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Abstract

The existing methods for coconut mapping in the Philippines and globally are complex, necessitating the development of a simpler yet
rapid and accurate classification technique. This study introduces the first spectral index for coconut mapping. Two Coconut Vegetation
Indices were developed: one for dense Coconut Vegetation (CV) and another for sparse CV. CV 1,y utilizes three Sentinel-2 bands
in its equation (NIR1-SWIR1)/(SWIR1-SWIR2) to map coconut areas with densities >2.25 x1076 sq.m. per 1km pixel. Meanwhile,
CVlIsparse incorporates four spectral bands in the equation (NIR1-Red)/(SWIR1-SWIR2) for areas with densities < 2.25 x10°6 sq.m.
per 1km pixel. The formulation of these indices is primarily based on previous studies involving band combinations and the analysis
of spectral separability of the acquired coconut reflectance data. The extent of coconut vegetation was mapped using CV1;ppe With a
minimum threshold of 1.094, while CVI,q,s. Was applied using a threshold range of 0.4774 to 1.094. The Balanced Accuracy (BA)
metric was used to assess the accuracy, accounting for the imbalanced reference data between coconut and non-coconut classes.
CVlgense proved highly effective with User’s Accuracy (UA) of 80%, Producer’s Accuracy (PA) of 88.89%, and BA of 88.90%,
surpassing CV I, qrse, which had accuracies of 32.00% (UA), 53.33% (PA), and 74.10% (BA).

1. Introduction

The coconut (Cocos nucifera L.), a type of tree characterized
as a fruit-bearing tree with a single stem and green, pinnate
leaves, is native to tropical areas (Niral, V., et al., 2019).
Coconut exerts a significant influence in the agricultural
panorama of the Philippines, covering a total land area of 3.6
million hectares - encompassing 69 out of 82 provinces in the
country (Philippine Coconut Authority, 2018). With this
amount of land, the industry produces 14.7 million metric tons
of coconut annually and contributes average export earnings
of 91.4 billion pesos from 2014 to 2018 (Philippine Coconut
Authority, 2018), which made it the world’s top exporter (DA
Press Office, 2023). These statistics underscore the Philippines
as the second top coconut-producer in the world (Hoe, 2018).

Providing the largest part in the coconut production of the
Philippines is Quezon Province which has a 10% share in the
total supply nationwide and harvesting from approximately
60% of the province’s total agricultural land area (SEARCA,
2023). More than 2,151 stakeholders in Quezon, including
smallholder farmers, copra dealers, and traders in the province,
rely directly on the coconut industry (SEARCA, 2023).
Unfortunately, these stakeholders, specifically the farmers are
struggling because of the climate crisis being evident in the
extreme drought, intensified typhoons, and unexpected
weather patterns (Lacerna, 2023). Infestation, low
investments, limited research and development, and poor
infrastructure were also determined as the factors that affect
the declining farm yield that started in 2010 (DA Press Office,
2023). Given all these factors that are detrimental in the
industry, it is therefore significant to monitor the current extent
of coconut as affected by the said disturbances and limitations.
Accurate spatial information regarding coconut plantations is
crucial for managing natural resources and land-use planning.
It is well established how significant remotely sensed data is
for mapping, inventorying, and monitoring of natural
resources (Kannan et al., 2017). Current studies on coconut

mapping explore the use of intensive and complex remote
sensing techniques. These include the application of machine
learning algorithms such as Convolutional Neural Network
(CNN), Random Forest (RF), Support Vector Machine
(SVM), and K-Nearest Neighbor (K-NN) (Ahmed et al., 2023;
Vermote et al., 2020; Burnett et al., 2019). A recent study
created a global density map of coconut plantations using a
deep learning model, specifically semantic segmentation
(Descals et al., 2023). Medium to very high-resolution images
such as Sentinel-2 (Ahmed et al., 2023; Descals et al., 2023;
Ian Jancinal et al., n.d.), WorldView-2 (Burnett et al., 2019)
and WorldView-3 (Vermote et al., 2020) imageries have been
used as sources of spatial information to map the extent of
coconut vegetation in regional and global level. Other than
this, Zheng et al. (2023) utilized Google Earth and deep
learning models to detect individual coconut trees in remote
atolls of the Pacific Ocean.

