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Abstract 

Urbanization of cities introduces growth of population in urban settlements, formal and informal. However, these informal settlements 

commonly go unrecorded due to legal threats, thus the scarcity of data. This study aims to bridge the scarcity of urban settlement 

information by dasymetric mapping of population using census blocks and land use/land cover (LULC) map, focused on formal and 

informal urban settlements. To achieve this, three classification methods for LULC were compared: random forest (RF), object-based 

image analysis (OBIA) using a Bayes classifier, and a hybrid approach combining OBIA with RF. Land classification was applied to 

Sentinel-2 L1C images from 2015 and 2020, with Google Earth Engine utilized for RF and QGIS Orfeo Toolbox for OBIA and OBIA-

RF. To evaluate which of LULC classification methods is most accurate, the F-scores of each generated LULC map per method were 

compared. Furthermore, the reliability of the LULC classification methods for population dasymetric maps were compared to built 

surfaces of Global Human Settlement Layer through Global Similarity Value. F-score values ranging from 86.37%–94.44% for formal 

settlement, 65.18%–72.19% for informal settlement, and 0.4978 Global Similarity value from hybrid OBIA-RF show that it has most 

capability in mapping informal settlements due to incorporation of spectral, spatial and contextual characteristics. The most effective 

method for LULC allowed dasymetric population mapping projected for 2025, such that LULC prediction was executed using an 

artificial neural network-multilayer perceptron (ANN-MLP). These outputs are expected to provide valuable insights into population 

distribution in informal settlements, supporting urban planning and resource management efforts. 

1. Introduction

Urbanization drives rapid city growth, particularly in developing 

countries, often resulting in informal settlements with high 

density, irregular layouts, and substandard housing. These areas 

pose unique challenges for urban planning and resource 

allocation (McFarlane et al., 2024). Reliable population data is 

essential for sustainable development. It informs infrastructure 

planning delivery of public services (e.g., education, healthcare), 

and equitable policy interventions (Asian Development Bank, 

2002). It also informs land-use policies to manage urban 

expansion. In turn, effective planning requires a holistic approach 

such as integrating housing, disaster resilience, and social 

services alongside community participation to ensure equitable 

outcomes (Habitat III, 2016). 

A key challenge in this process is the spatial inaccuracy of 

population data, especially in complex urban areas. Dasymetric 

mapping offers a valuable solution by refining population 

distribution estimates by using ancillary data like land use/land 

cover (LULC) to refine administrative unit data. Unlike 

choropleth maps that assume uniform distribution, this method 

creates more realistic population allocations (Kyaw, 2020) that is 

based on LULC changes. This method is particularly useful for 

cities like those in the Philippines, where census-block (e.g. 

barangay-level) data may not accurately capture variations in 

LULC and population distribution. By using LULC maps as finer 

zones, it enables analysis of urban growth dynamics and 

ecological impacts. For this accurate implementation to be 

achieved, reliable LULC data is necessary. 

However, LULC classification presents particular challenges in 

identifying complex urban features containing both formal and 

informal settlements. Mudau and Mhangara (2021) identified 

difficulties in mapping informal settlements due to diverse roof 

materials and complex morphology. Researchers have explored 

various remote sensing techniques to address these challenges, 

including high-resolution satellite imagery, pixel-based 

classification, object-based image analysis (OBIA), machine 

learning, texture analysis, and even manual digitization 

(Alrasheedi et al., 2023; Mudau and Mhangara, 2021).  

Among these, Random Forest (RF) and OBIA have emerged as 

promising methods for urban LULC classification. RF, a machine 

classification algorithm, effectively handles high-dimensional 

data and complex feature relationships for land classification 

(Alrasheedi et al., 2023). Its integration of  spectral values and 

ancillary geospatial variables makes it ideal for urban mapping, 

as shown in studies combining multispectral imagery, digital 

surface models (DSM), and local knowledge (Matarira et al., 

2022). Assarkhaniki et al. (2021) successfully combined Landsat 

8, OSM data, and RF classification for informal settlement 

detection in Jakarta, highlighting RF's robustness and its ability 

to avoid overfitting in complex urban classifications. For these 

reasons, RF has become a widely used approach in urban 

mapping (Mudau and Mhangara, 2021). 

