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Abstract

Landslides rank as one of the most damaging natural disasters occurring in the Philippines, particularly in geologically and climatically
complex regions such as Cebu Province. Accurate landslide susceptibility mapping is crucial for reducing disaster risks and promoting
sustainable land use planning. This research evaluates the effectiveness of two commonly applied statistical models—Frequency Ratio
(FR) and Logistic Regression (LR)—in producing landslide susceptibility maps for Cebu Province. Seven environmental conditioning
factors were analyzed: slope, elevation, aspect, topographic wetness index (TWI), topographic position index (TPI), soil texture, and
curvature. Landslide inventory data from 2009 to 2023 were compiled from news reports and validated using Google Earth imagery.
Both FR and LR models were applied using the same set of factors, and their predictive performances were evaluated using ROC-
AUC curve. Results show that both models effectively delineate landslide-prone areas, with slope emerging as the most influential
factor. The LR model demonstrated marginally higher predictive accuracy with AUC of 0.9151 compared to the FR model with AUC
of 0.8955, due to its ability to account for multivariate interactions among factors. The map produced by LR was compared to the
existing map from MGB, and 257,142.11 hectares were found to fall within the agreement zone, having the same classification. The
resulting susceptibility maps provide a scientific basis for local government units to enhance disaster preparedness, guide land use
decisions, and prioritize risk mitigation efforts in Cebu Province.

1. Introduction leaves provinces such as Cebu which is equally prone to
landslides underrepresented in susceptibility mapping literature.

A landslide involves the downward displacement of soil, rock, or

debris along a slope, representing a natural phenomenon that has
significantly influenced the formation of many areas of the
Earth's surface (Vasudevan and Ramanathan, 2016). Although
landslides have positive impacts on the ecological aspect, this
phenomenon is considered one of nature’s most destructive
disasters (Shabbir et al., 2022). Each year, landslides result in
numerous fatalities, injuries, and substantial economic damages
by devastating infrastructure, properties, businesses, farmlands,
highways, and transportation routes (Shabbir et al., 2022).

The Philippines is one of the most hazard-exposed countries
(Bolletino et al., 2018). Its location on several plate boundaries
and inside typhoon belt brings frequent floods, typhoons,
landslides, earthquakes, volcanic activity and drought (Bolletino
et al., 2018). It experiences some of the highest rates of rainfall-
triggered landslides in Southeast Asia, with hydrological hazards
causing thousands of fatalities and extensive economic losses
annually (Jones et al., 2023). These are further exacerbated by
anthropogenic activities such as illegal logging and kaingin.
Landslides occur due to both natural and human factors.
Weather, soil type, slope and vegetation play a role, while
construction, logging, and urban growth increases their chances.

To address landslide risk, various research in the Philippines use
several landslide susceptibility methods (Arizapa, et al., 2015;
Jones et al., 2023). These methods include the Analytic
Hierarchy Process (AHP), weighted overlay, logistic regression
analysis, and frequency ratio, each offering unique insights into
landslide-prone areas by modelling correlations between
landslide events and factors such as slope, geology, land use etc
using Geographic Information System (GIS). However, most of
these studies are concentrated in the northern regions of the
country, particularly in Luzon. This uneven research distribution

Effective landslide mitigation and management depend on
accurate susceptibility assessments, which evaluate the
likelihood of landslides based on spatial probability (Shano et al.,
2020). These assessments are crucial for disaster risk reduction,
supporting  post-disaster recovery, and guiding urban
development (Chang et al., 2023). In Cebu, where rapid
urbanization intersects with environmentally sensitive terrain,
there is an urgent need for updated and reliable landslide
susceptibility maps. Through susceptibility mapping, local
authorities gain essential tools for land use planning and
determining areas appropriate for future growth (Chang et al.,
2023). This study applies FR and LR methods to develop a
landslide susceptibility map of Cebu Province, thereby
addressing the limited research outside Luzon and advancing
geomatics-based approached for disaster risk reduction in the
Central Philippines.

2. Methodology
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Figure 1. Methodological framework of the study.
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The study used GIS and statistical models to build landslide
susceptibility maps. Frequency Ratio and Logistic Regression
measured how landslide events relate to seven key factors: slope,
aspect, elevation, soil texture, topographic position index,
topographic wetness index, and curvature.