In the Philippines, coconut mapping is not a novel idea,
however, it is still lacking with the very few studies exploring
the accuracy of different detection and classification methods.
The last land cover map of the Philippines to show the extent
of coconut vegetation, together with other agricultural land
cover, was made in 2016 through the Phil-LiDAR 2 program
funded by the Department of Science and Technology (DOST)
and jointly managed by the University of the Philippines
Diliman (UPD) and the DOST Philippine Council for Industry,
Energy, and Emerging Technology Research and
Development (DOST-PCIEERD)(Pagkalinawan et al., 2017).
One of its core projects, the Agricultural Resources
Assessment (PARMap) project, focused on producing quality
agricultural maps using Light detection and ranging (LiDAR)
technology and Landsat data (Pagkalinawan et al., 2017).
Bernales et al. (2016) also applied the use of LIDAR and SVM
in coconut tree detection in the Municipality of Mambusao in
Capiz, Philippines. The same LiDAR technology was utilized
to assess and map agricultural resources, including coconuts,
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in Bacolod, Lanao Del Norte (Guihawan et al., 2018), and the
Davao Region (Novero et al., 2019).

None of the previous projects and studies explored the
feasibility, development, and application of a spectral index
that is specific to coconut vegetation, which could provide
simple, direct, and accurate mapping of coconut areas.
Spectral indices used in mapping vegetation are called
vegetation indices. The indices such as the Normalized
Difference Vegetation Index (NDVI; Rouse et al., 1973), Soil
Adjusted Vegetation Index (SAVI; Huete, 2004), and Leaf
Area Index (LAI) are useful in highlighting intrinsic plant
properties that are strongly associated with leaf greenness and
vigor (Baloloy et al., 2020). There are also indices made for
specific vegetation such as Mangrove Vegetation Index (MVI)
(Baloloy et al., 2020) and Rice Growth Vegetation Index
(RGVI) (Nuarsa et al., 2011), which made the mapping of
vegetation easier and without the need for data-intensive
methodologies, complex classifiers, and skill-dependent
classification techniques.

Lastly, given the complexities in the current coconut mapping
techniques and the absence of vegetation index for coconut,
this study proposed a simplified method using the first
Coconut Vegetation Index (CVI) that uses the Red, NIR,
SWIR-1, and SWIR-2 bands of Sentinel-2. Two CVIs specific
to dense (closed-canopy) and to sparse (open-canopy)
vegetation were developed in the study. The index was
designed by analyzing the spectral signatures and
characteristics of coconut (in dense and sparse vegetation) and
non-coconut datasets for Quezon Province.

2. Methodology

For this study, the methodology was structured into two parts.
The first part was dedicated to analyzing the varying spectral
responses of Sentinel-2 bands between the coconut and non-
coconut pixels. Two CVIs were developed in this study, thus
various combinations of bands were tested separately for dense
and sparse coconut vegetation. Subsequently, the CVIs were
applied to Sentinel-2 images covering the study site. The
second part of this study focused on mapping coconut extent
using the CVIs, along with accuracy assessment using
available submeter satellite images. Figure 2 highlights the
general workflow of this study.

2.1 Study Site

Quezon Province, centered at 13.9347 N, 121.9473 E, is the
target area for this study. It is the 9th largest province in the
country, with a total area of 8,743.84 sq. km., and the 13th
most populated, home to 1,950,459 citizens as of 2020. The
province has consistently been a leader in Region IV-A
(CALABARZON) in terms of agricultural exports. The
Philippine Statistics Authority (PSA) recorded that 35.3% of
the 2022 Agricultural, Forestry, and Fishing (AFF) exports
came from Quezon.