OBIA, on the other hand, is a classification method that considers 

spatial relationships and contextual information (Mudau and 

Mhangara, 2021), allowing for a more meaningful representation 

of urban landscapes. It utilizes object geometry, texture, and 

neighborhood relationships for classification, unlike pixel-based 

methods that rely on spectral information alone (Mudau and 

Mhangara, 2021). That said, it proves to be applicable for 

landcover mapping, as well as urban settlement classification 

such that it can delineate buildings using scale, shape and 
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compactness (Alrasheedi et al., 2023). OBIA excels in 

morphological analysis but requires local typology knowledge 

(Mudau and Mhangara, 2021). For such unique and often 

irregular features of informal settlements, OBIA would depend 

on the understanding and selection of informal settlement local 

typology and image-based proxies during image classification. 

With this in mind, RF and OBIA techniques may be explored with 

respect to their applicability in urban settlement mapping, 

particularly for informal settlements. Both methods have merits: 

RF processes complex datasets efficiently, while OBIA better 

captures settlement morphology. 

Moreover, despite the growing use of RF and OBIA in LULC 

classification, few studies have systematically compared these 

methods for urban settlement-focused dasymetric mapping, 

particularly in data-scarce contexts like the Philippines. 

This study addressed this gap by developing a comprehensive 

dasymetric population map of Marikina City, Philippines, 

emphasizing the inclusion of urban settlements as a distinct land 

use and land cover category. Marikina City’s mix of industrial 

zones and residential areas creates uneven population densities, 

highlighting the need for precise mapping to target planning 

efforts. The study evaluated the performance of three distinct 

LULC classification approaches: (1) RF classification, (2) OBIA 

utilizing a Bayes classifier, and (3) a hybrid approach integrating 

RF and OBIA with a Bayes classifier. By comparing the accuracy 

and effectiveness of these methods, this research determined the 

most appropriate approach, for creating a precise and reliable 

population dasymetric population map of Marikina City. 

 

2. Methodology 

1.1 Overview 

 

 
Figure 1. Methodological flowchart of the study 

 

Figure 1 presents the key methods and datasets in achieving the 

objectives of this study. In summary, three LULC classification 

methods: OBIA, RF, OBIA-RF, were performed and compared 

by accuracy assessment. LULC maps with substantial accuracy 

were used for future LULC simulation. To apply such LULC in 

connection with demographic characteristics, dasymetric 

mapping based on the simulated LULC of 2025 was executed for 

geospatial population data refinement, with particular focus on 

urban settlement. These are explained further in subsequent 

sections. 

 

2.1 Data Gathering 

To generate accurate LULC classification and ancillary data to be 

used for dasymetric mapping of Marikina City, this study 

gathered diverse geospatial datasets such as satellite imagery, 

population, roads, rivers, and building vectors. 

 

2.1.1 Satellite Imagery and Reference Maps 

Sentinel satellite system was utilized as this allows computation 

of built-up-focused indices discussed in Section 3.3.3. This study 

also consistently used Sentinel-2 L1C satellite images of 

Marikina City to consider the year 2015. Moreover, the dates of 

the satellite images were verified to be consistent with the three 

LULC classification approaches done. 

 

2.1.2 Informal Settlement Reference Maps 

The reference map for determining the location of informal 

settlements was obtained from a World Bank report in 2015 

where in-depth information about informal settlements in Metro 

Manila was discussed (Singh and Gadgil, 2017). This was then 

georeferenced and brought to the proper extents of the project. 

As a supplementary reference map, a high-resolution Google 

Satellite imagery tile was integrated into the process. 

