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Abstract 

Red tide, a commonly used misnomer for HABs in the Philippines, poses a significant threat to the environment, fisheries, and public 
health. Since current red tide detection methods, such as in-situ sampling, are mostly reactive and usually result in delayed issuance of 
advisories, this study developed a model for predicting red tide occurrences in the Philippines using XGBoost and MODIS-derived 
oceanographic parameters. Five key parameters, namely Chlorophyll-a (chl-a), Sea Surface Temperature (SST), Photosynthetically 
Available Radiation (PAR), Diffuse Attenuation Coefficient (Kd(490)), and Particulate Backscattering Coefficient (bbp(443)), were 
extracted from MODIS Aqua 8-day composite products spanning 2003 to 2021. These were integrated with historical data from BFAR, 
covering the same period, to train a predictive model using the XGBoost algorithm. The final model demonstrated moderate 
performance as reflected in its accuracy (58%), F1-score (59%), and AUC (61%), with chl-a and Kd(490) as the most influential features 
based on their SHAP values. Its precision and recall of 58-59% showed its balanced predictive ability across classes, namely, banned 
and lifted. Model performance across different FMAs and seasons varied due to factors, such as minor variation in parameter values 
across adjacent FMAs and seasons, missing pixel values of crucial parameters, mismatched parameter values and red tide-linked 
conditions, and unevenly distributed training data. Among all, the model produced the most reliable and representative results in FMA 
7, and the poorest in FMAs 10 and 11. 

1. Introduction

1.1 Background of the Study 

As the primary food source for aquatic organisms, phytoplankton 
is a vital component of marine ecosystems. However, when 
natural and anthropogenic factors, including sewage discharge, 
agricultural activities, and surface runoff, disrupt the equilibrium 
in these ecosystems, the nutrient levels in marine ecosystems 
become excessively high, resulting in the development of 
Harmful Algal Blooms (HABs). Algal blooms, whether toxic or 
non-toxic, degrade water bodies and cause extensive fish kills, 
which can result from either toxin production or oxygen 
depletion (Pal et al., 2020; Khan et al., 2021). 

In the Philippines, red tide is a commonly used misnomer to refer 
to HABs. However, based on the scientific definition, HABs refer 
to any algal proliferation that produces toxins or harmful effects 
on humans and marine animals, while red tide pertains to 
excessive phytoplankton growth, particularly dinoflagellates that 
produce saxitoxin, leading to water discoloration (Wexler, 2014; 
Azanza et al., 2024). In the Philippines, the most commonly 
reported toxic manifestation of red tide is paralytic shellfish 
poisoning (PSP), which can be acquired from consuming 
shellfish contaminated with Pyrodinium bahamense, 
Gymnodinium catenatum, or toxic Alexandrium spp (Azanza et 
al., 2024). From 1983 to 2002, the country recorded the highest 
number of PSP cases in Asia, with 2,124 incidents and 120 
fatalities (Ching et al., 2015). Beyond health impacts, red tide 
outbreaks have also posed serious economic consequences. 

Although there are already studies on detecting red tide, there 
remains a gap in research on predicting red tide events. Currently, 
the Bureau of Fisheries and Aquatic Resources (BFAR) heavily 
relies on water samples and shellfish meat sample collections to 
issue advisory bulletins on red tide (Yñiguez et al., 2020). 
However, sampling and analysis typically happen after requests 

from local government units or after residents observe or 
experience the effects of red tide, making these approaches 
inefficient. Moreover, the diverse and fragmented coastal 
geography of the Philippines makes it difficult to model red tide 
events using ground-based data alone, as it requires extensive 
sampling to capture spatial variations. In contrast, remotely 
sensed datasets provide broader and consistent coverage for 
quantifying these differences across various coastal 
environments. Therefore, in this study, five (5) oceanographic 
parameters derived from MODIS imagery and historical data 
from BFAR were used by the XGBoost algorithm to predict red 
tide occurrences across the Philippines.  

