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Abstract

Urbanization of cities introduces growth of population in urban settlements, formal and informal. However, these informal settlements
commonly go unrecorded due to legal threats, thus the scarcity of data. This study aims to bridge the scarcity of urban settlement
information by dasymetric mapping of population using census blocks and land use/land cover (LULC) map, focused on formal and
informal urban settlements. To achieve this, three classification methods for LULC were compared: random forest (RF), object-based
image analysis (OBIA) using a Bayes classifier, and a hybrid approach combining OBIA with RF. Land classification was applied to
Sentinel-2 L1C images from 2015 and 2020, with Google Earth Engine utilized for RF and QGIS Orfeo Toolbox for OBIA and OBIA-
RF. To evaluate which of LULC classification methods is most accurate, the F-scores of each generated LULC map per method were
compared. Furthermore, the reliability of the LULC classification methods for population dasymetric maps were compared to built
surfaces of Global Human Settlement Layer through Global Similarity Value. F-score values ranging from 86.37%—94.44% for formal
settlement, 65.18%—72.19% for informal settlement, and 0.4978 Global Similarity value from hybrid OBIA-RF show that it has most
capability in mapping informal settlements due to incorporation of spectral, spatial and contextual characteristics. The most effective
method for LULC allowed dasymetric population mapping projected for 2025, such that LULC prediction was executed using an
artificial neural network-multilayer perceptron (ANN-MLP). These outputs are expected to provide valuable insights into population

distribution in informal settlements, supporting urban planning and resource management efforts.

1. Introduction

Urbanization drives rapid city growth, particularly in developing
countries, often resulting in informal settlements with high
density, irregular layouts, and substandard housing. These areas
pose unique challenges for urban planning and resource
allocation (McFarlane et al., 2024). Reliable population data is
essential for sustainable development. It informs infrastructure
planning delivery of public services (e.g., education, healthcare),
and equitable policy interventions (Asian Development Bank,
2002). It also informs land-use policies to manage urban
expansion. In turn, effective planning requires a holistic approach
such as integrating housing, disaster resilience, and social
services alongside community participation to ensure equitable
outcomes (Habitat 111, 2016).

A key challenge in this process is the spatial inaccuracy of
population data, especially in complex urban areas. Dasymetric
mapping offers a valuable solution by refining population
distribution estimates by using ancillary data like land use/land
cover (LULC) to refine administrative unit data. Unlike
choropleth maps that assume uniform distribution, this method
creates more realistic population allocations (Kyaw, 2020) that is
based on LULC changes. This method is particularly useful for
cities like those in the Philippines, where census-block (e.g.
barangay-level) data may not accurately capture variations in
LULC and population distribution. By using LULC maps as finer
zones, it enables analysis of urban growth dynamics and
ecological impacts. For this accurate implementation to be
achieved, reliable LULC data is necessary.

However, LULC classification presents particular challenges in
identifying complex urban features containing both formal and

informal settlements. Mudau and Mhangara (2021) identified
difficulties in mapping informal settlements due to diverse roof
materials and complex morphology. Researchers have explored
various remote sensing techniques to address these challenges,
including high-resolution satellite imagery, pixel-based
classification, object-based image analysis (OBIA), machine
learning, texture analysis, and even manual digitization
(Alrasheedi et al., 2023; Mudau and Mhangara, 2021).

Among these, Random Forest (RF) and OBIA have emerged as
promising methods for urban LULC classification. RF, a machine
classification algorithm, effectively handles high-dimensional
data and complex feature relationships for land classification
(Alrasheedi et al., 2023). Its integration of spectral values and
ancillary geospatial variables makes it ideal for urban mapping,
as shown in studies combining multispectral imagery, digital
surface models (DSM), and local knowledge (Matarira et al.,
2022). Assarkhaniki et al. (2021) successfully combined Landsat
8, OSM data, and RF classification for informal settlement
detection in Jakarta, highlighting RF's robustness and its ability
to avoid overfitting in complex urban classifications. For these
reasons, RF has become a widely used approach in urban
mapping (Mudau and Mhangara, 2021).