Figure 1 illustrates the spatial distribution of coconut density
across the province. The coconut industry is a major
contributor to the province’s economy, with copra making
being cited as “one of the largest income-generating
agricultural activities in the province.” It has long been
considered the coconut capital of the Philippines, and the
largest coconut-producing province (Pabuayon et al., 2009). In
2020, the Local Government Unit (LGU) of Quezon reported
that the province produced 1,493,066.64 metric tons of

coconuts. Quezon’s land area is mostly agricultural, occupying
47.87% or 4,167.6421 sq. km. Out of these, 3,791.376 sq. km.
are dedicated to coconut plantations, also making it the
province with the largest coconut production area.
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2.2 Datasets

Data Source Resolution Time
Period
Sentinel-2 — Copernicus
L2A Images Data Space 10m; 20m 2020
Ecosystem

Training Data
for Spectral

Analysis and (E);r%lie - -
Threshold

Development

Reference/ Google

Validation Data Earth ) )
Global Closed- Descals et

Canopy al. (2023) 20m 2020
Coconut Map )

Table 1. Summary of Data

To conduct this study, Sentinel-2 L2A images with minimal
cloud cover were downloaded from the Copernicus Data Space
Ecosystem. L2A was preferred over L1C for its open access
and atmospheric correction. Coconut and non-coconut
samples for spectral signature generation and validation were
extracted from Google Earth, which offers open-access, high-
resolution imagery. Additionally, the global closed-canopy
coconut map by Descals et al. (2023) was used to guide sample
selection across varying vegetation densities. A summary of
all datasets used in this study is presented in Table 1.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-5-W4-2025-323-2026 | © Author(s) 2026. CC BY 4.0 License. 324



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-5/\W4-2025
Philippine Geomatics Symposium (PhilGEOS) 2025 "Enhancing Human Quality of Life through Geospatial Technologies",
24-25 November 2025, Quezon City, Philippines
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Figure 2. General workflow that highlights the main parts of the methodology: formulation of CVIs and its application

2.4 Formulation of CVIs

2.4.1 Spectral Analysis and Development of CVIs: The
spectral bands that were mainly assessed in the formulation of
the index were derived from the resampled Sentinel-2 images
(10m resolution) acquired over Quezon Province. The training
points were selected using Google Earth. One hundred training
points (100) (Baloloy et al., 2020) were collected for coconut
(dense and sparse) and non-coconut pixels (forest and non-
terrestrial vegetation). The Sentinel Application Platform
(SNAP) was utilized to generate the spectral profiles and
extract the reflectance of the points from Sentinel-2 images.

Since the spectral signature of dense and sparse coconut
vegetation has a huge difference that coincides with other non-
coconut classes (See Figure 4), this study created two spectral
indices not only specific for coconut vegetation but also to its
density and structure of tree cover.

2.4.2 CVIs Threshold: Using Sentinel-2 images, Google
Earth, and the global closed-canopy coconut map (Descals et
al., 2023), 50 training samples (Baloloy et al., 2020) for each
land-use and land-cover class were selected within the
boundaries of Quezon Province. Each training pixel represents
a pure sample of the given class, and its spectral profiles were
also considered in developing the CVIs. Each pixel's purity
was assessed using the following criteria:

1. Sub-meter satellite images are available to identify
the vegetation.

2. The pixel should be within the center of the
vegetation’s extent to ensure that no other land cover
will affect its purity.

3. In the case of the dense CV, the pixel should fall
within the area with > 2.25 x 106 sq. m. of coconut
per pixel defined by Descals et al.'s (2023) coconut
density map.

However, in the case of sparse CV where it is highly
influenced by other vegetation or non-vegetation classes and
the purity of'its pixel does not adhere to the standard definition,

the following criteria was set in this study to achieve

consistency:
1. A sub-meter satellite image is available to identify
the sparse CV pixel.

2. It falls within the area with < 2.25 x 1076 sq. m. of
coconut per pixel defined by Descals et al.'s (2023)
coconut density map.

3. Only one coconut tree is within the 10-m pixel
range.

The mean, upper, and lower thresholds for sparse coconut,
dense coconut, and non-coconut were determined by
producing CVIs for the following classes: coconut (sparse and
dense), terrestrial vegetation (forest and non-forest), bare soil,
water, built-up, and clouds (Baloloy et al., 2020).

2.5 Application of CVIs to Sentinel-2 Images

For the index computation, the mosaic of resampled (into 10m
resolution) Sentinel-2 L2A images was used as the input. The
CVI formulas were applied to the image using the Raster
Calculator in QGIS Firenze 3.28.15. Following that, the CVI
outputs were filtered to select just the pixels within the dense
and sparse coconut using the determined threshold values. The
results of both CVIs were integrated into a single image to
assess the combined accuracy.

