 287 
points were validated as part of coconut and non-coconut 
classes. Forty-five (45) points belong to the dense CV, nine (9) 
for sparse CV, 192 for vegetation area (terrestrial and non-
terrestrial), and the non-vegetation area (bare soil and built-up) 
has 41 points. Since the number of validated points for sparse 
CV is too small for the study site, an additional 36 points were 
validated to match the points for dense CV. 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 exhibited the highest accuracy among the classifiers, 
with User’s, Producer’s, Overall, and Balanced Accuracies all 
above 80.00%. It recorded the lowest omission (11.11%) and 
commission (2%) errors for coconuts, and less than 5% for 
non-coconut classification. In contrast, 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 showed the 
lowest accuracy, with 68% commission and 53.33% omissi 
on errors for coconuts, reflecting the known challenge of 
delineating sparse CV due to the impact of other land covers 
on its reflectance (Descals et al., 2023). 
 
The notably higher Overall Accuracies compared to UA and 
PA are due to the imbalance in reference data, with dense 
coconut samples outnumbering sparse class. This imbalance 
can bias results toward the majority class, reducing detection 
reliability for underrepresented categories. Balanced Accuracy 
was therefore calculated, and future work should address this 
issue through more balanced sampling or resampling 
techniques. 

3.5 Area Comparison 
 

 
Figure 14. Area of coconut vegetation in Quezon Province 
based on CVI, the density map of Descals et al. (2023), and 

the data from PCA (2018) 
 
Using CVIs, the extent of coconut vegetation in Quezon 
Province reached up to 2445.36 sq. km., exceeding Descals et 
al.'s (2023) categorized area of 1484.59 sq. km. Both computed 
areas are smaller than PCA's 2018 record of 3750.26 sq. km. 
The low classified area can be attributed to the cloud cover in 
satellite images used in this study. Misclassified pixels among 
coconut and non-coconut were factors in these values as also 
affected by the low accuracy of 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 
 

4. Conclusion and Recommendations 

This study developed two spectral indices to delineate dense 
and sparse coconut vegetation (CV) based on their distinct 
spectral signatures. The dense CV index, using NIR1 and 
SWIR bands, achieved the highest accuracy of more than 80%. 
The sparse CV index, using NIR1, Red, and SWIR bands, 
showed lower accuracy, highlighting the difficulty in mapping 
sparse CV. The CVI-based map estimated a greater coconut 
extent than earlier studies but remained smaller than PCA 
records, suggesting a more refined yet improvable delineation. 
 
These findings demonstrate the potential of the developed 
vegetation indices to support the PCA in nationwide coconut 
monitoring using spatial data and mapping. Such capability is 
valuable for rapid assessment of typhoon impacts and can also 
inform planting and replanting strategies aimed at enhancing 
long-term productivity and economic resilience. 
 
Future work should apply the indices to Sentinel-2 L2A (20 m 
resolution), explore other sensors (e.g., Landsat), expand 
spatial coverage, and increase the training and reference data. 
Differentiating coconut from oil palm using spectral analysis, 
ground-truth validation, and integrating texture features, 
Synthetic Aperture Radar (SAR) data, and high-resolution 
drone imagery are also recommended to enhance mapping 
accuracy and reliability. 
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