OBIA, on the other hand, is a classification method that considers
spatial relationships and contextual information (Mudau and
Mhangara, 2021), allowing for a more meaningful representation
of urban landscapes. It utilizes object geometry, texture, and
neighborhood relationships for classification, unlike pixel-based
methods that rely on spectral information alone (Mudau and
Mhangara, 2021). That said, it proves to be applicable for
landcover mapping, as well as urban settlement classification
such that it can delineate buildings using scale, shape and
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compactness (Alrasheedi et al., 2023). OBIA excels in
morphological analysis but requires local typology knowledge
(Mudau and Mhangara, 2021). For such unique and often
irregular features of informal settlements, OBIA would depend
on the understanding and selection of informal settlement local
typology and image-based proxies during image classification.
With this in mind, RF and OBIA techniques may be explored with
respect to their applicability in urban settlement mapping,
particularly for informal settlements. Both methods have merits:
RF processes complex datasets efficiently, while OBIA better
captures settlement morphology.

Moreover, despite the growing use of RF and OBIA in LULC
classification, few studies have systematically compared these
methods for urban settlement-focused dasymetric mapping,
particularly in data-scarce contexts like the Philippines.

This study addressed this gap by developing a comprehensive
dasymetric population map of Marikina City, Philippines,
emphasizing the inclusion of urban settlements as a distinct land
use and land cover category. Marikina City’s mix of industrial
zones and residential areas creates uneven population densities,
highlighting the need for precise mapping to target planning
efforts. The study evaluated the performance of three distinct
LULC classification approaches: (1) RF classification, (2) OBIA
utilizing a Bayes classifier, and (3) a hybrid approach integrating
RF and OBIA with a Bayes classifier. By comparing the accuracy
and effectiveness of these methods, this research determined the
most appropriate approach, for creating a precise and reliable
population dasymetric population map of Marikina City.

2. Methodology
1.1 Overview
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Figure 1. Methodological flowchart of the study
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Figure 1 presents the key methods and datasets in achieving the
objectives of this study. In summary, three LULC classification
methods: OBIA, RF, OBIA-RF, were performed and compared
by accuracy assessment. LULC maps with substantial accuracy
were used for future LULC simulation. To apply such LULC in
connection with demographic characteristics, dasymetric
mapping based on the simulated LULC of 2025 was executed for
geospatial population data refinement, with particular focus on
urban settlement. These are explained further in subsequent
sections.

2.1 Data Gathering

To generate accurate LULC classification and ancillary data to be
used for dasymetric mapping of Marikina City, this study
gathered diverse geospatial datasets such as satellite imagery,
population, roads, rivers, and building vectors.

2.1.1  Satellite Imagery and Reference Maps

Sentinel satellite system was utilized as this allows computation
of built-up-focused indices discussed in Section 3.3.3. This study
also consistently used Sentinel-2 LI1C satellite images of
Marikina City to consider the year 2015. Moreover, the dates of
the satellite images were verified to be consistent with the three
LULC classification approaches done.

2.1.2 Informal Settlement Reference Maps

The reference map for determining the location of informal
settlements was obtained from a World Bank report in 2015
where in-depth information about informal settlements in Metro
Manila was discussed (Singh and Gadgil, 2017). This was then
georeferenced and brought to the proper extents of the project.
As a supplementary reference map, a high-resolution Google
Satellite imagery tile was integrated into the process.

2.1.3 Modeling Variables
. . Spatial
Modeling Variable CRS . Source
Resolution
Disance from [ g osM
Distance from WGS84
o to UTM 30 M. OSM
Buildings
Distance from Zone
5IN OSM
Waterways
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Land Surface Sentinel-3
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s WorldPop
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LULC Change from
authors

Table 1. Summary of Modeling Variables

Modeling variables employed as ancillary data in this study for
simulation of 2025 LULC are distances from roads, rivers, and
buildings, Land Surface Temperature (LST), population density,
and area changes map of the LULC. Roads, rivers, and buildings
were exported from OpenStreetMaps (OSM) and initially in
vector shapefile format. LST was obtained from satellite images
of the study area from the Sentinel-3 database, and gridded
population density data were sourced from WorldPop, having a
100-m resolution. Moreover, LULC change was based on the
LULC classification maps done by the authors in 2015 and 2020
using the determined accurate approach.