2.6 Validation of Reference Points

Six hundred (600) reference points (Burnett et al., 2019) were
randomly sampled over Quezon Province using the Random
Points in QGIS Firenze 3.28.15. These points were then
validated in two levels. The first one is the validation by the
author and the second level is the validation by an independent
interpreter (Descals et al., 2023). Table 2 shows the criteria for
classifying the reference points as adapted from the study of
(Descals et al., 2023).

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-5-W4-2025-323-2026 | © Author(s) 2026. CC BY 4.0 License. 325



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-5/\W4-2025
Philippine Geomatics Symposium (PhilGEOS) 2025 "Enhancing Human Quality of Life through Geospatial Technologies",
24-25 November 2025, Quezon City, Philippines

Class Description
0 Land Cover could not be determined because
sub-meter resolution data were not available, or
it is partially or fully covered by clouds.
Non-Vegetation Area but with coconut tree/s
within 10 m pixel
Vegetation Area but with coconut tree/s within
10m pixel
1 Non-Vegetation Area (e.g. bare soil / built-up)
indicates that vegetation coverage is < 50% and
coconut trees are not within the 10 m pixel
2 Vegetation Area (e.g. forest or non-forest trees)
indicates that vegetation coverage is > 50% and
coconut trees are not within the 10 m pixel
3 Sparse coconut trees indicate a low density of
coconut vegetation.
There are one or two coconut trees within the
10m pixel.

The point is within the light yellow area (< 2.25
x 1076 sq. m. of coconut per pixel) of the
Coconut Density Map of Descals et al. (2023).
4 Dense coconut tree indicates a high density of
coconut vegetation.

There are more than two coconut trees within
the 10m pixel.

The point is within the orange area (> 2.25 x
1076 sq. m. of coconut per pixel) of the Coconut
Density Map of Descals et al. (2023).

Table 2. Criteria for Point Validation as adapted from the
study of Descals et al. (2023)

Reference images, as shown in Figure 3, were incorporated
into the level 2 validation to help limit the potential errors in
image interpretation. In cases where there was a mismatch
between the interpretation of the author and the independent
interpreter, both individuals deliberated to come up with the
final class to assign.

Tmages © 2024 Maxar Technologies

Figure 3. Reference photos that were used for validation by
the independent interpreter. The number in the photos
correspond to its class

2.7 Index Accuracy Assessment

A separate assessment for the two CVIs was conducted to
determine their individual performance. Other than the
Producer’s Accuracy (PA), User’s Accuracy (UA), and
Overall Accuracy (OA), the Balanced Accuracy (BA) was also
computed to consider the imbalance number of reference
points between the coconut and non-coconut classes. The
metric accounts for both false positive and false negative errors
that have a direct impact on the targeted class (Mower, 2005).
Equation 1 shows the necessary parameters in the computation
of the BA.

TPR+TNR

Balanced Accuracy (BA) = > , Y]

where:

True Positive (TP)

T Positive Rate (TPR) = 2
rue Positive Rate ( ) TP + False Negative @
and
. True Negative (TN)
True Negative Rate (TNR) = 3

TN + False Positive

In this study, a true positive refers to the number of reference
coconut pixels that were also classified as coconut using the
indices, while true negative is the number of misclassified
coconut pixels. Furthermore, false negative is the number of
reference non-coconut pixels that were classified as coconut,
and a false positive refers to the number of non-coconut pixels
that were also classified as its class using the indices.

To further address the classification accuracy of the indices,
omission errors and commission errors were also computed
through the following equations:

Omission Error = 100% — Producer’s Accuracy (4)
Commision Error = 100% — User's Accuracy (5)

Accuracy assessment of the result upon application of the two
CVIs in one image was also conducted to determine the overall
performance of its integration.

3. Results and Discussion

3.1 Coconut Vegetation Indices

This study proposed to use the following spectral bands: red,
NIR1, SWIR1, and SWIR2, as components of the coconut
vegetation index. Ahmed et al. (2023) and Descals et al. (2023)
demonstrated that these bands can accurately classify coconut
vegetation from other land cover using different classification
algorithms.