2.1 Study Site

The research is carried out in Cebu Province, a long and narrow
island featuring rolling hills and rugged mountain terrains.
According to the Department of Environment and Natural
Resources—Mines and Geosciences Bureau (DENR-MGB), these
areas are characterized by steep slopes, intense weathering,
predominantly non-cohesive soils, and weak rock strength..
Common indicators of active movement include surface cracks,
bulging ground, step-like terraces, and water seepage (Garas,
2013 as cited by Beroya-Eitner et al., 2023). Furthermore, the
MGB ranks Cebu eighth among the top ten provinces in the
Philippines most prone to landslides.

Figure 2. Location and boundary of Cebu Province.
2.2 Landslide Inventory

Historical landslide inventory data is usually lacking in the
country. Unlike floods, unless there are casualties, landslides
occurrences are usually not documented especially those that
occurred in remote areas. This study employed a systematic
approach using Google Earth which have been widely used in
collecting historical landslide data in the absence of historical
landslide data (Chang et al., 2023). The use of Google Earth’s
historical and high-resolution satellite images has become a
widely accepted and effective approach for landslide inventory
mapping, enabling the detection and digitization of both large and
smaller, localized landslides that are often underreported in
broader datasets. In addition, to ensure reliability of the collected
landslide data, collection date was time based on significant
rainfall events and news reports articles and reports from the
Department of Social Welfare and Development’s Disaster
Response Operations Monitoring and Information Center
(DSWD DROMIC) of the region. Additionally, the collected
landslide information were cross-checked with the existing
landslide hazard map of MGB for the region and ensure that these
landslide data fall in the highly susceptible landslide areas.

The study was able to collect a total of 130 landslide polygons
distributed across the province of Cebu. These landslide data
were used to develop and train the model. To avoid bias and

firmly evaluate the predictive performance of the model, 130
non-landslides polygons were generated. Following the approach
of Fu et al. (2025) to reduce the risk of misclassifying unstable
slopes or undetected landslides as non-landslide samples - a
common source of bias - each identified landslide was buffered
by 500 meters, and non-landslide points were only selected
outside these buffer zones. This is done emphasize the
importance of maintaining spatial separation between landslide
and non-landslide samples to enhance model accuracy and reduce
uncertainty. Lastly, the collected landslide and non-landslide data
were divided into training and testing data using a 70:30 ratio.
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Figure 3. Landslide inventory map.
2.3 Landslide Causative Factors

Factor selection is a crucial part of landslide susceptibility study,
but no universal standard exists, as choices vary with data
availability (Wubalem, 2021). Given data limitations in Cebu
Province, this study used static factors—elevation, slope, aspect,
curvature, topographic position index (TPI), topographic wetness
index (TWI), and soil texture—which capture terrain and
geological predispositions independent of transient triggers (Liao
et al., 2022). Elevation influences rainfall, vegetation, and soil
development (Sharma & Sandhu, 2024) and was classified into
five equal-interval classes (0-1051 m). Slope governs
gravitational stress (Cellek, 2020) and was grouped into six
categories following the National Land Use Committee standard,
with the largest area falling under 30-50%. Aspect affects solar
radiation, wind, and rainfall (Gorokhovich & Vustianiuk, 2021)
and was classified into nine categories following ESRI. General
curvature, which regulates water flow and moisture retention,
was classified into concave, flat, and convex based on Zaslavsky
& Sinai (1981) and Moore et al. (1993) as described by Blaga
(2012).

TWI, which reflects topographic control on soil moisture and
pore pressure, was divided into five categories—very dry, dry,
medium, wet, and very wet—following Meles et al. (2019). TPI,
used to identify landform positions such as ridges, valleys, and
slopes, was classified into five classes based on Weiss (2001).
Finally, soil texture, which governs infiltration, drainage, and
cohesion (Temme, 2021), was sourced from NAMRIA via the
Philippine Geoportal and grouped into six classes: clay, beach
sand, clay loam, silt loam, hydrosol, and undifferentiated soil

type.
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Figure 4. Causative factors in landslide susceptibility mapping.