1.2 Objectives 

Given that existing methods of detecting red tide are mostly 
reactive, there is a need for predictive approaches to mitigate 
adverse effects on the environment, local fisheries, and public 
health. Thus, this research aims to develop a prediction model for 
red tide in the Philippines using MODIS-derived oceanographic 
parameters and XGBoost. The specific objectives of the study 
are: 

1. To analyze the relationship between red tide events and 
five (5) MODIS-derived parameters, including
Chlorophyll-a (chl-a), Sea Surface Temperature (SST), 
Photosynthetically Available Radiation (PAR),
Diffuse Attenuation Coefficient (Kd(490)), and
Particulate Backscattering Coefficient (bbp(443)) using
Pearson correlation and Seasonal and Trend
decomposition using LOESS (STL).

2. To develop and assess the predictive performance of
the XGBoost model for occurrences of red tide by
comparing its predictions with the test set using
performance metrics, such as precision, accuracy,
recall, F1-score, and AUC.

3. To evaluate spatial and temporal patterns of predicted
red tide bans and potential model biases across FMAs
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and seasons using MODIS-derived oceanographic 
parameters and XGBoost. 

 
1.3 Significance of the Study 

This study is critical in addressing the need for predicting red tide 
events in the Philippines as part of a proactive approach to red 
tide monitoring and management. This approach not only 
addresses the gap in the prediction of red tide events but also 
offers a foundational step toward developing a proactive, 
scalable, and efficient tool for protecting communities and 
fisheries in the Philippines. Moreover, this approach aligns with 
various Sustainable Development Goals (SDGs) that can benefit 
the country: SDG 14 (Life Below Water), Targets 14.1 and 14.2, 
by reducing marine pollution and promoting sustainable marine 
resource management; SDG 3 (Good Health and Well-Being), 
Target 3.9, by mitigating health risks associated with red tide-
related contamination; SDG 1 (No Poverty), Target 1.5, by 
preserving economic livelihoods and reducing vulnerability to 
the impacts of red tide; and SDG 8 (Decent Work and Economic 
Growth), Target 8.5, by fostering productive employment in the 
fishing and aquaculture sectors. 
 

2. Methodology 

2.1 General Workflow 

Figure 1 outlines the general processes involved in this study, 
with each step described in the subsequent sections. 

 
Figure 1. General Flowchart of the Study 

 
2.2 Data Collection 

To predict red tide events in the Philippines, various datasets 
were utilized that capture both environmental conditions and 
spatial distributions relevant to red tide occurrences. Historical 
records were obtained from the Bureau of Fisheries and Aquatic 
Resources - Fisheries Resources Management Division (BFAR-
FRMD), based on bulletin advisories from 2003 to 2021. These 
included specific location and status, and in some cases, other 
relevant information for certain years, including causative 

organisms, toxin levels, and cell densities. However, not all these 
details were consistently available for every year. 
 

 
Figure 2. Sampling Stations of the Recorded Areas for Red Tide 

and Fisheries Management Areas (FMAs) in the Philippines 
(2002-2023) 

Since spatial variability is crucial in this study, the researchers 
incorporated the coordinates of the 382 sampling stations of the 
62 recorded areas in the bulletins over the 19 years, as seen in 
Figure 2. However, the bulletins did not specify which sampling 
station detected individual red tide events. To assess the 
environmental conditions associated with red tide events, Level 
3 Standard Mapped Image (SMI) products were used for five (5) 
oceanographic parameters, specifically chl-a, which indicates 
phytoplankton biomass; SST, which affects phytoplankton 
growth; Kd(490), which measures light reduction with depth; 
bbp(443), which measures light reflected by suspended particles; 
and PAR, which estimates sunlight for ocean photosynthesis. 
These 8-day composite datasets are satellite-derived and 
averaged on a consistent spatial grid. A total of 873 images were 
used for each parameter, except for SST, with 850 images, 
covering 2003 to 2021. They are also already land and cloud 
masked since Level 2 data, from which Level 3 products are 
derived, undergo quality assessment. In this way, it is ensured 
that Level 3 data contain only valid geophysical measurements, 
making it reliable for water-related studies such as red tide 
prediction. However, given its 4.6 km spatial resolution, 
mismatches with the actual location of sampling stations may 
occur, prompting analysis at the red tide-affected site level. For 
spatial visualization, additional geospatial layers were included, 
such as administrative boundaries from GADM, FMA 
boundaries from BFAR, to allow red tide-affected sites to be 
grouped based on similar oceanographic conditions, and the 
delineation of red tide-affected bays, coastal waters, and 
sampling stations. 
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2.3 Preparation of the Remotely-Sensed Input 
Parameters 