On the other hand, as observed in Figure 4, the spectral
signatures of dense and sparse coconut vegetation (CV) have
huge differences in the visible region as well as in SWIR1 and
SWIR2 bands, which can be attributed to the background
environment of these vegetations. Thus, this study developed
two vegetation indices that are specific to dense CV and sparse
CV.
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3.1.1 Coconut Vegetation Index for Dense Plantation: The
CVI for dense coconut plantations utilized NIR1, SWIR1, and
SWIR2, with central wavelengths of 0.842 pm, 1.610 um, and
2.190 pm, respectively. Figure 4 shows that dense CV has the
lowest reflectance in SWIR bands among all land covers. With
this, the sum of the SWIR bands will always be smaller in
dense CV compared to the other land covers. This
combination, given that SWIR bands are sensitive to moisture,
enhances the detection of coconut trees, which have naturally
waxy cuticles covering their leaves to maintain the moisture
content as a unique adaptation response to drought (Carr,
2011).

Since dense CV is defined as a closed canopy with high density
of coconut trees, the environment below the canopy cover will
not greatly affect the reflectance values, and only the features
of the tree crown will be reflected. Equation 6 shows the CV
index for dense coconut areas.

NIR1 - SWIR1

1 =— -
Vlaense = Sy T swirz

(6)

where:
NIR1 = Near Infrared 1 Reflectance (0.842 um)
SWIRI = Short-Wave Infrared 1 Reflectance (1.610 um)
SWIR2 = Short-Wave Infrared 2 Reflectance (2.190 um)

Meanwhile, the spread of NIR1 reflectance of dense CV might
overlap with terrestrial vegetation (TV) in forest and sparse
CV as shown in Figure 4. This can be attributed to the same
amount of chlorophyll concentration and health condition of
the vegetation types (see Figure 5). To resolve this, SWIR1
was combined with NIR to treat the latter like a constant for
all classes since the former is more separable and has narrower
spread based on its standard error.
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Figure 5. Modified Chlorophyll Absorption in Reflectance
Index (MCARI) of coconut and terrestrial vegetation.

3.1.2 Coconut Vegetation Index for Sparse Plantation: In
this study, sparse CV is defined as the open canopy and low-
density coconut tree plantation. With this, its background
environment significantly affects its reflectance values. The
high values of SWIR bands could be attributed from the soil or
the ground within the background.

NIR1 — Red

CcVi =
Sparse = SWIR1 + SWIR2

Q)

where:
NIR1 = Near Infrared 1 Reflectance (0.842 pm)
Red = Red Reflectance (0.665 pum)
SWIR1 = Short-Wave Infrared 1 Reflectance (1.610 um)
SWIR2 = Short-Wave Infrared 2 Reflectance (2.190 um)

For the case of sparse CV, the sum of its SWIR bands will
always be higher than the other land covers. Meanwhile, the
average difference between the NIR1 and Red (with a central

wavelength of 0.665 um) will always be smaller compared to
the other classes. The inclusion of NIR1 and Red considers the
effects of the background environment to the register of the
tree cover in satellite images since sparse CVs are usually
surrounded by bare soil or grassy areas.

The proposed indices in this study are the first coconut indices
for coconut mapping. Existing studies show the use of LIDAR
or satellite images with machine or deep learning models
(Candare et al., 2016; Saavedra et al., 2016; Guihawan et al.,
2018; Burnett et al., 2019; Novero et al., 2019; Bernales et al.,
2022; Descals et al., 2023; Ahmed et al., 2023, Xi et al., 2023)
which are way complex and data-intensive compared to using
a spectral index.
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Figure 6. Separation of selected bands per class

