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Abstract 

Landslides rank as one of the most damaging natural disasters occurring in the Philippines, particularly in geologically and climatically 

complex regions such as Cebu Province. Accurate landslide susceptibility mapping is crucial for reducing disaster risks and promoting 

sustainable land use planning. This research evaluates the effectiveness of two commonly applied statistical models—Frequency Ratio 

(FR) and Logistic Regression (LR)—in producing landslide susceptibility maps for Cebu Province. Seven environmental conditioning 

factors were analyzed: slope, elevation, aspect, topographic wetness index (TWI), topographic position index (TPI), soil texture, and 

curvature. Landslide inventory data from 2009 to 2023 were compiled from news reports and validated using Google Earth imagery. 

Both FR and LR models were applied using the same set of factors, and their predictive performances were evaluated using ROC-

AUC curve. Results show that both models effectively delineate landslide-prone areas, with slope emerging as the most influential 

factor. The LR model demonstrated marginally higher predictive accuracy with AUC of 0.9151 compared to the FR model with AUC 

of 0.8955, due to its ability to account for multivariate interactions among factors. The map produced by LR was compared to the 

existing map from MGB, and 257,142.11 hectares were found to fall within the agreement zone, having the same classification. The 

resulting susceptibility maps provide a scientific basis for local government units to enhance disaster preparedness, guide land use 

decisions, and prioritize risk mitigation efforts in Cebu Province. 

1. Introduction

A landslide involves the downward displacement of soil, rock, or 

debris along a slope, representing a natural phenomenon that has 

significantly influenced the formation of many areas of the 

Earth's surface (Vasudevan and Ramanathan, 2016). Although 

landslides have positive impacts on the ecological aspect, this 

phenomenon is considered one of nature’s most destructive 

disasters (Shabbir et al., 2022). Each year, landslides result in 

numerous fatalities, injuries, and substantial economic damages 

by devastating infrastructure, properties, businesses, farmlands, 

highways, and transportation routes (Shabbir et al., 2022). 

The Philippines is one of the most hazard-exposed countries 

(Bolletino et al., 2018). Its location on several plate boundaries 

and inside typhoon belt brings frequent floods, typhoons, 

landslides, earthquakes, volcanic activity and drought (Bolletino 

et al., 2018). It experiences some of the highest rates of rainfall- 

triggered landslides in Southeast Asia, with hydrological hazards 

causing thousands of fatalities and extensive economic losses 

annually (Jones et al., 2023). These are further exacerbated by 

anthropogenic activities such as illegal logging and kaingin. 

Landslides occur due to both natural and human factors. 

Weather, soil type, slope and vegetation play a role, while 

construction, logging, and urban growth increases their chances. 

To address landslide risk, various research in the Philippines use 

several landslide susceptibility methods (Arizapa, et al., 2015; 

Jones et al., 2023).  These methods include the Analytic 

Hierarchy Process (AHP), weighted overlay, logistic regression 

analysis, and frequency ratio, each offering unique insights into 

landslide-prone areas by modelling correlations between 

landslide events and factors such as slope, geology, land use etc 

using Geographic Information System (GIS). However, most of 

these studies are concentrated in the northern regions of the 

country, particularly in Luzon. This uneven research distribution 

leaves provinces such as Cebu which is equally prone to 

landslides underrepresented in susceptibility mapping literature. 

Effective landslide mitigation and management depend on 

accurate susceptibility assessments, which evaluate the 

likelihood of landslides based on spatial probability (Shano et al., 

2020). These assessments are crucial for disaster risk reduction, 

supporting post-disaster recovery, and guiding urban 

development (Chang et al., 2023). In Cebu, where rapid 

urbanization intersects with environmentally sensitive terrain, 

there is an urgent need for updated and reliable landslide 

susceptibility maps. Through susceptibility mapping, local 

authorities gain essential tools for land use planning and 

determining areas appropriate for future growth (Chang et al., 

2023). This study applies FR and LR methods to develop a 

landslide susceptibility map of Cebu Province, thereby 

addressing the limited research outside Luzon and advancing 

geomatics-based approached for disaster risk reduction in the 

Central Philippines. 