2.3.1 Reprojection: All NASA Ocean Color Level 3 8-day 
composite NetCDF files were initially loaded into QGIS 3.40.3 
to identify and extract the relevant subdatasets for each 
parameter. Then, a script was used to automate the bulk loading 
of usable subdatasets into grouped layers by parameter in QGIS. 
To ensure spatial consistency, all layers were reprojected to WGS 
84/UTM Zone 51N. In this way, the downloaded datasets will be 
overlaid properly and expressed in consistent measurement units 
for subsequent processes and analysis. 

2.3.2 Extraction of Site-Specific Environmental Data: 
Pixel values for the five (5) oceanographic parameters were 
extracted across all available dates for each parameter. This was 
done to obtain site-specific environmental conditions relevant to 
red tide events based on the pixel values corresponding to each 
sampling station using their coordinates. From here on, the 
extracted pixel values for each parameter were saved separately 
in CSV format for subsequent analysis. 

2.4 Exploratory Data Analysis (EDA) 

2.4.1 Correlation Analysis: In this study, pairwise Pearson 
correlation was used to analyze relationships between 
oceanographic parameters. The Pearson correlation coefficient, 
represented as r, for two variables, x and y, with paired values, is 
given by Equation 1: 
 

𝑟𝑟 =  ∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)
�∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2 ∑(𝑦𝑦𝑖𝑖−𝑦𝑦�)2

  (1) 

 
where xi, yi = individual data points  
 x̄, ȳ = means of each variable 
 
This analysis helped identify patterns and dependencies between 
variables. For example, since chlorophyll-a (chl-a) is closely 
related to HAB distribution (Izadi et al., 2021), any parameter 
closely correlated with chl-a can also be a good proxy of red tide 
occurrence. This analysis also supported feature selection by 
pointing out the most significant parameters and confirmed 
preliminary hypotheses about drivers of red tide. 
 
2.4.2 Appropriate Lag Determination: To determine the lag 
period for predictive model training, the historical records of red 
tide events in 2003 and the five (5) parameters were examined. 
Using Google Colaboratory, time series plots were produced for 
each bay and coastal water using the corresponding values of 
each parameter in 2003. The given banned and lifted 
classifications, as well as their corresponding dates of sample 
collection, were overlaid on the time series plots. Based on the 
plots, the lag period for each parameter was estimated. For chl-a, 
this was measured as the delay between the sample collection 
date and the first ban advisory. For sites with multiple sample 
collection dates, the first ban after the earlier collection period 
was used as the reference point for the next estimation. The same 
logic was applied to other parameters except SST. For SST, the 
lag period was measured by identifying when it reached the 
optimal range of 28°C to 30°C for the growth of P. bahamense, 
the most common causative organism (Smayda, 1997; Folio & 
Yap-Dejeto, 2022). The gap was calculated from the point of 
optimal SST value until the first ban advisory after the chl-a 
collection date, since it is the most commonly used proxy for 
algal blooms (Manzar Abbas et 

al., 2019; Izadi et al., 2021; Joshi et al., 2024). This delay was a 
critical factor in estimating the lag period for each parameter 
because it affected the timing of red tide alerts. 
 
2.4.3 Baseline Model Evaluation: To gauge the potential 
model performance of XGBoost using the given datasets, Lazy 
Predict was utilized. Lazy Predict is a library in Python that 
facilitates model training and evaluation of model performance. 
In this study, it was used to gain insight into the baseline values 
of evaluation metrics that could be achieved by XGBoost given 
the available data without any tuning process. The performance 
metrics tested include accuracy, balanced accuracy, ROC AUC, 
F1 score, and runtime. The results helped set realistic 
expectations and served as a benchmark for further 
improvements, particularly for XGBoost. 
 