2.4 Modeling Techniques

241  Frequency Ratio (FR)

The frequency ratio (FR) method is a straightforward bivariate
statistical approach which yields accurate results, making it
popular for landslide susceptibility mapping (Silalahi et al.,
2019). Mathematically, FR is expressed as:

— Npix(si) / Npix(Ni) (1)
ZiNpix(si) / ZiNpix(Ni)

where:  Npix(Si) = pixels marked as landslide in parameter
class i

Npix(Ni) = overall count of landslide pixels in the area
>'i Npix(Si) = pixel count for parameter i

>i Npix(Ni) = total pixels in the study area

A frequency ratio above 1 indicates a strong and positive
association with landslides and a higher chance of occurrence.
Conversely, if the frequency ratio is below 1, it implies a weak
or negative relationship between landslide occurrences and the
data class, indicating a low landslide probability, while a ratio of
1 signifies an average relationship. Once the frequency ratios are
calculated, all the raster maps' frequency ratio parameters are
summed to form the Landslide Susceptibility Index (LSI) as
defined by Equation 2 wherein high value represents areas more
prone to landslides, and low values mark areas less likely to
experience them.

LSI = ¥, FRi 0]

where: n = number of landslide causal factors

Fri = Frequency ratio of pixels of landslide factors

2.4.2  Logistic Regression

Logistic regression provides an effective technique for assessing
how landslide occurrences depend on key factors (Das and
Lepcha, 2019). This uses dichotomous variables (e.g., 1 for
present and 0 for not) with outcomes shaped by one or more
predictors. As a generalize linear model, its probability is
computed by the following equation:

1
T (1+e-1)

®)

where: P = likelihood of landslide on a 0 to 1 scale

Values closer to 1, it indicates high vulnerable, and values closer
to 0, it indicates very low vulnerability. z represents the linear
predictor of the model expressed as:

Z =Dbo+ by + baxz + 0+ bpxn (4)
where:  bo = model intercept
n = number of independent variables

by, bz ... bn = regression coefficients
X1, X2 ... xn = factors contributing to landslides

2.5 Validation Methods

ROC curve analysis was used to evaluate the model’s accuracy.
The area under the ROC curve (AUC) serves as the main measure
for determining model accuracy. The diagonal from (0,0) to (1,1)
marks random guessing and corresponds to AUC = 0.5. Curves
that rise further above this line have higher AUCs and better
performance. AUC values lies from 0.5 to 1, with 1 representing
a perfect model.

The AUC are grouped into five classes: 0.9-1 (excellent), 0.8-0.9
(very good), 0.7-0.8 (good), 0.6-0.7 (moderate) and 0.5 — 0.6
(bad) (Umbara, 2024). ROC curve and its AUC are widely
accepted standards to evaluate the effectiveness of landslide
susceptibility models, as demonstrated in previous studies (Sun
et al., 2018; Umbara, 2024).

[xi —Xi-1) (Vi — yi—l)]

AUC = Slo(x — xioy)y; — Xz )

where:

Xi = percentage of the area
yi = area of the landslide

3. Results and Discussion
3.1 Application of Frequency Ratio

The FR model identified slopes greater than 50% as having the
highest frequency ratio value of 4.36, indicating a strong
correlation between steep slopes and landslide occurrences. This
finding aligns with Sheng et al. (2022), who highlighted slope
steepness as a primary factor influencing landslide susceptibility.
Similarly, Zézere et al. (2017), as cited by Sonker et al. (2021),
emphasized that increasing slope angles exacerbate slope
instability, thereby raising the likelihood of landslides. The TPI
also supports this trend; wherein the upper slope class exhibited
a high FR value of 4.40. These results underscore the universal
importance of slope steepness as a critical conditioning factor for
landslides, both locally and globally.

In addition to slope, soil characteristics play a significant role in
landslide susceptibility in Cebu Province. While slope influences
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the shear stress within soil masses, soil type governs shear
strength and permeability, affecting stability under saturated
conditions (Kinde et al., 2024). The FR model revealed that clay
loam soils have a strong association with landslide events (FR =
3.05). Similar findings were observed by Cabelin and Jadina
(2019) in Cadac-an Watershed, Leyte, were loam to clayey
textures, characterized by low bulk density, and high porosity
contribute to instability in landslide-prone. This interplay of soil
composition and drainage dynamics regulates infiltration rates,
pore water pressure, and slope stability was comprehensively
explored by Yao et al. (2025).