2. Methodology

Figure 1. Methodological framework of the study. 
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The study used GIS and statistical models to build landslide 

susceptibility maps. Frequency Ratio and Logistic Regression 

measured how landslide events relate to seven key factors: slope, 

aspect, elevation, soil texture, topographic position index, 

topographic wetness index, and curvature. 

 

2.1 Study Site 

The research is carried out in Cebu Province, a long and narrow 

island featuring rolling hills and rugged mountain terrains. 

According to the Department of Environment and Natural 

Resources–Mines and Geosciences Bureau (DENR-MGB), these 

areas are characterized by steep slopes, intense weathering, 

predominantly non-cohesive soils, and weak rock strength.. 

Common indicators of active movement include surface cracks, 

bulging ground, step-like terraces, and water seepage (Garas, 

2013 as cited by Beroya-Eitner et al., 2023). Furthermore, the 

MGB ranks Cebu eighth among the top ten provinces in the 

Philippines most prone to landslides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Location and boundary of Cebu Province. 

 

2.2 Landslide Inventory 

Historical landslide inventory data is usually lacking in the 

country. Unlike floods, unless there are casualties, landslides 

occurrences are usually not documented especially those that 

occurred in remote areas. This study employed a systematic 

approach using Google Earth which have been widely used in 

collecting historical landslide data in the absence of historical 

landslide data (Chang et al., 2023). The use of Google Earth’s 

historical and high-resolution satellite images has become a 

widely accepted and effective approach for landslide inventory 

mapping, enabling the detection and digitization of both large and 

smaller, localized landslides that are often underreported in 

broader datasets. In addition, to ensure reliability of the collected 

landslide data, collection date was time based on significant 

rainfall events and news reports articles and reports from the 

Department of Social Welfare and Development’s Disaster 

Response Operations Monitoring and Information Center 

(DSWD DROMIC) of the region. Additionally, the collected 

landslide information were cross-checked with the existing 

landslide hazard map of MGB for the region and ensure that these 

landslide data fall in the highly susceptible landslide areas. 

 

The study was able to collect a total of 130 landslide polygons 

distributed across the province of Cebu. These landslide data 

were used to develop and train the model. To avoid bias and 

firmly evaluate the predictive performance of the model, 130 

non-landslides polygons were generated. Following the approach 

of Fu et al. (2025) to reduce the risk of misclassifying unstable 

slopes or undetected landslides as non-landslide samples - a 

common source of bias - each identified landslide was buffered 

by 500 meters, and non-landslide points were only selected 

outside these buffer zones. This is done emphasize the 

importance of maintaining spatial separation between landslide 

and non-landslide samples to enhance model accuracy and reduce 

uncertainty. Lastly, the collected landslide and non-landslide data 

were divided into training and testing data using a 70:30 ratio. 

 

 
 

Figure 3. Landslide inventory map. 

 

2.3 Landslide Causative Factors 

Factor selection is a crucial part of landslide susceptibility study, 

but no universal standard exists, as choices vary with data 

availability (Wubalem, 2021). Given data limitations in Cebu 

Province, this study used static factors—elevation, slope, aspect, 

curvature, topographic position index (TPI), topographic wetness 

index (TWI), and soil texture—which capture terrain and 

geological predispositions independent of transient triggers (Liao 

et al., 2022). Elevation influences rainfall, vegetation, and soil 

development (Sharma & Sandhu, 2024) and was classified into 

five equal-interval classes (0–1051 m). Slope governs 

gravitational stress (Cellek, 2020) and was grouped into six 

categories following the National Land Use Committee standard, 

with the largest area falling under 30–50%. Aspect affects solar 

radiation, wind, and rainfall (Gorokhovich & Vustianiuk, 2021) 

and was classified into nine categories following ESRI. General 

curvature, which regulates water flow and moisture retention, 

was classified into concave, flat, and convex based on Zaslavsky 

& Sinai (1981) and Moore et al. (1993) as described by Blaga 

(2012). 