2.4.4 Time Series Analysis: Time series analysis serves as a 
valuable preliminary method for examining the trend and 
seasonality in datasets with chronologically arranged 
observations (Donatelli et al., 2022). To conduct the analysis, the 
extracted pixel values for each site-parameter combination were 
plotted and exported as individual images through RStudio. This 
involved generating time series plots of each parameter and 
decomposing the data into trend, seasonality, and residual 
components. Afterward, the plots were visually analyzed based 
on the trend and seasonality of each parameter.  
More specifically, the Seasonal and Trend decomposition using 
LOESS (STL) method was used in R version 4.4.2 to break down 
time series objects into trend, seasonal, and remainder 
components. The seasonal component shows the recurring 
patterns that happen at regular intervals; the trend component 
provides the overall direction of the data; and the remainder 
component captures the random variations or residuals (Gordan 
et al., 2024). To extract these components, a custom R version 
4.4.2 script was used to apply STL to all five parameters, and they 
were plotted and saved. The median value of all 8-day composite 
pixel values in a month was used to represent values for each 
month per parameter-site combination, addressing missing pixel 
values in some oceanographic parameters, which could be due to 
cloud cover, as STL cannot handle trailing missing values. Thus, 
a frequency of 12, representing 12 months, was used. In instances 
where an 8-day period overlapped two months, it was assigned to 
the month it was temporally closest to. 

2.5 XGBoost Modeling 

This study leveraged the loss and regularization capabilities of 
XGBoost, iteratively minimizing residual errors and preventing 
overfitting. Its capability to handle missing data and proven 
success in past red tide prediction studies further support its 
selection as the algorithm for this study (Izadi et al., 2021). 
 
2.5.1 Feature Engineering: Since the parameters do not have 
the same range of values, feature scaling, which is a technique 
employed to standardize the data, was implemented using mean 
normalization, as shown by Equation 2. This ensured that model 
training is more efficient. To capture temporal patterns and 
historical trends, lag features were created using the determined 
1-period lag, corresponding to the previous 8-day value for each 
parameter. 
 

        𝑥𝑥′ =  𝑥𝑥  −  µ
𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)  −  𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)

            (2) 
 
where x = individual value of a feature 
 μ = average mean of the values of a feature 
 min(x) = minimum feature value 
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 max(x) = maximum feature value 
 
2.5.2 Data Splitting: Using a time-based stratified data 
splitting method, the 2003 to 2021 extracted pixel values for each 
8-day composite oceanographic parameter and their 
corresponding 1-period lag values for every unique site, were 
split into training (80%), validation (10%), and testing (10%) 
datasets, the most common ratio for data split and helps prevent 
data leakage (Delisi, 2024). Given the complex dynamics of red 
tide events, allocating a larger portion for training is ideal to 
allow the model to learn intricate patterns in the data better. To 
avoid bias and ensure reliable performance, a balanced 
representation of banned and lifted classifications was preserved 
across all three datasets. 
 
2.5.3 Hyperparameter Tuning: To enhance the predictive 
performance of the model, hyperparameter tuning was done 
before every model training. This was performed using Optuna 
in Google Colaboratory, which employed Random Search. A 
hundred trials using this method were performed, selecting 
random hyperparameter values from a set range rather than going 
through all possible hyperparameter combinations. To prevent 
possible overfitting, the tuning process was also configured to 
stop early when the F1-score did not show improvement over the 
trials. 
 
2.5.4 Model Development and Evaluation: In each trial, 
after sampling a specific hyperparameter combination, the model 
was trained using the mean values and lagged values of Chl-a, 
SST, PAR, Kd(490), and bbp(443) per site from 2003 to early 
2020. Model performance was evaluated using AUC-ROC to 
guide hyperparameter selection. The best combination was then 
used to retrain the model and generate prediction probabilities for 
red tide classifications (“1” for banned, “0” for lifted) in the 
validation set covering late 2020 to early 2021. These 
probabilities were converted into binary outcomes using the 
optimal threshold from Youden’s J Statistic. Predictions were 
marked “TRUE” or “FALSE” based on actual classifications. 
Model performance was assessed through a confusion matrix 
(Table 1), using accuracy (Equation 3), recall (Equation 4), 
precision (Equation 5), F1-score (Equation 6), macro average 
(Equation 7), and weighted average (Equation 8) as metrics. The 
macro average equally weights all classes, while the weighted 
average accounts for class imbalance. It was also assessed against 
two benchmarks: (1) Inokuchi et al. (2024), whose red tide 
classification model achieved 52–58% across metrics; and (2) 
Lazy Predict results, representing baseline performance without 
tuning. SHAP (SHapley Additive exPlanations) was also used to 
interpret feature contributions. Final evaluation on the test set, 
covering the unseen data from 2020–2021, used the same metrics 
and SHAP, with results visualized across FMAs. 
 