Classes | FR Classes | FR Classes | FR
Soil Texture Slope (%) TPI

Beach sand | 0.00 0-3 0.00 |Valley 0.00

Clay 0.37 3-8 0.01 |Lower slope| 2.43

Clay loam 3.05 8-16 0.04 |Flat slope 0.94

Hydrosol 0.00 16-30 0.21 |Upper slope | 4.40
Silt loam 0.00 30-50 0.59 |Ridge 0.00
tLi’a”tg:jﬁere“' 000 | 50 | 436

Aspect Elevation (m) TWI
Flat 0.22 |0-210 0.33 |Very dry 2.09
North 0.00 |210-410 1.95 |Dry 1.18
Northeast 1.97 |410-610 3.16 |Medium 0.40
South 1.26 |610-810 0.96 |Wet 0.09
East 0.75 [810-1051 0.00 |Very wet 0.00
Southeast 0.44
Southwest 0.98 Curvature
West 0.71 |Concave 1.09
Northwest 1.42 |Flat 0.85
North 3.01 |Convex 1.43

Table 1. Computed frequency ratio for each factor.

The FR model indicated that landslide occurrences are most
strongly associated with mid-elevation ranges: 210-410 meters
(FR=1.95) and 410-610 meters (FR=3.16). This pattern is
consistent with numerous studies showing that landslides tend to
cluster at mid-elevations rather than at the highest or lowest parts
of the landscape. Huang et al. (2022) found that nearly all
landslides occurred between 500 and 1,500 meters elevation,
with landslide frequency values greater than or close to one.
Similarly, Gemitzi et al. (2011) observed the highest landslide
frequency between 200 and 900 meters, with a marked decline
above 900 meters. This distribution is often linked to steep
slopes, active erosion, and human activity at mid-elevations,
while higher elevations tend to have more stable, rock-dominated
slopes less prone to failure (Cellek, 2020).

The TWI results were somewhat unexpected, with the lowest
TWI class (very dry) exhibiting the highest FR value of 2.09.
This contradicts the common understanding that higher TWI
values, indicative of wetter conditions, increase landslide
susceptibility due to reduced soil shear strength from saturation
(Parra et al., 2023). However, Bhadiyadra and Ong (2024) found
that both excessively dry and wet conditions can compromise soil
stability. In dry conditions, insufficient moisture reduces particle
bonding and weakens the soil, increasing the chance of slope
failure, while overly wet conditions weaken soil by reducing
shear strength and eliminating soil suction. The results reveal
how soil moisture strongly affects slope stability, stressing the
importance of accounting for different moisture levels in
landslide risk studies.

Aspect analysis revealed that slopes facing North, Northeast and
South have FR values exceeding one (3.01, 1.97, and 1.42,
respectively), indicating higher landslide susceptibility on these
orientations. This likely reflects the combined effects of local
rainfall patterns, slope steepness, and land use practices.
Rodriguez-Caballero et al. (2021) similarly reported that most
landslides occurred on steep north and northwest-facing slopes.
Nevertheless, aspect’s influence on landslide occurrence can
vary regionally, shaped by local climatic and geological
conditions.

3.2 Application of Logistic Regression

In logistic regression, the coefficients measure how each
conditioning factor relates to landslide occurrence, which is the
dependent variable (Chowdhury et al., 2024). A coefficient
indicates the change in log-odds of a landslide for every one-unit
rise in a given factor, assuming all other variables stay constant.

Curvature has a positive coefficient of 1.117 with an odds ratio
of approximately 3.06, indicating that higher curvature values
increase the likelihood of landslides. In contrast, TPl has a
negative coefficient of -3.438 and an odds ratio of about 0.03,
suggesting that higher TPI values are associated with a decreased
landslide probability. TWI shows a small positive coefficient of
0.081 and an odds ratio near 1.08, implying a slight increase in
landslide risk with increasing wetness index.

Causal Factor Coefficient QOdds Ratio
Curvature 1.12 3.06
TPI -3.44 0.03
TWI 0.08 1.08
Slope 9.57 14384.33
Elevation 1.15 3.15
Aspect 0.72 2.05
Soil Texture 4,70 110.48
Intercept -2.33 0.097

Table 2. Regression coefficients for the seven causal factors.