 

2.1.3 Modeling Variables 

Modeling Variable CRS 
Spatial 

Resolution 
Source 

Distance from 

Roads 
From 

WGS84 

to UTM 

Zone 

51N 

30 M. 

OSM 

Distance from 

Buildings 
OSM 

Distance from 

Waterways 
OSM 
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Land Surface 

Temperature 
Sentinel-3 

Population Change 

Rate 
WorldPop 

LULC Change 

LULC map 

from 

authors 

Table 1. Summary of Modeling Variables 

Modeling variables employed as ancillary data in this study for 

simulation of 2025 LULC are distances from roads, rivers, and 

buildings, Land Surface Temperature (LST), population density, 

and area changes map of the LULC. Roads, rivers, and buildings 

were exported from OpenStreetMaps (OSM) and initially in 

vector shapefile format. LST was obtained from satellite images 

of the study area from the Sentinel-3 database, and gridded 

population density data were sourced from WorldPop, having a 

100-m resolution. Moreover, LULC change was based on the 

LULC classification maps done by the authors in 2015 and 2020 

using the determined accurate approach.  

 

2.1.4 Population Census Blocks 

Values for the population census blocks were obtained from 

Marikina City’s ecological profile. As these were inputs for the 

dasymetric map in 2020 and 2025, 2020 Philippine Statistics 

Authority data and 2025 projected Marikeño population was 

utilized, based on the Geometric Growth Approach from the City 

Government of Marikina. 

 

2.2 Data Processing 

To prepare the gathered datasets for LULC classification and 

subsequent dasymetric mapping, a series of pre-processing and 

analytical steps were undertaken. 

For the methods involving training data, two independent 

operators processed the three methods (i.e. one for OBIA and 

OBIA-RF, and one for RF). Identification of informal settlements 

was agreed upon to be near Marikina River, as being near 

waterbodies is one of the characteristics of slums (Singh, 2015). 

Furthermore, informal settlement topology was agreed to be 

those that are coarse and irregular. 

 

2.2.1 Preparation of Modeling Variables 

Road, river, and building vectors were clipped to Marikina City's 

boundaries, rasterized, and standardized to WGS 84. QGIS's 

Raster Proximity tool calculated distance rasters for each feature, 

then clipped to the study area. Land Surface Temperature (LST) 

data was provided by Sentinel-3 and was reprojected to WGS 84 

in SNAP. Population change rates were derived by processing 

initial and final year density data through raster calculator 

operations.  

 

2.2.2  Object-Based Image Analysis using Bayes 

OBIA extends pixel-based classification by first segmenting 

images into meaningful objects. This study utilizes QGIS's Orfeo 

Toolbox (OTB), which provides segmentation algorithms and 

machine learning classifiers for multispectral image analysis. 

Mean-shift segmentation was applied to cluster similar 

reflectance values in Sentinel-2 imagery, adjusting the range 

radius parameter to 0.00005 (matching image reflectance units) 

while maintaining default values for other parameters. The 

segmented output was then processed with Zonal Statistics to 

calculate spectral metrics (mean, standard deviation, minimum, 

maximum) for each band across all segments, generating 13 

statistical sets per segment corresponding to Sentinel-2's spectral 

bands. Classification was performed using the Normal Bayes 

classifier. 

A model file for OTB was created using test samples, with all 

computed statistics as classification attributes and sample class 

identifiers as predictors. The Normal Bayes classifier was 

employed, assuming normality in distributed segment values 

(other parameters remained in default) although not strictly 

independent. This classifier models each class's attributes as 

Gaussian distributions, where values cluster near the mean with 

fewer outliers. Unlike Naïve Bayes, it accounts for inter-class 

relationships through covariance matrices (Modica et al., 2021). 

During classification, the algorithm evaluates how well segments 

fit each class's distribution and combines this with prior 

probabilities to predict class membership. The resulting model 

classified the statistical-segmented vector to produce a LULC 

map. 

 

2.2.3 Random Forest Classification 

The Random Forest (RF) algorithm makes use of several decision 

trees, where each tree classifies each pixel, based on the chosen 

input parameters (Svoboda et al., 2022) This algorithm then 

assigns the final class after taking the majority classification by 

all trees. 