 Classified as banned Classified as lifted 
Banned True Positive (TP) False Negative (FN) 
Lifted False Positive (FP) True Negative (TN) 

Table 1. Confusion Matrix 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 +  𝑇𝑇𝑇𝑇

  (3) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (4) 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (5) 
 

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
2 ( 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +𝐹𝐹𝐹𝐹
)( 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +𝐹𝐹𝐹𝐹

)

� 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +𝐹𝐹𝐹𝐹

�+ � 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +𝐹𝐹𝐹𝐹

�
  (6) 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  1

𝑁𝑁
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑁𝑁
𝑖𝑖=1   (7) 

 
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 𝑥𝑥 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖)𝑁𝑁

𝑖𝑖=1
∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (8) 

 
where N = total number of classes 
 Metrici = performance metric for class i 
 Supporti = number of samples in class i 
 

3. Results and Discussions 

3.1 Exploratory Data Analysis (EDA) 

3.1.1 Relationship Among the Oceanographic Parameters: 
The strong positive relationship between chl-a and Kd(490), as 
observed in Figure 3, suggests that when the phytoplankton 
biomass gets high, it inhibits light penetration in the water 
column, which has been noted in other studies. Moderate 
correlation between chl-a and bbp(443) implies that when chl-a 
levels increase, the concentration of suspended particles also 
increases, resulting in increased light backscattering. This also 
highlights that bbp(λ) is sensitive to both phytoplankton and non-
algal particles, limiting the strength of the correlation. 
 

 
Figure 3. Correlation Matrix of All Oceanographic Parameters 

 
Contrary to the results, a weak negative correlation between chl-
a and SST has been observed, following the overall trend in some 
equatorial and tropical oceans where higher SST is normally 
linked with higher stratification, which lowers nutrient upwelling 
and suppresses phytoplankton growth. However, such trends do 
not apply to this study, as some red tide-affected areas may have 
experienced high river discharge, allowing phytoplankton growth 
despite high SST. A similar pattern of positive correlation 
between SST and chl-a was observed in areas with high nutrient 
runoff. Likewise, a weak negative correlation was evident 
between chl-a and PAR, implying that while PAR supports 
photosynthesis, excessive light can trigger photoinhibition and 
reduce photosynthetic efficiency. Similar to chl-a, Kd(490) also 
shows moderate correlation with bbp(443), suggesting that more 
suspended particles result in higher light backscattering and 
attenuation. In contrast, it has weak correlations with SST and 
PAR, revealing that temperature and the amount of sunlight have 
less influence on light penetration than particles.  
 
The weak correlation between SST and PAR has also been 
observed, revealing that higher sea surface temperatures do not 
always result in higher levels of PAR. In contrast, some 
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observations of increased SST and PAR levels during the dry 
season are accompanied by decreases in algal biomass, whereas 
decreases in both parameters during the wet season enhance algal 
growth. Meanwhile, the negligible or weak negative correlations 
of bbp(443) with PAR and SST demonstrate its responsiveness to 
other parameters. Particularly, while bbp(λ) is linked with 
phytoplankton carbon, the presence of non-algal particles also 
plays a significant role in influencing bbp(λ).  
 
While there are slight variations in the findings, these only 
highlight the dynamic nature of marine ecosystems. These 
ecosystems in various water bodies can have distinct features that 
vary with time and space (Titaley et al., 2024). Thus, the 
interactions between oceanographic parameters vary depending 
on the region and the time being considered. 
 