2.1.4 Population Census Blocks

Values for the population census blocks were obtained from
Marikina City’s ecological profile. As these were inputs for the
dasymetric map in 2020 and 2025, 2020 Philippine Statistics
Authority data and 2025 projected Marikefio population was
utilized, based on the Geometric Growth Approach from the City
Government of Marikina.

2.2 Data Processing

To prepare the gathered datasets for LULC classification and
subsequent dasymetric mapping, a series of pre-processing and
analytical steps were undertaken.

For the methods involving training data, two independent
operators processed the three methods (i.e. one for OBIA and
OBIA-RF, and one for RF). Identification of informal settlements
was agreed upon to be near Marikina River, as being near
waterbodies is one of the characteristics of slums (Singh, 2015).
Furthermore, informal settlement topology was agreed to be
those that are coarse and irregular.

2.2.1 Preparation of Modeling Variables

Road, river, and building vectors were clipped to Marikina City's
boundaries, rasterized, and standardized to WGS 84. QGIS's
Raster Proximity tool calculated distance rasters for each feature,
then clipped to the study area. Land Surface Temperature (LST)
data was provided by Sentinel-3 and was reprojected to WGS 84
in SNAP. Population change rates were derived by processing
initial and final year density data through raster calculator
operations.

2.2.2  Object-Based Image Analysis using Bayes

OBIA extends pixel-based classification by first segmenting
images into meaningful objects. This study utilizes QGIS's Orfeo
Toolbox (OTB), which provides segmentation algorithms and
machine learning classifiers for multispectral image analysis.
Mean-shift segmentation was applied to cluster similar
reflectance values in Sentinel-2 imagery, adjusting the range
radius parameter to 0.00005 (matching image reflectance units)

while maintaining default values for other parameters. The
segmented output was then processed with Zonal Statistics to
calculate spectral metrics (mean, standard deviation, minimum,
maximum) for each band across all segments, generating 13
statistical sets per segment corresponding to Sentinel-2's spectral
bands. Classification was performed using the Normal Bayes
classifier.

A model file for OTB was created using test samples, with all
computed statistics as classification attributes and sample class
identifiers as predictors. The Normal Bayes classifier was
employed, assuming normality in distributed segment values
(other parameters remained in default) although not strictly
independent. This classifier models each class's attributes as
Gaussian distributions, where values cluster near the mean with
fewer outliers. Unlike Naive Bayes, it accounts for inter-class
relationships through covariance matrices (Modica et al., 2021).
During classification, the algorithm evaluates how well segments
fit each class's distribution and combines this with prior
probabilities to predict class membership. The resulting model
classified the statistical-segmented vector to produce a LULC
map.
2.2.3 Random Forest Classification

The Random Forest (RF) algorithm makes use of several decision
trees, where each tree classifies each pixel, based on the chosen
input parameters (Svoboda et al., 2022) This algorithm then
assigns the final class after taking the majority classification by
all trees.

The RF method was implemented in Google Earth Engine due to
its known cloud computing capabilities (Matarira et al., 2022).
Data refinements done were cloud masking (Bits 10-11 for
Sentinel-2 L1C) and SIAC atmospheric correction to convert raw
DNss to reflectance values (0-1). For the training data, at least 40
points were included per class and merged into a single dataset.
The model incorporated seven established indices namely NDVI
(Normalized Difference Vegetation Index), NDWI (Normalized
Difference Water Index), MNDWI (Modified Normalized
Difference Water Index), SAVI (Soil-Adjusted Vegetation Index),
NDBI (Normalized Difference Built-up Index), BRBA (Band
Ratio for Built-up Area) and UI (Urban Index), which can
discriminate between LULC classes (Adepoju et al., 2019). The
indices appear in Equations (1) to (7), with Sentinel-2 Level-1C
spectral bands B2, B3, B4, B5, B7, BS, and B11.