 

TWI, which reflects topographic control on soil moisture and 

pore pressure, was divided into five categories—very dry, dry, 

medium, wet, and very wet—following Meles et al. (2019). TPI, 

used to identify landform positions such as ridges, valleys, and 

slopes, was classified into five classes based on Weiss (2001). 

Finally, soil texture, which governs infiltration, drainage, and 

cohesion (Temme, 2021), was sourced from NAMRIA via the 

Philippine Geoportal and grouped into six classes: clay, beach 

sand, clay loam, silt loam, hydrosol, and undifferentiated soil 

type.  
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Figure 4. Causative factors in landslide susceptibility mapping. 

 

2.4 Modeling Techniques 

2.4.1 Frequency Ratio (FR) 

 

The frequency ratio (FR) method is a straightforward bivariate 

statistical approach which yields accurate results, making it 

popular for landslide susceptibility mapping (Silalahi et al., 

2019). Mathematically, FR is expressed as: 

 

 𝐹𝑅 =
𝑁𝑝𝑖𝑥(𝑠𝑖) / 𝑁𝑝𝑖𝑥(𝑁𝑖)

ΣiNpix(si) / ΣiNpix(Ni)
                    (1) 

     

where:  Npix(Si) = pixels marked as landslide in parameter 

class i 

Npix(Ni) = overall count of landslide pixels in the area 

⅀i Npix(Si) =  pixel count for parameter i 

⅀i Npix(Ni) = total pixels in the study area 

 

A frequency ratio above 1 indicates a strong and positive 

association with landslides and a higher chance of occurrence. 

Conversely, if the frequency ratio is below 1 , it implies a weak 

or negative relationship between landslide occurrences and the 

data class, indicating a low landslide probability, while a ratio of 

1 signifies an average relationship. Once the frequency ratios are 

calculated, all the raster maps' frequency ratio parameters are 

summed to form the Landslide Susceptibility Index (LSI) as 

defined by Equation 2 wherein high value represents areas more 

prone to landslides, and low values mark areas less likely to 

experience them. 

 

𝐿𝑆𝐼 = ∑ 𝐹𝑅𝑖𝑛
𝑖 = 1                     (2) 

 

where:       n = number of landslide causal factors 

Fri = Frequency ratio of  pixels of landslide factors 

 

2.4.2 Logistic Regression 

 

Logistic regression provides an effective technique for assessing 

how landslide occurrences depend on key factors (Das and 

Lepcha, 2019). This uses dichotomous variables (e.g., 1 for 

present and 0 for not) with outcomes shaped by one or more 

predictors. As a generalize linear model, its probability is 

computed by the following equation: 

 

  𝑃 =
1

(1+𝑒−1)
                     (3) 

 

where: P = likelihood of landslide on a 0 to 1 scale 

 

Values closer to 1, it indicates high vulnerable, and values closer 

to 0, it indicates very low vulnerability. z represents the linear 

predictor of the model expressed as: 

 

                 𝑧 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛   (4) 

    

where: b0 =  model intercept 

n = number of independent variables 

b1, b2 … bn = regression coefficients 

x1, x2 … xn = factors contributing to landslides 

 

2.5 Validation Methods 

ROC curve analysis was used to evaluate the model’s accuracy. 

The area under the ROC curve (AUC) serves as the main measure 

for determining model accuracy. The diagonal from (0,0) to (1,1) 

marks random guessing and corresponds to AUC = 0.5. Curves 

that rise further above this line have higher AUCs and better 

performance. AUC values lies from 0.5 to 1, with 1 representing 

a perfect model. 