3.1.2 Lagged Effects of Oceanographic Parameters on Red 
Tide: Figure 4 shows the plot integrating 2003 red tide records 
with satellite-derived parameter values for bays and coastal 
waters. These plots were used to estimate all possible lag periods 
per parameter, revealing that a one (1) week lag was most 
frequent. On average, the five (5) parameters underwent changes 
a week before BFAR issued red tide advisories, affecting the 
timing of red tide alerts. These observations informed the 
creation of lag features for chl-a, SST, PAR, Kd(490), and 
bbp(443). Since the parameter values were from 8-day 
composites, the lag features corresponded to the previous 8-day 
window value for each parameter, enabling the model to identify 
temporal patterns and historical trends and improving red tide 
prediction (Analytics Vidhya, 2024). 
 

 
Figure 4. Parameter Time Series in Dumanquillas Bay in 2003 

3.2 Time Series Analysis of Oceanographic Parameters 

Most of the trends in the STL plots were fluctuating across all 
sites and parameters, with short-term spikes and inconsistent 
patterns, reflecting the realistic and dynamic environmental 
conditions commonly linked to red tide events. For instance, 
sudden increases followed by sharp declines in chl-a suggest a 
bloom-bust mechanism, typical of phytoplankton dynamics. 
Similar trends in Kd(490) and slight deviations in bbp(443) further 
indicate the influence of phytoplankton presence on light 
penetration, while non-algal particles may explain anomalies. 
SST trends showed a general increase over time, likely due to 
global warming, while PAR varied seasonally with sunlight 
availability.  

The clustering of seasonality patterns revealed that FMAs 2, 6, 7, 
9, 10, and 11 mostly followed one or two low-high cycles per 
year, likely influenced by monsoonal patterns. In contrast, FMAs 
3, 4, and 8 showed more complex cycles, possibly due to 
localized anthropogenic or environmental factors. FMAs 5 and 
12 showed no consistent patterns, indicating highly site-specific 
conditions. These seasonal trends were particularly consistent 
between chl-a and Kd(490), supporting their strong correlation in 
understanding phytoplankton growth. Similarly, bbp(443) showed 
recurring two low-high cycles in many FMAs, reflecting 
particulate matter variation likely driven by sediment 
resuspension during monsoon transitions, allowing 
phytoplankton growth. SST and PAR exhibited two high-low 
cycles annually, consistent with seasonal monsoons. 

Overall, while seasonality is present across all sites, the pattern, 
timing, and frequency of these seasonal cycles vary considerably, 
especially in parameters heavily affected by localized 
environmental and anthropogenic factors, such as chl-a, Kd(490), 
and bbp(443). These seasonal variations only highlight the 
importance of understanding context-specific environmental 
conditions in analyzing red tide occurrences. 

3.3 Model Development 

Table 2 shows that the learning rate of the model was extremely 
slow, preventing it from overfitting. To compensate for the low 
learning rate, a high number of trees (n_estimators) was applied, 
allowing the model to pick up intricate patterns in the data over 
time slowly. Moderate deep trees (max_depth) and splits with 
little data (min_child_weight) were also used to capture 
significant interactions without becoming too complicated. A 
considerably small value for the gamma was selected, enabling 
the model to be flexible and open to potential splits to improve 
accuracy. The subsample and colsample_bytree values indicate 
how much data and features each tree used, reducing overfitting 
and improving generalization to newer data. For regularization, 
both L1 (reg_alpha) and L2 (reg_lambda) penalties were 
moderate, acting as barriers to control model complexity and 
avoid overfitting. The small max_delta_step allowed the model 
learning to be more stable by limiting the maximum allowed 
adjustment of the model per round of learning. Lastly, the model 
grew trees based on balanced depth, which can be suited for 
temporal and spatial oceanographic data. 
 