The model is most influenced by slope steepness, showing a very
high coefficient 9.574 and an odds ratio of approximately 14,384,
underscoring its dominant effect on landslide susceptibility. This
is consistent with established studies showing that steeper slopes
experience greater gravitational stress, increasing failure
probability (Tseng et al., 2017). Elevation and aspect have
positive coefficients of 1.146 and 0.718, with odds ratios of about
3.15 and 2.05 respectively, indicating moderate influences on
landslide occurrence. Soil texture also strongly affects landslide
susceptibility, with a coefficient of 4.705 and an odds ratio of
approximately 110.48, consistent with studies emphasizing the
soil properties as key to slope stability (Sidle and Ochiai, 2006).

An intercept value of -2.33 gives the log-odds of landslide with
all variables at zero or at their reference levels. This corresponds
to a low baseline probability (odds ratio ~0.097), indicating that
in the absence of conditioning factors, landslides are unlikely.

3.3 Landslide Susceptibility Map

A map is created by classifying LSI scores into classes. While
common boundary rules guide reclassification, there is no
consensus among researchers on a standard approach. As a result,
class boundaries are often chosen by researcher’s own expert
judgement. (Gulbet and Getahun, 2024).

Using the manual classifier from Thanh et al. (2022), the LSM
was grouped into low, moderate, high and very high
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susceptibility. This is based on the rule that each higher category
should account for roughly twice the number of landslide events
as the one beneath it.

For the FR model, landslides are expected to distribute as 7.6%
in low, 15.3% in moderate, 30.7% in high, and 46.4% in very
high zones. On the other hand, the LR has an establish cut-off
points at 7.69%, 23.07%, and 46.15%. These thresholds separate
the four susceptibility classes for both methods, ensuring that the
classification reflects the actual distribution of landslide events
and provides a logical, data-driven basis for identifying areas at
greatest risk.
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Figure 5. Relationship between landslide occurrence and LSI
values derived from FR (a) and (b) LR.

Employing this categorization method, the thresholds for each
susceptibility zone are shown in Table 3 (FR) and Table 4 (LR).
Low susceptibility covers 69.20% of the area, indicating most
places are unlikely to experience landslide. Moderate and high
zones cover 10.73% and 10.66% of the area, respectively.
Meanwhile, very high susceptibility comprises 9.41% of the area,
highlighting specific regions that may require focused
monitoring and mitigation efforts. Overall, more than 30% of the
area falls in elevated-susceptibility zones, warranting targeted
attention in future land-use planning and hazard reduction
strategies.

Susceptibility LS| Range Area (ha) Percent
Low 02.57-08.47 | 330,194.76 69.20
Moderate 08.47 - 10.00 51,207.66 10.73
High 10.00 - 12.12 50,861.64 10.66
Very high 12.12 - 16.61 44,897.36 09.41

Table 3. LSI ranges for susceptibility zones of Frequency Ratio
(FR) and area distribution per susceptibility class.

Low susceptibility covers 54.74% of the area, indicating a
generally low landslide chance across more than half of the
landscape. 38.51% falls into the moderate category, suggesting a
substantial portion of the region experiences a moderate level of
landslide risk. In contrast, only 6.58% and 0.58% of the region
covers the high and very high susceptibility categoriesc
respectively. These zones highlight smaller yet critical areas with

a significantly elevated potential for landslides, where

monitoring and mitigation efforts should be concentrated.
Susceptibility LS| Range Area (ha) Percent
Low 0.00-0.16 265,866.77 54.74
Moderate 0.16-0.51 187,026.68 38.51
High 0.51-0.80 29,968.26 06.58
Very high 0.80-1.00 2,814.04 00.58

Table 4. LSI ranges for susceptibility zones of Logistic
Regression (LR) and area distribution per susceptibility class.

LSM of Cebu o
Province using FR LSM of Cebu

" Province using LR

Figure 6. Landslide susceptibility maps (a) FR and (b) LR.
3.4 Model Validation

ROC curves compare the performance of FR and LR for both
success and prediction rates. In both cases, the LR model
demonstrates slightly superior performance, indicated by higher
AUC values: 0.9120 versus 0.8850 for success rate, and 0.9434
versus 0.9249 for prediction rate. This shows that while both
models exhibit good discriminatory power,

the LR model has a modestly better ability to distinguish between
classes and provide better predictions.
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Figure 7. Success (a) and prediction (b) rate of FR and LR
models.
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Despite using the same set of conditioning factors in both models,
the LR model in this study demonstrated marginally better
discriminatory ability compared to the FR model. This difference
likely stems from methodological distinctions: LR considers
multivariate interactions among variables, whereas FR evaluates
each factor independently.