 

The AUC are grouped into five classes: 0.9-1 (excellent), 0.8-0.9 

(very good), 0.7-0.8 (good), 0.6-0.7 (moderate) and 0.5 – 0.6 

(bad) (Umbara, 2024). ROC curve and its AUC are widely 

accepted standards to evaluate the effectiveness of landslide 

susceptibility models, as demonstrated in previous studies (Sun 

et al., 2018; Umbara, 2024). 

 

𝐴𝑈𝐶 = ∑ (𝑥𝑖  −  𝑥𝑖−1)𝑦𝑖  −  [
𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑖 − 𝑦𝑖−1)

2

𝑛
𝑖=0 ] (5)

  

where: xi = percentage of the area 

 yi = area of the landslide 

3. Results and Discussion 

3.1 Application of Frequency Ratio 

The FR model identified slopes greater than 50% as having the 

highest frequency ratio value of 4.36, indicating a strong 

correlation between steep slopes and landslide occurrences. This 

finding aligns with Sheng et al. (2022), who highlighted slope 

steepness as a primary factor influencing landslide susceptibility. 

Similarly, Zêzere et al. (2017), as cited by Sonker et al. (2021), 

emphasized that increasing slope angles exacerbate slope 

instability, thereby raising the likelihood of landslides. The TPI 

also supports this trend; wherein the upper slope class exhibited 

a high FR value of 4.40. These results underscore the universal 

importance of slope steepness as a critical conditioning factor for 

landslides, both locally and globally. 

 

In addition to slope, soil characteristics play a significant role in 

landslide susceptibility in Cebu Province. While slope influences 
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the shear stress within soil masses, soil type governs shear 

strength and permeability, affecting stability under saturated 

conditions (Kinde et al., 2024). The FR model revealed that clay 

loam soils have a strong association with landslide events (FR = 

3.05). Similar findings were observed by Cabelin and Jadina 

(2019) in Cadac-an Watershed, Leyte, were loam to clayey 

textures, characterized by low bulk density, and high porosity 

contribute to instability in landslide-prone. This interplay of soil 

composition and drainage dynamics regulates infiltration rates, 

pore water pressure, and slope stability was comprehensively 

explored by Yao et al. (2025). 

 

Classes FR Classes FR Classes FR 

Soil Texture Slope (%) TPI 

Beach sand 0.00 0-3 0.00 Valley 0.00 

Clay 0.37 3-8 0.01 Lower slope 2.43 

Clay loam 3.05 8-16 0.04 Flat slope 0.94 

Hydrosol 0.00 16-30 0.21 Upper slope 4.40 

Silt loam 0.00 30-50 0.59 Ridge 0.00 

Undifferen-

tiated 
0.00 >50 4.36  

 

Aspect Elevation (m) TWI 

Flat 0.22 0-210 0.33 Very dry 2.09 

North 0.00 210-410 1.95 Dry 1.18 

Northeast 1.97 410-610 3.16 Medium 0.40 

South 1.26 610-810 0.96 Wet 0.09 

East 0.75 810-1051 0.00 Very wet 0.00 

Southeast 0.44  

Southwest 0.98 Curvature   

West 0.71 Concave 1.09   

Northwest 1.42 Flat 0.85   

North 3.01 Convex 1.43   

Table 1. Computed frequency ratio for each factor. 

 

The FR model indicated that landslide occurrences are most 

strongly associated with mid-elevation ranges: 210-410 meters 

(FR=1.95) and 410-610 meters (FR=3.16). This pattern is 

consistent with numerous studies showing that landslides tend to 

cluster at mid-elevations rather than at the highest or lowest parts 

of the landscape. Huang et al. (2022) found that nearly all 

landslides occurred between 500 and 1,500 meters elevation, 

with landslide frequency values greater than or close to one. 

Similarly, Gemitzi et al. (2011) observed the highest landslide 

frequency between 200 and 900 meters, with a marked decline 

above 900 meters. This distribution is often linked to steep 

slopes, active erosion, and human activity at mid-elevations, 

while higher elevations tend to have more stable, rock-dominated 

slopes less prone to failure (Cellek, 2020). 