Hyperparameter Value 
learning_rate 0.008727037 
n_estimators 1084 
max_depth 4 

min_child_weight 1 
gamma 8.07E-06 

subsample 0.826645452 
colsample_bytree 0.603955538 

reg_alpha 0.194025081 
reg_lambda 0.268606812 

max_delta_step 2 
grow_policy depthwise 

Table 2. Optimal Hyperparameters for the Model 
 
3.4 Model Evaluation 

Using the test set, the model performed moderately, as shown in 
Table 3, with accuracy (58%), F1-score (59%), and AUC (61%). 
Precision for Class 0 (lifted) and 1 (banned) was 58%, the recall 
was 58% and 59%, and F1 scores were also 58% and 59%, 
respectively. The macro and weighted averages across metrics 
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were 58%. It surpassed the baseline model performance produced 
by LazyPredict with accuracy, balanced accuracy, ROC AUC, 
and F1 score of 54%. These values were similar to the findings 
of Inokuchi et al. (2024), who applied a comparable methodology 
for red tide detection and achieved metrics of 58-61% using the 
VGG11 model. Although moderate, it performed relatively 
steadily and well-balanced, showing its potential as a practical 
solution in resource-constrained situations and as a stepping-
stone for red tide early detection using satellite imagery through 
complementing existing methods. The non-inclusion of spatial 
aspects surrounding the red tide-affected sites, such as 
environmental factors and anthropogenic influences, may have 
contributed to limiting its ability to entirely capture the complex 
ecological interactions influencing red tide events, potentially 
reducing its performance. 
 

Test Set 
Accuracy 0.58 
F1-score 0.59 

AUC 0.61 
 Precision Recall F1-Score Support 

Class 0 (Lifted) 0.58 0.58 0.58 493 
Class 1 (Banned) 0.58 0.59 0.59 494 
Macro Average 0.58 0.58 0.58 987 

Weighted Average 0.58 0.58 0.58 987 
Table 3. Performance Metrics for Test Set 

 
SHAP analysis gives directional insights into the role of each 
oceanographic parameter in predicting red tide bans, as indicated 
by positive SHAP values, and lifts, as represented by negative 
SHAP values (Britton et al., 2024). As shown in Figure 5, SST 
had the strongest impact, where higher values leaned toward 
lifted predictions and lower values toward banned predictions, a 
pattern mirrored by its 8-day lag. Chl-a and its lag showed a 
similar, but weaker, pattern. In contrast, Kd(490) and its lagged 
counterpart have a smaller overall impact, with higher values 
leaning toward banned predictions and lower values toward lifted 
ones. Meanwhile, PAR and bbp(443), including their lags, 
showed complex and non-linear relationships with both high and 
low values contributing to both SHAP directions, indicating a 
non-linear influence on predictions. 
 

 
Figure 5. SHAP Summary Plot of the Test Set 

 
These findings align with Karki et al. (2018), Hill et al. (2020), 
and Izadi et al. (2021), identifying SST, chl-a, and Kd(490) as key 
red tide detection drivers. The behavior of SST and its lag relates 
to the most prevalent causative organism of red tide in the 
Philippines, P. bahamense, which grows best at 28–30 °C, 
suggesting temperature beyond this level may limit its growth 

(Smayda, 1997; Folio & Yap-Dejeto, 2022). Meanwhile, the 
behavior of chl-a and its lag can be explained by distinct water 
profiles in the Philippines, where its trends vary across areas. 
 
3.5 Visualization of Prediction Results 

Based on the test data, Table 4 shows overall moderate to weak 
model performance in FMAs 2, 5, 7, 8, and 9 across the seasons. 
These are attributed to similar environmental conditions across 
clustered red-tide affected sites, minimal differences in parameter 
values across seasons, missing pixel values in crucial parameters 
such as chl-a and Kd(490), and training data distribution. 
Collectively, these reduce the ability of the model to distinguish 
between red tide and non-red tide events. Distinct parameter 
values across seasons in FMA 7 helped to yield better 
performance compared to other FMAs.  While the results in 
FMAs 3 and 6 appear promising, the predictive performance of 
the model should be interpreted and analyzed carefully, given 
that each has only one site, hence, only reflecting the predictive 
performance at those particular sites and limiting the reliability 
of the findings at a broader regional scale. Poor model 
performance was observed in FMAs 10 and 11 due to minimal 
differences in parameter values across seasons and mismatched 
parameter values and red tide-linked conditions. Since FMA 7 
had the most historical data across the seasons and the most 
number of sites, it has the most representative and reliable 
prediction results among all, with its relatively good performance 
metrics, followed by FMA 2 in terms of generalizability of the 
results. 
 