3.2.1 Threshold for CV1 .,,.: The CV 1,y values of pixels
identified as coconut (dense and sparse), terrestrial vegetation
(forest and non-forest), bare soil, built up, water and clouds
were plotted in Figure 6. The mean of CVI values for dense
plantation is 1.2549, with maximum value of 1.6052 and
minimum value of 1.0940. The whole extent of this threshold
is separated from the threshold of terrestrial forest and non-
forest vegetation, with maximum threshold up to 0.9885. This
is the result of the distinct spectral response of dense coconut
vegetation in the NIR1, SWIR1, and SWIR2 wavelengths.
Maximizing the numerator (NIR1-SWIR1) and minimizing
the denominator (SWIR1 + SWIR2) yields higher CVIjopse
values. Figure 7 provides a comparative summary of index
threshold values applied across different classes.
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Figure 7. Mean, minimum and maximum CV/;,,s. values of
dense coconut and non-coconut pixels: terrestrial vegetation —
forest (TV Forest), terrestrial vegetation-non forest (TV Non-

Forest), bare soil, built-up, water, and clouds

Meanwhile, the CVlgopnse values of bare soil and built-up
ranges from -0.2506 to -0.0006 and -0.3177 to 0.4159,
respectively. Both classes exhibit high reflectance values in the
SWIR region. The SWIR reflectance of soil is significantly
influenced by the mineral composition, organic matter, and
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surface water content (Sykas, 2020). The high reflectance of
built-up areas in the SWIR region is primarily due to urban
surfaces and artificial materials (Baloloy et al., 2020). With
higher SWIR1 values than NIR1, the numerators of the
CVlgense for soil and built-up classes are smaller. However,
the CVlgense’s denominator is smaller because the SWIR2
values are either smaller (in bare soil) than or almost the same
(in built-up) of the SWIR1.

3.2.2 Threshold of CVIy4g.: Unlike the dense coconut
vegetation, the threshold of sparse coconut vegetation is
between terrestrial vegetation and the other land cover, as
clearly illustrated in Figure 8. The mean of CVIgp 4y values is
0.7956, with maximum of 1.0940 and minimum of 0.4774.
This is smaller than the TV forest which has a minimum of
1.2302. This is because of the high SWIR2 reflectance that
makes the denominator of the index higher than those of the
other classes. The whole extent of this threshold is separated
from all the other land covers. This is the result of combining
NIR1, Red, and SWIR bands that reveal distinct spectral
signatures for sparse CV. To generate more separable
CVlIsparse values, the band combinations should produce
values that are closer to the mean.
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Figure 8. Mean, minimum and maximum CV 4. values of
dense coconut and non-coconut pixels: terrestrial vegetation —
forest (TV Forest), terrestrial vegetation-non forest (TV Non-
Forest), bare soil, built-up, water, and clouds

Meanwhile, bare soil and built-up shows lower values than the
CVIsparse with a maximum of 03112 and 0.3324,
respectively. These classes register smaller index values than
the sparse CV. This could be attributed to the high values of
the component bands, which are all higher than the coconut
and terrestrial vegetation.

3.3 Generated CVI-Based Map and Images

Figure 9. Maps showing the extent of (1) whole coconut
vegetation in Quezon Province using CVIs and the (2) 20-m

resolution coconut density map created by Descals et al.
(2023) using data from the same year as this study, 2020

3 Alabt Isiand

Calauag /
I Cabalete Isand /-

Figure 10. Maps showing the extent of coconut vegetation
which were produced using (1) Landsat-8 and SVM
Classifier (Tafada et al., 2023), and (2) CVIs. Despite
method (1) utilizing a satellite image from 2013-2015 and the
other using images from 2020, significant similarities in
coconut vegetation extent are observed across Alabat Island,
Cabalete Island, and areas in Calauag

As shown in Figures 9 and 10, dense coconut areas in Calauag
and on the islands of Alabat, Cabalete, Polillo, and
Patnanungan were also classified using CVIjepse, consistent
with the coconut density map by Descals et al. (2023) and the
coconut vegetation map by Tafiada et al. (2023). Some dense
areas, however, remained unclassified due to persistent cloud
cover in the imagery (see Figure 11). Since this study used
Sentinel-2 images with remaining cloud cover, clouds likely
obscured portions of the canopy, resulting in missed or
misclassified pixels. This limitation emphasizes the need for
cloud-free composites or multi-temporal imagery in future
analyses to improve classification completeness. In the upper
part of the classified map, the non-coconut pixels correspond
to those identified by Descals et al. (2023). However, the area
within the Bondoc Peninsula shows classified sparse
vegetation which is barely present in the reference map. The
10m spatial resolution of Sentinel-2 allows finer delineation of
sparse CV. Figures 12 and 13 illustrate finer spatial details of
the classified dense and sparse coconut vegetation.
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Figure 11. CVI-based maps with cloud cover
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Figure 12. CV1jense-classified coconut plantations that are
within the sites of highest coconut density according to
Descals et al. (2023)

b SERPY o ] ! : E : Rﬂ

Figure 13. Coconut plantations that were classified using
CVIsparse
3.4 Index Accuracy
Spectral | ;5 PA OA BA
Index

