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Abstract

Red tide, a commonly used misnomer for HABs in the Philippines, poses a significant threat to the environment, fisheries, and public
health. Since current red tide detection methods, such as in-situ sampling, are mostly reactive and usually result in delayed issuance of
advisories, this study developed a model for predicting red tide occurrences in the Philippines using XGBoost and MODIS-derived
oceanographic parameters. Five key parameters, namely Chlorophyll-a (chl-a), Sea Surface Temperature (SST), Photosynthetically
Available Radiation (PAR), Diffuse Attenuation Coefficient (Kd(490)), and Particulate Backscattering Coefficient (bvp(443)), were
extracted from MODIS Aqua 8-day composite products spanning 2003 to 2021. These were integrated with historical data from BFAR,
covering the same period, to train a predictive model using the XGBoost algorithm. The final model demonstrated moderate
performance as reflected in its accuracy (58%), F1-score (59%), and AUC (61%), with chl-a and K4(490) as the most influential features
based on their SHAP values. Its precision and recall of 58-59% showed its balanced predictive ability across classes, namely, banned
and lifted. Model performance across different FMAs and seasons varied due to factors, such as minor variation in parameter values
across adjacent FMAs and seasons, missing pixel values of crucial parameters, mismatched parameter values and red tide-linked
conditions, and unevenly distributed training data. Among all, the model produced the most reliable and representative results in FMA

7, and the poorest in FMAs 10 and 11.

1. Introduction
1.1 Background of the Study

As the primary food source for aquatic organisms, phytoplankton
is a vital component of marine ecosystems. However, when
natural and anthropogenic factors, including sewage discharge,
agricultural activities, and surface runoff, disrupt the equilibrium
in these ecosystems, the nutrient levels in marine ecosystems
become excessively high, resulting in the development of
Harmful Algal Blooms (HABs). Algal blooms, whether toxic or
non-toxic, degrade water bodies and cause extensive fish kills,
which can result from either toxin production or oxygen
depletion (Pal et al., 2020; Khan et al., 2021).

In the Philippines, red tide is a commonly used misnomer to refer
to HABs. However, based on the scientific definition, HABs refer
to any algal proliferation that produces toxins or harmful effects
on humans and marine animals, while red tide pertains to
excessive phytoplankton growth, particularly dinoflagellates that
produce saxitoxin, leading to water discoloration (Wexler, 2014;
Azanza et al., 2024). In the Philippines, the most commonly
reported toxic manifestation of red tide is paralytic shellfish
poisoning (PSP), which can be acquired from consuming
shellfish ~ contaminated  with  Pyrodinium  bahamense,
Gymnodinium catenatum, or toxic Alexandrium spp (Azanza et
al., 2024). From 1983 to 2002, the country recorded the highest
number of PSP cases in Asia, with 2,124 incidents and 120
fatalities (Ching et al., 2015). Beyond health impacts, red tide
outbreaks have also posed serious economic consequences.

Although there are already studies on detecting red tide, there
remains a gap in research on predicting red tide events. Currently,
the Bureau of Fisheries and Aquatic Resources (BFAR) heavily
relies on water samples and shellfish meat sample collections to
issue advisory bulletins on red tide (Yiiguez et al., 2020).
However, sampling and analysis typically happen after requests

from local government units or after residents observe or
experience the effects of red tide, making these approaches
inefficient. Moreover, the diverse and fragmented coastal
geography of the Philippines makes it difficult to model red tide
events using ground-based data alone, as it requires extensive
sampling to capture spatial variations. In contrast, remotely
sensed datasets provide broader and consistent coverage for
quantifying these differences across various coastal
environments. Therefore, in this study, five (5) oceanographic
parameters derived from MODIS imagery and historical data
from BFAR were used by the XGBoost algorithm to predict red
tide occurrences across the Philippines.

1.2 Objectives

Given that existing methods of detecting red tide are mostly
reactive, there is a need for predictive approaches to mitigate
adverse effects on the environment, local fisheries, and public
health. Thus, this research aims to develop a prediction model for
red tide in the Philippines using MODIS-derived oceanographic
parameters and XGBoost. The specific objectives of the study
are:

1. To analyze the relationship between red tide events and
five (5) MODIS-derived parameters, including
Chlorophyll-a (chl-a), Sea Surface Temperature (SST),
Photosynthetically Available Radiation (PAR),
Diffuse Attenuation Coefficient (Ka(490)), and
Particulate Backscattering Coefficient (bup(443)) using
Pearson correlation and Seasonal and Trend
decomposition using LOESS (STL).

2. To develop and assess the predictive performance of
the XGBoost model for occurrences of red tide by
comparing its predictions with the test set using
performance metrics, such as precision, accuracy,
recall, F1-score, and AUC.

3. To evaluate spatial and temporal patterns of predicted
red tide bans and potential model biases across FMAs
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and seasons using MODIS-derived oceanographic
parameters and XGBoost.