FMA Precision Accuracy Recall F1-Score AUC 
2 0.67 0.55 0.62 0.64 0.51 
3 0.92 0.86 0.92 0.92 0.46 
5 0.38 0.68 0.74 0.50 0.70 
6 0.86 0.94 1.00 0.92 0.96 
7 0.49 0.58 0.61 0.55 0.58 
8 0.66 0.63 0.51 0.57 0.63 
9 0.39 0.63 0.73 0.51 0.66 

10 0.69 0.46 0.45 0.54 0.48 
11 0.48 0.50 0.50 0.49 0.50 

Macro 
Average 0.58 0.58 0.58 0.58 0.58 

Table 4. Performance Metrics across FMAs 
 
Figures 6-9 show that correct predictions are evenly spread 
across FMAs in the dry season and become concentrated mainly 
in FMA 7 during the wet season. Meanwhile, incorrect 
predictions are more localized in FMA 7 during the dry season 
and spread out to its adjacent FMAs, particularly 2 and 10, during 
the wet season. This indicates that while FMA 7 had the most 
recorded bans for both seasons, which could help the model to 
predict correctly, the model still struggled to identify the red tide 
events in the region. Notably, the model exhibited moderate to 
poor predictive performance in neighboring FMAs 2, 7, and 10. 
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Figure 6. Spatial Distribution of Correct Predictions  

(Dry Season) 

 
Figure 7. Spatial Distribution of Incorrect Predictions  

(Dry Season) 

 

Figure 8. Spatial Distribution of Correct Predictions  
(Wet Season) 

 
Figure 9. Spatial Distribution of Incorrect Predictions  

(Wet Season) 
 
Given the spatial resolution of 4.6 km, sudden seasonal 
environmental variations may not easily be distinguished due to 
overlapping or similar patterns across adjacent FMAs. The 
incompleteness of parameter values may also prevent the model 
from recognizing red tide-linked environmental patterns. 
Specifically, there were instances wherein only one or two out of 
the five parameters had valid values. Altogether, these affect the 
predictive accuracy of the model across FMAs and seasons. 
 

4. Conclusions and Recommendations 

This study developed a predictive model for red tide events in the 
Philippines using MODIS-derived oceanographic parameters and 
XGBoost. The analysis revealed a strong positive correlation 
between chl-a and Kd(490), which indicates that increased 
phytoplankton biomass inhibits light penetration in the water 
column, making them strong predictors of red tide. The moderate 
correlation between chl-a and bbp(443) still supports this notion, 
indicating the presence of both algal and non-algal particles. 
Meanwhile, weak correlations of SST and PAR can be attributed 
to excessive heat and light, causing delayed phytoplankton 
growth and photoinhibition. Based on STL, chl-a and Kd(490) 
shared similar and consistent seasonal and trend behavior across 
red tide-affected areas. All parameters followed seasonal 
patterns, with most showing fluctuating trends over time, which 
reflects the dynamic nature of red tide and the influence of 
localized factors like nutrient runoff and mariculture. These 
suggest that red tide detection should account not only for 
parameter interactions but also for their temporal trends and the 
localized environmental conditions. The model achieved 
moderate and stable performance as reflected in 58-59% 
accuracy and F1-score, and 61% AUC with SST, chl-a, and 
Kd(490) as key red tide predictors. While this is not a replacement 
for existing methods, it serves as a support tool and foundation 
for early detection using MODIS-derived data. Model 
performance across different FMAs and seasons varied due to 
factors such as minor variation in parameter values across 
adjacent FMAs and seasons, missing pixel values of crucial 
parameters, mismatched parameter values, red tide-linked 
conditions, incomplete and unevenly distributed training data 
across seasons. Among all, the model produced the most reliable 
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and representative results in FMA 7, and the poorest in FMAs 10 
and 11.  
 
Based on these findings, it is recommended to use higher-
resolution satellite imagery to better capture the spatial variability 
in the oceanographic parameters and refine the prediction results. 
Incorporating additional satellite-derived oceanographic and 
external environmental parameters, and including cell density or 
toxin level data for regression-based modeling when available, 
may also improve the results. 
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