The RF method was implemented in Google Earth Engine due to 

its known cloud computing capabilities (Matarira et al., 2022). 

Data refinements done were cloud masking (Bits 10-11 for 

Sentinel-2 L1C) and SIAC atmospheric correction to convert raw 

DNs to reflectance values (0-1). For the training data, at least 40 

points were included per class and merged into a single dataset. 

The model incorporated seven established indices namely NDVI 

(Normalized Difference Vegetation Index), NDWI (Normalized 

Difference Water Index), MNDWI (Modified Normalized 

Difference Water Index), SAVI (Soil-Adjusted Vegetation Index), 

NDBI (Normalized Difference Built-up Index), BRBA (Band 

Ratio for Built-up Area) and UI (Urban Index), which can 

discriminate between LULC classes (Adepoju et al., 2019). The 

indices appear in Equations (1) to (7), with Sentinel-2 Level-1C 

spectral bands B2, B3, B4, B5, B7, B8, and B11. 

𝑁𝐷𝑉𝐼 =
𝐵8−𝐵4

𝐵8+𝐵4
 ,                         (1) 

where  𝐵8 =  Near-infrared (NIR) band  

𝐵4  =  Red band  

 

NDWI =
𝐵3−𝐵8

𝐵3+𝐵8
,                          (2) 

where 𝐵3  = Green band 

𝐵8 =  Near-infrared (NIR) band 

 

MNDWI =
𝐵3−𝐵11

𝐵3+𝐵11
,                     (3) 

where  𝐵3 =  Green band  

𝐵11 =  Shortwave-infrared (SWIR) band 

  

SAVI = 1.5 × (
𝐵8−𝐵4

𝐵8+𝐵4+0.5
),                       (4) 
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where  𝐵8  =  Near-infrared (NIR) band  

𝐵4  =  Red band 

 

NDBI =
𝐵11−𝐵8

𝐵11+𝐵8
,                         (5) 

where 𝐵11  =  Shortwave-infrared (SWIR) band  

𝐵8  =  Near-infrared (NIR) band  

 

BRBA =
𝐵4

𝐵11
,                              (6) 

where 𝐵4  =  Red band 

𝐵11  =  Shortwave-infrared (SWIR) band 

 

UI =
𝐵7−𝐵5

𝐵7+𝐵5
,                                (7) 

where 𝐵7  =  Vegetation red-edge 3 band  

𝐵5 = Vegetation red-edge 1 band 

 

The execution of the classification process was implemented 

using the ee.Classifier.smileRandomForest package. Using the 

default parameter of 100 trees and random sampling, 80% of the 

training samples were created, to which a decision tree was 

generated for each training sample. The remaining twenty 

percent (20%) were used to validate and test the classification 

accuracy of the model (Matarira et al., 2022). The resulting 

output of the RF model is the classified map of the study area and 

was exported into the same scale of the original image, i.e. 10 m 

with the coordinate system of WGS 84 (EPSG: 4326). 

 

2.2.4 OBIA-RF Classification 

This method combines the OTB tool for segmentation, classifier 

modeling and uses RF as the classifier within the same plugin. 

Default parameters were used; particularly the maximum number 

of trees (100), maximum depth (5), and maximum number of 

samples (10) to avoid underfitting and overfitting. The OTB 

algorithm for RF is OpenCV-based (open-source computer vision 

library) specializing in remote sensing and raster datasets. 

 

2.2.5 Accuracy Assessment 

The validation process utilized QGIS's AcATaMa plugin with 

stratified random sampling, employing area-proportional sample 

allocation (standard error target: 0.01) and 0.0001 degree 

(≈100m) minimum spacing. Reference data combined Google 

Earth imagery with a georeferenced Metro Manila informal 

settlements map from Singh (2015)'s OBIA-based study. The 

assessment generated standard accuracy metrics including 

overall, producer's, and user's accuracy. 