B8—B4

NDVI ===, 1)
where B8 = Near-infrared (NIR) band
B4 = Red band
NDWI = 23228 Q)
B3+B8
where B3 = Green band
B8 = Near-infrared (NIR) band
MNDWI = 22281 3)
B3+B11
where B3 = Green band
B11 = Shortwave-infrared (SWIR) band
B8-B4
SAVI = 1.5 X (BS+B4—+0.5)' “)
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where B8 = Near-infrared (NIR) band
B4 = Red band
NDBI = 51158 5)
B11+B8
where  B11 = Shortwave-infrared (SWIR) band
B8 = Near-infrared (NIR) band
- B
BRBA = ——, (6)
where B4 = Red band
B11 = Shortwave-infrared (SWIR) band
__ B7-BS
"~ B7+B5’ Q)

where  B7 = Vegetation red-edge 3 band

B5 = Vegetation red-edge 1 band

The execution of the classification process was implemented
using the ee.Classifier.smileRandomForest package. Using the
default parameter of 100 trees and random sampling, 80% of the
training samples were created, to which a decision tree was
generated for each training sample. The remaining twenty
percent (20%) were used to validate and test the classification
accuracy of the model (Matarira et al., 2022). The resulting
output of the RF model is the classified map of the study area and
was exported into the same scale of the original image, i.e. 10 m
with the coordinate system of WGS 84 (EPSG: 4326).

2.2.4 OBIA-RF Classification

This method combines the OTB tool for segmentation, classifier
modeling and uses RF as the classifier within the same plugin.
Default parameters were used; particularly the maximum number
of trees (100), maximum depth (5), and maximum number of
samples (10) to avoid underfitting and overfitting. The OTB
algorithm for RF is OpenCV-based (open-source computer vision
library) specializing in remote sensing and raster datasets.

2.2.5 Accuracy Assessment

The validation process utilized QGIS's AcATaMa plugin with
stratified random sampling, employing area-proportional sample
allocation (standard error target: 0.01) and 0.0001 degree
(=100m) minimum spacing. Reference data combined Google
Earth imagery with a georeferenced Metro Manila informal
settlements map from Singh (2015)'s OBIA-based study. The
assessment generated standard accuracy metrics including
overall, producer's, and user's accuracy.

Moreover, the F-score was calculated, which is a statistic that
considers both the user’s accuracy (UA) and producer’s accuracy
(PA). F-score indicates the performance of the classifier by
calculating the harmonic mean of UA and PA (Zurgani et al.,
2019), as shown in Equation (8).

(User's AccuracyxProducer’s Accuracy)
(User's Accuracy+Producer’s Accuracy)’

F —score =2 X ®)
The classified map's informal settlement extents were cross-
validated against manually digitized areas from VHR Google
Earth imagery (2020/2025), using 2024 imagery for the 2025
map. This approach follows established validation methods for

informal settlement mapping (Matarira et al., 2023), particularly
valuable given limited ground truth data in Philippine slums.
Accuracy was quantified through feature-similarity in Equation
(9) and patch-based mean absolute percentage error (MAPE) in
Equation (10).

MiN.aredseiected feature (9)

Feature Similarity = )
max.areQselected feature

where “selected feature” refers to corresponding features from
the classified and reference maps used for validation

actual area patch—forecast area patch|

MAPE = ., (10)
actual area patch |

To determine the standard for acceptable value, 0.60 to 0.79
Cohen’s Kappa was agreed to be a substantial percentage of data
reliability (Parraga-Alavaet al., 2021). For MAPE, Lewis (1982),
as cited by Montafio (2013), standardizes that a value of less than
0.50 means reliable data forecasting. These are applied upon
verification of LULC mapping and simulating.
2.2.6 LULC Map Simulation by ANN-MLP Modeling
The MOLUSCE (Modules for Land Use Change Evaluation)
plugin in QGIS was employed to predict future LULC changes
and maps. The plugin requires inputs of the initial state map
(2015) and the final step map (2020) to analyze the succeeding
changes of future maps. Modeling variables were integrated, as
these factors affect the LULC changes over time. Pearson’s
correlation coefficient must be close to zero, denoting little to no
correlation between modeling variables. This is to avoid
redundancy of input layers, which may cause overfitting upon
simulation. General statistics and transition matrix were also
displayed in the Area Changes Tab, to quantify the change in
areas of the land use and land cover types in the two selected
years. This also produced the LULC change map as one of the
modeling variables.
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Figure 2. Transition Potential Modeling

For the transition potential modeling, Artificial Neural Network
Multi-Layer Perceptron (ANN-MLP) was the chosen method to
train the data, as it has been proven to produce good results with
high accuracy (Souza et al., 2022) for modeling LULC changes.
Parameters such as the maximum number of iterations and
number of hidden layers were modified until both the learning
curve and error curve appear smooth, and the Current Validation
Kappa is about 0.8 or higher. For instance, DEM and slope of the
study area were initially included as modeling variables.
However, exclusion of DEM and slope resulted in a higher
validation kappa. This may be due to the relatively even elevation
of the city.