This finding aligns with previous studies conducted in the
Philippines. For example, Javier and Kumar (2019) reported a
prediction rate of 89% using the FR for landslide susceptibility
in Benguet Province. Similarly, Victor and Zarco (2018) found
the LR model obtained an AUC of 0.908 in their study of
Antipolo, Rizal. These results suggest that both methods perform
well within the Philippine context; however, the LR model can
capture complex interactions between conditioning variables, it
may perform better in regions with diverse geological and
climatic settings, such as the present study site.

From the recorded landslide data, most landslide events occurred
in the central part of Cebu, particularly in the Municipality of
Balamban and Cebu City. Landslides were also recorded in
neighboring municipalities such as Asturias, Danao City, parts of
Toledo City, Talisay City, and Minglanilla. Additionally,
landslide events were reported in Aloguinsan. In the southern part
of Cebu Province, Alegria recorded the greatest number of
landslides, with occurrences also noted in Badian, Argao,
Alcantara, Dalaguete, and Boljoon. These municipalities also fall
under the high susceptibility class of MGB (MGB 7, n.d).

3.5 Comparison of the produced LSM from MGB
susceptibility map

A spatial comparison was performed between the LR-derived
LSM and the MGB map. Table 6 shows the area distribution per
susceptibility class of MGB landslide hazard map. The moderate
class is largest at 40.21%, followed by high (34.86%), low
(23.01%), and very high (1.92%). In contrast, the LR map
classifies about half of the province falls under the low
susceptibility class. This difference is illustrated in Figure 7,
which highlights the agreement zones areas where both maps
classify landslide risk similarly and the disagreement zones,
where classifications differ. According to Table 7, 58.72% of the
study area consists of agreement zones, while 41.27% consists of
disagreement zones.

Susceptibility Zone Area (ha) Percent
Low 101,270.2 23.01
Moderate 176,942.4 40.21
High 153,391 34.86
Very high 8,438.74 01.92

Table 5. Spatial distribution of susceptibility zones from MGB.

An agreement map was generated to clearly identify areas where
the two classifications match and mismatch. The comparison
revealed notable differences: although both maps use four
susceptibility zones, MGB covers a larger portion of the province
to high and very high classes, while these classes appear more
localized in the LR based map. These discrepancies may result
from differences in input data, methodology, scale, and
classification criteria. Additionally, a table summarizing the area
of each susceptibility zone in the MGB map was compiled to
quantitatively compare with the corresponding zones in the LR
map. This combined approach enables both spatial and statistical
evaluation of the similarities and differences between the two
susceptibility assessments.

' Agreement Map
Between LR and
MGB

Classification
W Disagreement zone
= Agreement zone

Figure 8. Agreement map between LR and MGB.

The primary reason for the observed differences between the
landslide susceptibility maps lies in the distinct modelling
approaches employed. While the map produced in this study uses
LR model, the MGB map does not provide detailed information
regarding the specific modelling technique used to generate their
susceptibility classification. Additionally, variation in number
and which factors are used strongly affect the final susceptibility
results. This study incorporates only seven static factors, whereas
the MGB map may include additional dynamic or environmental
factors such as land use/land cover (LULC), rainfall intensity,
proximity to rivers, and other relevant variables. Differences in
input data quality, resolution, and the weighting or integration
methods applied to these factors further contribute to variations
in spatial patterns and susceptibility class extents. Together, these
differences in modelling approach, factor selection, and data
quality is a key factor influencing the differences observed
between the two susceptibility maps.

Zone Area (ha)
Agreement 257,142.11
Disagreement 180,716.35

Table 6. Spatial agreement between LR and MGB LSM.
4. Conclusion

The marginal improvement in LR performance highlights
the value of incorporating multivariate relationships in landslide
susceptibility mapping. This approach can enhance hazard
assessment accuracy and support more effective risk
management strategies. Future research could focus on
integrating additional conditioning factors or exploring hybrid
modeling techniques to further improve predictive performance.

The susceptibility maps from this study give a scientific basis for
local government units and stakeholders to enhance plan for
disasters, shape land use, and focus mitigation in Cebu Province.
Future studies are encouraged to incorporate additional dynamic
factors like rainfall and land-use change, and to explore advanced
modelling techniques for even more robust hazard assessment.
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