Moreover, the F-score was calculated, which is a statistic that 

considers both the user’s accuracy (UA) and producer’s accuracy 

(PA). F-score indicates the performance of the classifier by 

calculating the harmonic mean of UA and PA (Zurqani et al., 

2019), as shown in Equation (8). 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦×𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

(𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦+𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
,      (8) 

The classified map's informal settlement extents were cross-

validated against manually digitized areas from VHR Google 

Earth imagery (2020/2025), using 2024 imagery for the 2025 

map. This approach follows established validation methods for 

informal settlement mapping (Matarira et al., 2023), particularly 

valuable given limited ground truth data in Philippine slums. 

Accuracy was quantified through feature-similarity in Equation 

(9) and patch-based mean absolute percentage error (MAPE) in 

Equation (10).  

F𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑚𝑖𝑛.𝑎𝑟𝑒𝑎𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

𝑚𝑎𝑥.𝑎𝑟𝑒𝑎𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒
,   (9) 

where “selected feature” refers to corresponding features from 

the classified and reference maps used for validation 

𝑀𝐴𝑃𝐸 = |
𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑟𝑒𝑎 𝑝𝑎𝑡𝑐ℎ−𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑟𝑒𝑎 𝑝𝑎𝑡𝑐ℎ

𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑟𝑒𝑎 𝑝𝑎𝑡𝑐ℎ
|,  (10) 

To determine the standard for acceptable value, 0.60 to 0.79 

Cohen’s Kappa was agreed to be a substantial percentage of data 

reliability (Parraga-Alava et al., 2021). For MAPE, Lewis (1982), 

as cited by Montaño (2013), standardizes that a value of less than 

0.50 means reliable data forecasting. These are applied upon 

verification of LULC mapping and simulating. 

 

2.2.6 LULC Map Simulation by ANN-MLP Modeling 

The MOLUSCE (Modules for Land Use Change Evaluation) 

plugin in QGIS was employed to predict future LULC changes 

and maps. The plugin requires inputs of the initial state map 

(2015) and the final step map (2020) to analyze the succeeding 

changes of future maps. Modeling variables were integrated, as 

these factors affect the LULC changes over time. Pearson’s 

correlation coefficient must be close to zero, denoting little to no 

correlation between modeling variables. This is to avoid 

redundancy of input layers, which may cause overfitting upon 

simulation. General statistics and transition matrix were also 

displayed in the Area Changes Tab, to quantify the change in 

areas of the land use and land cover types in the two selected 

years. This also produced the LULC change map as one of the 

modeling variables. 

 
Figure 2. Transition Potential Modeling 

For the transition potential modeling, Artificial Neural Network 

Multi-Layer Perceptron (ANN-MLP) was the chosen method to 

train the data, as it has been proven to produce good results with 

high accuracy (Souza et al., 2022) for modeling LULC changes. 

Parameters such as the maximum number of iterations and 

number of hidden layers were modified until both the learning 

curve and error curve appear smooth, and the Current Validation 

Kappa is about 0.8 or higher. For instance, DEM and slope of the 

study area were initially included as modeling variables. 

However, exclusion of DEM and slope resulted in a higher 

validation kappa. This may be due to the relatively even elevation 

of the city. 

The outcome of the neural network method is the simulated 

LULC map for 2025. Figure 2 shows the transition potential 

modeling with 2015 as the initial LULC map and 2020 as the 

final LULC map with the aforementioned modeling variables as 
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input layers. The graph shows smooth, non-undulating, 

downwards behavior, implying diminishing marginal error and 

non-over-or-underfitting. 

Validation of the predicted map was then compared to the closest 

real-world reference map of 2025, utilizing the latest 2024 

Google Earth imagery of Marikina. Patch-based metrics such as 

MAPE and feature similarity were obtained to evaluate geometric 

consistency with reference data. 

 

2.3 LULC Application 

From the subject LULC maps based on the method that produced 

most accuracy, dasymetric mapping of population using urban 

settlement-focused LULC classification through RF algorithm 

and OBIA was done to validate effectiveness in estimating 

population distribution within informal settlements of the 

classification methods, providing evidence-based resource by 

spatially linking population density to settlement types. This 

approach does not only test the classification’s real-world utility 

for slum density mapping but also generates actionable data to 

address urban planning gaps in underrepresented communities. 