The outcome of the neural network method is the simulated
LULC map for 2025. Figure 2 shows the transition potential
modeling with 2015 as the initial LULC map and 2020 as the
final LULC map with the aforementioned modeling variables as
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input layers. The graph shows smooth, non-undulating,
downwards behavior, implying diminishing marginal error and
non-over-or-underfitting.

Validation of the predicted map was then compared to the closest
real-world reference map of 2025, utilizing the latest 2024
Google Earth imagery of Marikina. Patch-based metrics such as
MAPE and feature similarity were obtained to evaluate geometric
consistency with reference data.

2.3 LULC Application

From the subject LULC maps based on the method that produced
most accuracy, dasymetric mapping of population using urban
settlement-focused LULC classification through RF algorithm
and OBIA was done to validate effectiveness in estimating
population distribution within informal settlements of the
classification methods, providing evidence-based resource by
spatially linking population density to settlement types. This
approach does not only test the classification’s real-world utility
for slum density mapping but also generates actionable data to
address urban planning gaps in underrepresented communities.

2.3.1 Population Estimation by Dasymetric Mapping

Dasymetric mapping was done with the 2020 LULC maps using
OBIA, OBIA-RF, and RF classification, producing three
comparable thematic population maps in 2020 of Marikina City.
To further support which LULC classification method is most
accurate, the dasymetric maps of 2020 were compared to built-
surface Global Human Settlement Layer (GHSL) in 2018 with a
10-m resolution. Note that it is an open-sourced data from
Copernicus that is closest to assessing the population estimates
by human settlement thematic map. Hot Spot Analysis (Getis-
Ord Gi*) for the 2018 GHSL and 2020 population estimation
maps based on LULC using OBIA, OBIA-RF, and RF
classification methods were generated. These layers were used
for Hot Spot Comparison Analysis, such that the reference map
is the 2018 GHSL. Thereon, Global Similarity Values were
determined to distinguish which classification method used to
derive a population map is most similar to the 2018 GHSL, as an
accuracy assessment aside from the F-scores.

As an application of the most reliable classification method for
urban settlement-focused LULC mapping, the 2025 LULC
simulation and population projections were integrated to create a
population estimate, dasymetric map using LULC as ancillary
data. Census blocks were rasterized, while the LULC layer was
reclassified by settlement type (formal/informal) based on roof-
area population densities (Galeon, 2008). Using spatial analyst
tools, population densities were redistributed across barangays
according to LULC classifications.

3. Results and Discussion
3.1 Classified LULC Maps

Generated classified LULC maps from the OBIA, RF and OBIA-
RF methods are presented in Figure 3. For OBIA-Bayes
generated maps, some areas of informal settlement correspond
with the 2015 Metro Manila informal settlement type distribution
map. This agreement is attributed to the OBIA’s leverage in
identifying physical characteristics of slums such as irregular
shape, texture and relations to neighboring objects. which was

also used as the basis for classifying informal settlements. In this
study, however, it was visually observed that not all areas of
informal settlement were mapped when compared to the
reference maps. This aligns with Matarira et al. (2023) where the
OBIA approach failed to identify some discrete informal
settlement patches due to textural complexity. This implies that
varying roof materials indeed affect the identification of urban

settlements, particularly informal areas.
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Figure 3: Classified land cover maps of Marikina City for 2015
and 2020 generated using three methods: OBIA-Bayes, RF, and
OBIA-RF

For instance, the RF-classified maps show scattered informal
settlements, particularly distributed in urban centers, deviating
from reference data. This discrepancy likely stems from training
data limited to galvanized steel roofs near Marikina River,
causing misclassification of similar roofing materials common in
formal structures. As a pixel-based method, RF fails to
incorporate contextual neighborhood features critical for
informal settlement identification. While RF proves less suitable
than OBIA for Philippine informal settlements due to prevalent
metal roofing, it achieves reasonable accuracy for non-settlement
land use and land covers, reflecting machine learning's strength
in heterogeneous classification (Alrasheedi et al., 2024).