CVlgense | 80.00% | 88.89% | 94.60% | 88.90%
CVisparse | 32.00% | 53.33% | 74.10% | 60.83%
Integrated | 51.20% 71.11% 73.07% | 69.03%
CVI

Table 3. Accuracy of the mapped coconut areas using CVIs

After examining the sampled reference points, a total of 287
points were validated as part of coconut and non-coconut
classes. Forty-five (45) points belong to the dense CV, nine (9)
for sparse CV, 192 for vegetation area (terrestrial and non-
terrestrial), and the non-vegetation area (bare soil and built-up)
has 41 points. Since the number of validated points for sparse
CV is too small for the study site, an additional 36 points were
validated to match the points for dense CV.

CV1jense exhibited the highest accuracy among the classifiers,
with User’s, Producer’s, Overall, and Balanced Accuracies all
above 80.00%. It recorded the lowest omission (11.11%) and
commission (2%) errors for coconuts, and less than 5% for
non-coconut classification. In contrast, CVIsyarse sShowed the
lowest accuracy, with 68% commission and 53.33% omissi
on errors for coconuts, reflecting the known challenge of
delineating sparse CV due to the impact of other land covers
on its reflectance (Descals et al., 2023).

The notably higher Overall Accuracies compared to UA and
PA are due to the imbalance in reference data, with dense
coconut samples outnumbering sparse class. This imbalance
can bias results toward the majority class, reducing detection
reliability for underrepresented categories. Balanced Accuracy
was therefore calculated, and future work should address this
issue through more balanced sampling or resampling
techniques.

3.5 Area Comparison

4000

3000

2000 2445.36

5
-
0

CVI-Based Descals et al. (2023) PCA (2018)

Area (SQ.KM.)

Figure 14. Area of coconut vegetation in Quezon Province
based on CVI, the density map of Descals et al. (2023), and
the data from PCA (2018)

Using CVlIs, the extent of coconut vegetation in Quezon
Province reached up to 2445.36 sq. km., exceeding Descals et
al.'s (2023) categorized area of 1484.59 sq. km. Both computed
areas are smaller than PCA's 2018 record of 3750.26 sq. km.
The low classified area can be attributed to the cloud cover in
satellite images used in this study. Misclassified pixels among
coconut and non-coconut were factors in these values as also
affected by the low accuracy of CVIgyqrse.

4. Conclusion and Recommendations

This study developed two spectral indices to delineate dense
and sparse coconut vegetation (CV) based on their distinct
spectral signatures. The dense CV index, using NIR1 and
SWIR bands, achieved the highest accuracy of more than 80%.
The sparse CV index, using NIR1, Red, and SWIR bands,
showed lower accuracy, highlighting the difficulty in mapping
sparse CV. The CVI-based map estimated a greater coconut
extent than earlier studies but remained smaller than PCA
records, suggesting a more refined yet improvable delineation.

These findings demonstrate the potential of the developed
vegetation indices to support the PCA in nationwide coconut
monitoring using spatial data and mapping. Such capability is
valuable for rapid assessment of typhoon impacts and can also
inform planting and replanting strategies aimed at enhancing
long-term productivity and economic resilience.

Future work should apply the indices to Sentinel-2 L2A (20 m
resolution), explore other sensors (e.g., Landsat), expand
spatial coverage, and increase the training and reference data.
Differentiating coconut from oil palm using spectral analysis,
ground-truth validation, and integrating texture features,
Synthetic Aperture Radar (SAR) data, and high-resolution
drone imagery are also recommended to enhance mapping
accuracy and reliability.
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