 

2.3.1 Population Estimation by Dasymetric Mapping 

Dasymetric mapping was done with the 2020 LULC maps using 

OBIA, OBIA-RF, and RF classification, producing three 

comparable thematic population maps in 2020 of Marikina City. 

To further support which LULC classification method is most 

accurate, the dasymetric maps of 2020 were compared to built-

surface Global Human Settlement Layer (GHSL) in 2018 with a 

10-m resolution. Note that it is an open-sourced data from 

Copernicus that is closest to assessing the population estimates 

by human settlement thematic map. Hot Spot Analysis (Getis-

Ord Gi*) for the 2018 GHSL and 2020 population estimation 

maps based on LULC using OBIA, OBIA-RF, and RF 

classification methods were generated.  These layers were used 

for Hot Spot Comparison Analysis, such that the reference map 

is the 2018 GHSL. Thereon, Global Similarity Values were 

determined to distinguish which classification method used to 

derive a population map is most similar to the 2018 GHSL, as an 

accuracy assessment aside from the F-scores. 

As an application of the most reliable classification method for 

urban settlement-focused LULC mapping, the 2025 LULC 

simulation and population projections were integrated to create a 

population estimate, dasymetric map using LULC as ancillary 

data. Census blocks were rasterized, while the LULC layer was 

reclassified by settlement type (formal/informal) based on roof-

area population densities (Galeon, 2008). Using spatial analyst 

tools, population densities were redistributed across barangays 

according to LULC classifications. 

 

3. Results and Discussion 

3.1 Classified LULC Maps 

Generated classified LULC maps from the OBIA, RF and OBIA-

RF methods are presented in Figure 3. For OBIA-Bayes 

generated maps, some areas of informal settlement correspond 

with the 2015 Metro Manila informal settlement type distribution 

map. This agreement is attributed to the OBIA’s leverage in 

identifying physical characteristics of slums such as irregular 

shape, texture and relations to neighboring objects. which was 

also used as the basis for classifying informal settlements. In this 

study, however, it was visually observed that not all areas of 

informal settlement were mapped when compared to the 

reference maps. This aligns with Matarira et al. (2023) where the 

OBIA approach failed to identify some discrete informal 

settlement patches due to textural complexity. This implies that 

varying roof materials indeed affect the identification of urban 

settlements, particularly informal areas. 

Figure 3: Classified land cover maps of Marikina City for 2015 

and 2020 generated using three methods: OBIA-Bayes, RF, and 

OBIA-RF 

For instance, the RF-classified maps show scattered informal 

settlements, particularly distributed in urban centers, deviating 

from reference data. This discrepancy likely stems from training 

data limited to galvanized steel roofs near Marikina River, 

causing misclassification of similar roofing materials common in 

formal structures. As a pixel-based method, RF fails to 

incorporate contextual neighborhood features critical for 

informal settlement identification. While RF proves less suitable 

than OBIA for Philippine informal settlements due to prevalent 

metal roofing, it achieves reasonable accuracy for non-settlement 

land use and land covers, reflecting machine learning's strength 

in heterogeneous classification (Alrasheedi et al., 2024). 

Meanwhile, OBIA-RF maps showed high agreement with the 

informal settlement areas, as opposed to solely OBIA and RF. 

Although this hybrid approach may appear to have overclassified 

blocks of slums, this was attributed to interurban variability of 
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morphological slum features (Stark et al., 2020) and similarities 

in spectral reflectivity (Qu et al., 2021) between formal and 

informal areas. These overestimated classifications have its 

effects on dasymetric mapping thereafter, but this method was 

still able to map out informal settlements with higher precision 

than only OBIA. Findings from the accuracy assessment have 

shown that the OBIA-RF method consistently obtained the 

highest overall accuracy (OA), UA, and PA among the three 

methods in terms of formal and informal settlements. 