Meanwhile, OBIA-RF maps showed high agreement with the
informal settlement areas, as opposed to solely OBIA and RF.
Although this hybrid approach may appear to have overclassified
blocks of slums, this was attributed to interurban variability of
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morphological slum features (Stark et al., 2020) and similarities
in spectral reflectivity (Qu et al., 2021) between formal and
informal areas. These overestimated classifications have its
effects on dasymetric mapping thereafter, but this method was
still able to map out informal settlements with higher precision
than only OBIA. Findings from the accuracy assessment have
shown that the OBIA-RF method consistently obtained the
highest overall accuracy (OA), UA, and PA among the three
methods in terms of formal and informal settlements.
Accordingly, the highest F-scores for urban settlements are
attained by OBIA-RF as shown in Figure 4, implying that this
method is the best classifier for settlement classes among the
three approaches.
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Figure 4. Comparison of F-Scores for All Classes in (a) 2015
and (b) 2020 LULC maps

These results were also observed in the accuracy assessment
considering only the two settlement classes in Figure 5. OBIA
and RF alternated in which method performed better for the 2015
and 2020 accuracy assessments due to the LULC changes that
suited one approach over the other. Meanwhile, the hybrid OBIA-
RF algorithm remained to be the best classifier. The findings
align with prior research (Alrasheedi et al., 2024) demonstrating
that combining OBIA and RF improves informal settlement
classification accuracy. This hybrid approach leverages RF's
capacity to process diverse geospatial data efficiently and OBIA's
strength in object-level analysis. The neighborhood physical
characteristics of slums are precisely mapped due to OBIA’s high
image segmentation capabilities, and its corresponding
classification limitations are addressed by RF through its
robustness in handling complex environments. Incorporating
both methods resolves the challenges that the separate methods
encounter which better captures informal settlements'
morphological characteristics. Further improvements could
incorporate additional indicators like textural variables and local
expertise (Alrasheedi et al., 2024).
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Figure 5. Comparison of F-Scores for Settlement Classes

Overall, OBIA-RF attained F-score ratings of 86.37%—-94.44%
for formal settlement and 65.18%-72.19% for informal
settlement. Differences in the range of values were observed
when compared to above 80% accuracies attained by OBIA-RF
in previous studies on informal settlement mapping (Matarira et
al., 2022; Qu et al., 2021). This variation may be attributed to
dissimilarities in the study sites’ environment, slums’ physical
characteristics, and data resolution. For instance, the validation
for land cover classes in this study relied on publicly available
reference data, which includes the informal settlement map and
Google Earth imagery. The average quality of historical images,
however, presents challenges in precisely identifying and
delineating features of informal areas. To address this in future
works, street-level imagery (Veeravalli et al., 2025) or drone
images may be obtained for higher quality of validation data.

Nevertheless, the results of F-scores for the hybrid approach
combining OBIA and RF LULC classification methods are
further supported by patch-based MAPE and feature similarity
indices of 30.32%40.77% and 59.22%-78.03% respectively,
reinforcing the robustness of the F-scores. This provides a strong
justification in the selection of OBIA-RF, validating its spatial
reliability. Given the study’s focus on population mapping, which
is closely tied to settlements, the OBIA-RF method was selected
for its classification superiority. The 2015 and 2020 OBIA-RF
classified maps consequently served as inputs for simulating the
projected LULC map in 2025.

3.2 Dasymetric Maps of Estimated Population

Using the classification methods, thematic map of population
estimates for 2020 of Marikina City were processed and
compared to the open-sourced, 10-m fine resolution of urban
settlement layer from Copernicus. Figure 6 shows the maps that
reflect urban settlement and the population of Marikina City.
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Figure 6: 2018 GHSL of Built Surfaces; 2020 LULC-based
Population Estimate Maps Using OBIA, RF, and OBIA-RF
classification methods