 

The TWI results were somewhat unexpected, with the lowest 

TWI class (very dry) exhibiting the highest FR value of 2.09. 

This contradicts the common understanding that higher TWI 

values, indicative of wetter conditions, increase landslide 

susceptibility due to reduced soil shear strength from saturation 

(Parra et al., 2023). However, Bhadiyadra and Ong (2024) found 

that both excessively dry and wet conditions can compromise soil 

stability. In dry conditions, insufficient moisture reduces particle 

bonding and weakens the soil, increasing the chance of slope 

failure, while overly wet conditions weaken soil by reducing 

shear strength and eliminating soil suction. The results reveal 

how soil moisture strongly affects slope stability, stressing the 

importance of accounting for different moisture levels in 

landslide risk studies. 

 

Aspect analysis revealed that slopes facing North, Northeast and 

South have FR values exceeding one (3.01, 1.97, and 1.42, 

respectively), indicating higher landslide susceptibility on these 

orientations. This likely reflects the combined effects of local 

rainfall patterns, slope steepness, and land use practices. 

Rodriguez-Caballero et al. (2021) similarly reported that most 

landslides occurred on steep north and northwest-facing slopes. 

Nevertheless, aspect’s influence on landslide occurrence can 

vary regionally, shaped by local climatic and geological 

conditions. 

 

3.2 Application of Logistic Regression 

In logistic regression, the coefficients measure how each 

conditioning factor relates to landslide occurrence, which is the 

dependent variable (Chowdhury et al., 2024). A coefficient 

indicates the change in log-odds of a landslide for every one-unit 

rise in a given factor, assuming all other variables stay constant. 

 

Curvature has a positive coefficient of 1.117 with an odds ratio 

of approximately 3.06, indicating that higher curvature values 

increase the likelihood of landslides. In contrast, TPI has a 

negative coefficient of -3.438 and an odds ratio of about 0.03, 

suggesting that higher TPI values are associated with a decreased 

landslide probability. TWI shows a small positive coefficient of 

0.081 and an odds ratio near 1.08, implying a slight increase in 

landslide risk with increasing wetness index. 

 

Causal Factor Coefficient Odds Ratio 

Curvature 1.12 3.06 

TPI -3.44 0.03 

TWI 0.08 1.08 

Slope 9.57 14384.33 

Elevation 1.15 3.15 

Aspect 0.72 2.05 

Soil Texture 4.70 110.48 

Intercept -2.33 0.097 

Table 2. Regression coefficients for the seven causal factors. 

 

The model is most influenced by slope steepness, showing a very 

high coefficient 9.574 and an odds ratio of approximately 14,384, 

underscoring its dominant effect on landslide susceptibility. This 

is consistent with established studies showing that steeper slopes 

experience greater gravitational stress, increasing failure 

probability (Tseng et al., 2017). Elevation and aspect have 

positive coefficients of 1.146 and 0.718, with odds ratios of about 

3.15 and 2.05 respectively, indicating moderate influences on 

landslide occurrence. Soil texture also strongly affects landslide 

susceptibility, with a coefficient of 4.705 and an odds ratio of 

approximately 110.48, consistent with studies emphasizing the 

soil properties as key to slope stability (Sidle and Ochiai, 2006). 

 

An intercept value of -2.33 gives the log-odds of landslide with 

all variables at zero or at their reference levels. This corresponds 

to a low baseline probability (odds ratio ~0.097), indicating that 

in the absence of conditioning factors, landslides are unlikely. 

 

3.3 Landslide Susceptibility Map 

A map is created by classifying LSI scores into classes. While 

common boundary rules guide reclassification, there is no 

consensus among researchers on a standard approach. As a result, 

class boundaries are often chosen by researcher’s own expert 

judgement. (Gulbet and Getahun, 2024).  

 

Using the manual classifier from Thanh et al. (2022), the LSM 

was grouped into low, moderate, high and very high 
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susceptibility. This is based on the rule that each higher category 

should account for roughly twice the number of landslide events 

as the one beneath it. 