Accordingly, the highest F-scores for urban settlements are 

attained by OBIA-RF as shown in Figure 4, implying that this 

method is the best classifier for settlement classes among the 

three approaches. 

 
(a) 

 
(b) 

Figure 4. Comparison of F-Scores for All Classes in (a) 2015 

and (b) 2020 LULC maps 

These results were also observed in the accuracy assessment 

considering only the two settlement classes in Figure 5. OBIA 

and RF alternated in which method performed better for the 2015 

and 2020 accuracy assessments due to the LULC changes that 

suited one approach over the other. Meanwhile, the hybrid OBIA-

RF algorithm remained to be the best classifier. The findings 

align with prior research (Alrasheedi et al., 2024) demonstrating 

that combining OBIA and RF improves informal settlement 

classification accuracy. This hybrid approach leverages RF's 

capacity to process diverse geospatial data efficiently and OBIA's 

strength in object-level analysis. The neighborhood physical 

characteristics of slums are precisely mapped due to OBIA’s high 

image segmentation capabilities, and its corresponding 

classification limitations are addressed by RF through its 

robustness in handling complex environments. Incorporating 

both methods resolves the challenges that the separate methods 

encounter which better captures informal settlements' 

morphological characteristics. Further improvements could 

incorporate additional indicators like textural variables and local 

expertise (Alrasheedi et al., 2024). 

 
Figure 5. Comparison of F-Scores for Settlement Classes 

Overall, OBIA-RF attained F-score ratings of 86.37%–94.44% 

for formal settlement and 65.18%–72.19% for informal 

settlement. Differences in the range of values were observed 

when compared to above 80% accuracies attained by OBIA-RF 

in previous studies on informal settlement mapping (Matarira et 

al., 2022; Qu et al., 2021). This variation may be attributed to 

dissimilarities in the study sites’ environment, slums’ physical 

characteristics, and data resolution. For instance, the validation 

for land cover classes in this study relied on publicly available 

reference data, which includes the informal settlement map and 

Google Earth imagery. The average quality of historical images, 

however, presents challenges in precisely identifying and 

delineating features of informal areas. To address this in future 

works, street-level imagery (Veeravalli et al., 2025) or drone 

images may be obtained for higher quality of validation data.  

Nevertheless, the results of F-scores for the hybrid approach 

combining OBIA and RF LULC classification methods are 

further supported by patch-based MAPE and feature similarity 

indices of 30.32%–40.77% and 59.22%–78.03% respectively, 

reinforcing the robustness of the F-scores. This provides a strong 

justification in the selection of OBIA-RF, validating its spatial 

reliability. Given the study’s focus on population mapping, which 

is closely tied to settlements, the OBIA-RF method was selected 

for its classification superiority. The 2015 and 2020 OBIA-RF 

classified maps consequently served as inputs for simulating the 

projected LULC map in 2025. 

 

3.2 Dasymetric Maps of Estimated Population  

Using the classification methods, thematic map of population 

estimates for 2020 of Marikina City were processed and 

compared to the open-sourced, 10-m fine resolution of urban 

settlement layer from Copernicus. Figure 6 shows the maps that 

reflect urban settlement and the population of Marikina City. 

 
Figure 6: 2018 GHSL of Built Surfaces; 2020 LULC-based 

Population Estimate Maps Using OBIA, RF, and OBIA-RF 

classification methods 

The Global Similarity Values, derived from the comparison of 

LULC-based population maps with the 2018 GHSL (as detailed 

in Section 2.4.1), were analyzed to determine the reliability of 
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each classification method. OBIA-RF achieved the highest 

Global Similarity Value of 0.4978, highlighting its suitability for 

urban settlement mapping that is consistent with the F-score 

results. On the other hand, the similarity values are 0.4497 for 

OBIA and 0.4691 for RF classification method. All values fall 

within the moderate similarity range, indicating that some areas 

of the LULC maps correspond to GHSL, yet some also 

significantly differ. These observed variations in the population 

estimate maps are found to be influenced by LULC 

misclassifications. Complexities in defining the term informal 

settlement induce uncertainties in the evaluator’s classification 

(Matarira et al., 2022), considering that housing types in the 

Philippines could be further categorized other than formal and 

informal settlements (Crawford and Stephan, 2015; Galeon, 

2008). Nevertheless, certain regions of the maps were found to 

closely align with the GHSL. This implies that while the values 

are moderate, they confirm that the method captures meaningful 

settlement patterns and produces results suitable for dasymetric 

population mapping in complex urban settings. 