The Global Similarity Values, derived from the comparison of
LULC-based population maps with the 2018 GHSL (as detailed
in Section 2.4.1), were analyzed to determine the reliability of
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each classification method. OBIA-RF achieved the highest
Global Similarity Value of 0.4978, highlighting its suitability for
urban settlement mapping that is consistent with the F-score
results. On the other hand, the similarity values are 0.4497 for
OBIA and 0.4691 for RF classification method. All values fall
within the moderate similarity range, indicating that some areas
of the LULC maps correspond to GHSL, yet some also
significantly differ. These observed variations in the population
estimate maps are found to be influenced by LULC
misclassifications. Complexities in defining the term informal
settlement induce uncertainties in the evaluator’s classification
(Matarira et al., 2022), considering that housing types in the
Philippines could be further categorized other than formal and
informal settlements (Crawford and Stephan, 2015; Galeon,
2008). Nevertheless, certain regions of the maps were found to
closely align with the GHSL. This implies that while the values
are moderate, they confirm that the method captures meaningful
settlement patterns and produces results suitable for dasymetric
population mapping in complex urban settings.
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Figure 7. Dasymetric Mapping of Population Estimate of
Marikina City in 2025 Using OBIA-RF LULC Map

Figure 7 displays a 30m-resolution population density map
derived through dasymetric mapping, incorporating simulated
LULC (based on 2015-2020 classifications), LST, area changes,
and proximity to infrastructure. High-density areas correlate with
informal settlements near Marikina River, which are consistent
with resettlement studies (Delos Reyes and Francisco, 2014). The
classified map cross-validated to 2024 VHR Google Earth and
resulted in an F-score of 70.21%, 75.65% feature similarity based
on area, and 33.54% MAPE. Hence, this approach indeed
improves coarse barangay/block census data by distributing
population according to LULC characteristics. Given challenges
in surveying informal settlements due to residents' reluctance
(Gupta, 2024), dasymetric mapping provides a valuable
alternative for estimating populations in data-scarce areas.

4. Conclusion and Recommendations

Dasymetric mapping is a method used to refine population
distribution in connecting to ancillary data such as LULC
geospatial information. RF algorithm and OBIA are effective
methods in generating LULC data based on spectral and
morphology data. With the challenge of getting slum dweller
information in line with LULC mapping of an urbanized city, this
study focused on comparing three different methods for LULC
classification: (1) RF classification, (2) OBIA using a Bayes
classifier, and (3) a hybrid technique combining RF and OBIA

with a Bayes classifier; the determined approach that is most
accurate and reflective of actuality is the LULC classification
used to proceed with dasymetric mapping of estimated
population. The OBIA-RF algorithm effectively maps irregular
informal settlements by incorporating spectral, geometric, and
textural features during segmentation, proving particularly adept
at slum differentiation.

Determination of an effective LULC classification method
allows generation of accurate LULC maps, which may be
synthesized with the area’s demographic characteristic. For
instance, dasymetric map of estimated population was done to
show population trends alongside LULC changes, with focus on
informal settlement of the urbanized city. In line with the LULC
classification, the population dasymetric map reflects the
geospatial distribution of the city’s population, with notably high
concentration in slum dwellings. This provides information
regarding commonly unrecorded demographic characteristics of
the city about informal settlers. The dasymetric maps produced
in this study offer direct utility for Marikina City’s governance
challenges, particularly in disaster resilience and equitable
resource allocation. For instance, the high-resolution population
surfaces reveal dense informal settlements along the Marikina
River, a known flood hazard zone, which enables targeted
interventions, such as early warning system deployment or
prioritized infrastructure upgrades. Local government units
(LGUs) could integrate these maps with existing hazard maps to
refine evacuation plans or zoning regulations. At the same time,
NGOs might leverage them to allocate health and education
services to informal communities. By aligning with the
Philippines’ Community-Based Disaster Risk Reduction
framework (Delos Reyes and Francisco, 2014), these outputs
bridge technical modeling with community and targeted
planning, addressing a gap in data-driven decision-making for
informal settlements.

For future work, improving Normal Bayes accuracy requires
balanced training samples per class, as this directly factors into
the algorithm's calculations. Enhanced a priori knowledge of
settlement characteristics (topology, morphology) can better
accommodate informal settlements' irregular textures. Well-
defined training samples enable more reliable method
comparisons. Additional approaches could explore GEE
clustering algorithms combined with OBIA. High-resolution
imagery remains recommended for small areas due to superior
spatial, spectral, and radiometric resolution.
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