 

For the FR model, landslides are expected to distribute as 7.6% 

in low, 15.3% in moderate, 30.7% in high, and 46.4% in very 

high zones. On the other hand, the LR has an establish cut-off 

points at 7.69%, 23.07%, and 46.15%. These thresholds separate 

the four susceptibility classes for both methods, ensuring that the 

classification reflects the actual distribution of landslide events 

and provides a logical, data-driven basis for identifying areas at 

greatest risk. 

 

Figure 5. Relationship between landslide occurrence and LSI 

values derived from FR (a) and (b) LR. 

 

Employing this categorization method, the thresholds for each 

susceptibility zone are shown in Table 3 (FR) and Table 4 (LR). 

Low susceptibility covers 69.20% of the area, indicating most 

places are unlikely to experience landslide. Moderate and high 

zones cover 10.73% and 10.66% of the area, respectively. 

Meanwhile, very high susceptibility comprises 9.41% of the area, 

highlighting specific regions that may require focused 

monitoring and mitigation efforts. Overall, more than 30% of the 

area falls in elevated-susceptibility zones, warranting targeted 

attention in future land-use planning and hazard reduction 

strategies.  

 

Susceptibility LSI Range Area (ha) Percent 

Low 02.57 - 08.47 330,194.76 69.20 

Moderate 08.47 - 10.00 51,207.66 10.73 

High 10.00 - 12.12 50,861.64 10.66 

Very high 12.12 - 16.61 44,897.36 09.41 

Table 3. LSI ranges for susceptibility zones of Frequency Ratio 

(FR) and area distribution per susceptibility class. 

 

Low susceptibility covers 54.74% of the area, indicating a 

generally low landslide chance across more than half of the 

landscape. 38.51% falls into the moderate category, suggesting a 

substantial portion of the region experiences a moderate level of 

landslide risk. In contrast, only 6.58% and 0.58% of the region 

covers the high and very high susceptibility categoriesc 

respectively.  These zones highlight smaller yet critical areas with 

a significantly elevated potential for landslides, where 

monitoring and mitigation efforts should be concentrated. 

 

Susceptibility LSI Range Area (ha) Percent 

Low 0.00-0.16 265,866.77 54.74 

Moderate 0.16-0.51 187,026.68 38.51 

High 0.51-0.80 29,968.26 06.58 

Very high 0.80-1.00 2,814.04 00.58 

Table 4. LSI ranges for susceptibility zones of Logistic 

Regression (LR) and area distribution per susceptibility class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Landslide susceptibility maps (a) FR and (b) LR. 

 

3.4 Model Validation 

ROC curves compare the performance of FR and LR for both 

success and prediction rates. In both cases, the LR model 

demonstrates slightly superior performance, indicated by higher 

AUC values: 0.9120 versus 0.8850 for success rate, and 0.9434 

versus 0.9249 for prediction rate. This shows that while both 

models exhibit good discriminatory power,  

the LR model has a modestly better ability to distinguish between 

classes and provide better predictions. 

 

Figure 7. Success (a) and prediction (b) rate of FR and LR 

models. 

a b 

a 

b 

a 

b 
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Despite using the same set of conditioning factors in both models, 

the LR model in this study demonstrated marginally better 

discriminatory ability compared to the FR model. This difference 

likely stems from methodological distinctions: LR considers 

multivariate interactions among variables, whereas FR evaluates 

each factor independently. 

 

This finding aligns with previous studies conducted in the 

Philippines. For example, Javier and Kumar (2019) reported a 

prediction rate of 89% using the FR for landslide susceptibility 

in Benguet Province. Similarly, Victor and Zarco (2018) found 

the LR model obtained an AUC of 0.908 in their study of 

Antipolo, Rizal. These results suggest that both methods perform 

well within the Philippine context; however, the LR model can 

capture complex interactions between conditioning variables, it 

may perform better in regions with diverse geological and 

climatic settings, such as the present study site. 