 
Figure 7. Dasymetric Mapping of Population Estimate of 

Marikina City in 2025 Using OBIA-RF LULC Map 

Figure 7 displays a 30m-resolution population density map 

derived through dasymetric mapping, incorporating simulated 

LULC (based on 2015–2020 classifications), LST, area changes, 

and proximity to infrastructure. High-density areas correlate with 

informal settlements near Marikina River, which are consistent 

with resettlement studies (Delos Reyes and Francisco, 2014). The 

classified map cross-validated to 2024 VHR Google Earth and 

resulted in an F-score of 70.21%, 75.65% feature similarity based 

on area, and 33.54% MAPE. Hence, this approach indeed 

improves coarse barangay/block census data by distributing 

population according to LULC characteristics. Given challenges 

in surveying informal settlements due to residents' reluctance 

(Gupta, 2024), dasymetric mapping provides a valuable 

alternative for estimating populations in data-scarce areas. 

 

4. Conclusion and Recommendations 

Dasymetric mapping is a method used to refine population 

distribution in connecting to ancillary data such as LULC 

geospatial information. RF algorithm and OBIA are effective 

methods in generating LULC data based on spectral and 

morphology data. With the challenge of getting slum dweller 

information in line with LULC mapping of an urbanized city, this 

study focused on comparing three different methods for LULC 

classification: (1) RF classification, (2) OBIA using a Bayes 

classifier, and (3) a hybrid technique combining RF and OBIA 

with a Bayes classifier; the determined approach that is most 

accurate and reflective of actuality is the LULC classification 

used to proceed with dasymetric mapping of estimated 

population. The OBIA-RF algorithm effectively maps irregular 

informal settlements by incorporating spectral, geometric, and 

textural features during segmentation, proving particularly adept 

at slum differentiation. 

Determination of an effective LULC classification method 

allows generation of accurate LULC maps, which may be 

synthesized with the area’s demographic characteristic. For 

instance, dasymetric map of estimated population was done to 

show population trends alongside LULC changes, with focus on 

informal settlement of the urbanized city.  In line with the LULC 

classification, the population dasymetric map reflects the 

geospatial distribution of the city’s population, with notably high 

concentration in slum dwellings. This provides information 

regarding commonly unrecorded demographic characteristics of 

the city about informal settlers.  The dasymetric maps produced 

in this study offer direct utility for Marikina City’s governance 

challenges, particularly in disaster resilience and equitable 

resource allocation. For instance, the high-resolution population 

surfaces reveal dense informal settlements along the Marikina 

River, a known flood hazard zone, which enables targeted 

interventions, such as early warning system deployment or 

prioritized infrastructure upgrades. Local government units 

(LGUs) could integrate these maps with existing hazard maps to 

refine evacuation plans or zoning regulations. At the same time, 

NGOs might leverage them to allocate health and education 

services to informal communities. By aligning with the 

Philippines’ Community-Based Disaster Risk Reduction 

framework (Delos Reyes and Francisco, 2014), these outputs 

bridge technical modeling with community and targeted 

planning, addressing a gap in data-driven decision-making for 

informal settlements.  

For future work, improving Normal Bayes accuracy requires 

balanced training samples per class, as this directly factors into 

the algorithm's calculations. Enhanced a priori knowledge of 

settlement characteristics (topology, morphology) can better 

accommodate informal settlements' irregular textures. Well-

defined training samples enable more reliable method 

comparisons. Additional approaches could explore GEE 

clustering algorithms combined with OBIA. High-resolution 

imagery remains recommended for small areas due to superior 

spatial, spectral, and radiometric resolution. 
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