 

From the recorded landslide data, most landslide events occurred 

in the central part of Cebu, particularly in the Municipality of 

Balamban and Cebu City. Landslides were also recorded in 

neighboring municipalities such as Asturias, Danao City, parts of 

Toledo City, Talisay City, and Minglanilla. Additionally, 

landslide events were reported in Aloguinsan. In the southern part 

of Cebu Province, Alegria recorded the greatest number of 

landslides, with occurrences also noted in Badian, Argao, 

Alcantara, Dalaguete, and Boljoon. These municipalities also fall 

under the high susceptibility class of MGB (MGB 7, n.d). 

 

3.5 Comparison of the produced LSM from MGB 

susceptibility map 

A spatial comparison was performed between the LR-derived 

LSM and the MGB map. Table 6 shows the area distribution per 

susceptibility class of MGB landslide hazard map. The moderate 

class is largest at 40.21%, followed by high (34.86%), low 

(23.01%), and very high (1.92%). In contrast, the LR map 

classifies about half of the province falls under the low 

susceptibility class. This difference is illustrated in Figure 7, 

which highlights the agreement zones areas where both maps 

classify landslide risk similarly and the disagreement zones, 

where classifications differ. According to Table 7, 58.72% of the 

study area consists of agreement zones, while 41.27% consists of 

disagreement zones. 

 

Susceptibility Zone Area (ha) Percent 

Low 101,270.2 23.01 

Moderate 176,942.4 40.21 

High 153,391 34.86 

Very high 8,438.74 01.92 

Table 5. Spatial distribution of susceptibility zones from MGB. 

 

An agreement map was generated to clearly identify areas where 

the two classifications match and mismatch. The comparison 

revealed notable differences: although both maps use four 

susceptibility zones, MGB covers a larger portion of the province 

to high and very high classes, while these classes appear more 

localized in the LR based map. These discrepancies may result 

from differences in input data, methodology, scale, and 

classification criteria. Additionally, a table summarizing the area 

of each susceptibility zone in the MGB map was compiled to 

quantitatively compare with the corresponding zones in the LR 

map. This combined approach enables both spatial and statistical 

evaluation of the similarities and differences between the two 

susceptibility assessments. 

 

 
 

Figure 8. Agreement map between LR and MGB. 

 

The primary reason for the observed differences between the 

landslide susceptibility maps lies in the distinct modelling 

approaches employed. While the map produced in this study uses 

LR model, the MGB map does not provide detailed information 

regarding the specific modelling technique used to generate their 

susceptibility classification. Additionally, variation in number 

and which factors are used strongly affect the final susceptibility 

results. This study incorporates only seven static factors, whereas 

the MGB map may include additional dynamic or environmental 

factors such as land use/land cover (LULC), rainfall intensity, 

proximity to rivers, and other relevant variables. Differences in 

input data quality, resolution, and the weighting or integration 

methods applied to these factors further contribute to variations 

in spatial patterns and susceptibility class extents. Together, these 

differences in modelling approach, factor selection, and data 

quality is a key factor influencing the differences observed 

between the two susceptibility maps. 

 

Zone Area (ha) 

Agreement 257,142.11 

Disagreement 180,716.35 

Table 6. Spatial agreement between LR and MGB LSM. 

 

4. Conclusion 

The marginal improvement in LR performance highlights 

the value of incorporating multivariate relationships in landslide 

susceptibility mapping. This approach can enhance hazard 

assessment accuracy and support more effective risk 

management strategies. Future research could focus on 

integrating additional conditioning factors or exploring hybrid 

modeling techniques to further improve predictive performance. 

 

The susceptibility maps from this study give a scientific basis for 

local government units and stakeholders to enhance plan for 

disasters, shape land use, and focus mitigation in Cebu Province. 

Future studies are encouraged to incorporate additional dynamic 

factors like rainfall and land-use change, and to explore advanced 

modelling techniques for even more robust hazard assessment. 
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