1.3  Significance of the Study

This study is critical in addressing the need for predicting red tide
events in the Philippines as part of a proactive approach to red
tide monitoring and management. This approach not only
addresses the gap in the prediction of red tide events but also
offers a foundational step toward developing a proactive,
scalable, and efficient tool for protecting communities and
fisheries in the Philippines. Moreover, this approach aligns with
various Sustainable Development Goals (SDGs) that can benefit
the country: SDG 14 (Life Below Water), Targets 14.1 and 14.2,
by reducing marine pollution and promoting sustainable marine
resource management; SDG 3 (Good Health and Well-Being),
Target 3.9, by mitigating health risks associated with red tide-
related contamination; SDG 1 (No Poverty), Target 1.5, by
preserving economic livelihoods and reducing vulnerability to
the impacts of red tide; and SDG 8 (Decent Work and Economic
Growth), Target 8.5, by fostering productive employment in the
fishing and aquaculture sectors.

2. Methodology
2.1 General Workflow
Figure 1 outlines the general processes involved in this study,

with each step described in the subsequent sections.
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Figure 1. General Flowchart of the Study

2.2 Data Collection

To predict red tide events in the Philippines, various datasets
were utilized that capture both environmental conditions and
spatial distributions relevant to red tide occurrences. Historical
records were obtained from the Bureau of Fisheries and Aquatic
Resources - Fisheries Resources Management Division (BFAR-
FRMD), based on bulletin advisories from 2003 to 2021. These
included specific location and status, and in some cases, other
relevant information for certain years, including causative

organisms, toxin levels, and cell densities. However, not all these
details were consistently available for every year.
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Figure 2. Sampling Stations of the Recorded Areas for Red Tide
and Fisheries Management Areas (FMAs) in the Philippines
(2002-2023)

Since spatial variability is crucial in this study, the researchers
incorporated the coordinates of the 382 sampling stations of the
62 recorded areas in the bulletins over the 19 years, as seen in
Figure 2. However, the bulletins did not specify which sampling
station detected individual red tide events. To assess the
environmental conditions associated with red tide events, Level
3 Standard Mapped Image (SMI) products were used for five (5)
oceanographic parameters, specifically chl-a, which indicates
phytoplankton biomass; SST, which affects phytoplankton
growth; Ka(490), which measures light reduction with depth;
bop(443), which measures light reflected by suspended particles;
and PAR, which estimates sunlight for ocean photosynthesis.
These 8-day composite datasets are satellite-derived and
averaged on a consistent spatial grid. A total of 873 images were
used for each parameter, except for SST, with 850 images,
covering 2003 to 2021. They are also already land and cloud
masked since Level 2 data, from which Level 3 products are
derived, undergo quality assessment. In this way, it is ensured
that Level 3 data contain only valid geophysical measurements,
making it reliable for water-related studies such as red tide
prediction. However, given its 4.6 km spatial resolution,
mismatches with the actual location of sampling stations may
occur, prompting analysis at the red tide-affected site level. For
spatial visualization, additional geospatial layers were included,
such as administrative boundaries from GADM, FMA
boundaries from BFAR, to allow red tide-affected sites to be
grouped based on similar oceanographic conditions, and the
delineation of red tide-affected bays, coastal waters, and
sampling stations.
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2.3 Preparation of the Remotely-Sensed Input
Parameters
2.3.1 Reprojection: All NASA Ocean Color Level 3 8-day

composite NetCDF files were initially loaded into QGIS 3.40.3
to identify and extract the relevant subdatasets for each
parameter. Then, a script was used to automate the bulk loading
of usable subdatasets into grouped layers by parameter in QGIS.
To ensure spatial consistency, all layers were reprojected to WGS
84/UTM Zone S1N. In this way, the downloaded datasets will be
overlaid properly and expressed in consistent measurement units
for subsequent processes and analysis.

2.3.2  Extraction of Site-Specific Environmental Data:
Pixel values for the five (5) oceanographic parameters were
extracted across all available dates for each parameter. This was
done to obtain site-specific environmental conditions relevant to
red tide events based on the pixel values corresponding to each
sampling station using their coordinates. From here on, the
extracted pixel values for each parameter were saved separately
in CSV format for subsequent analysis.

2.4 Exploratory Data Analysis (EDA)

2.4.1 Correlation Analysis: In this study, pairwise Pearson
correlation was used to analyze relationships between
oceanographic parameters. The Pearson correlation coefficient,
represented as r, for two variables, x and y, with paired values, is
given by Equation 1:
2xi—0)Yi—y)
= 1

VE@—D)2 X(vi—¥)? M
where Xi, yi = individual data points
X, ¥ = means of each variable

This analysis helped identify patterns and dependencies between
variables. For example, since chlorophyll-a (chl-a) is closely
related to HAB distribution (Izadi et al., 2021), any parameter
closely correlated with chl-a can also be a good proxy of red tide
occurrence. This analysis also supported feature selection by
pointing out the most significant parameters and confirmed
preliminary hypotheses about drivers of red tide.

2.4.2 Appropriate Lag Determination: To determine the lag
period for predictive model training, the historical records of red
tide events in 2003 and the five (5) parameters were examined.
Using Google Colaboratory, time series plots were produced for
each bay and coastal water using the corresponding values of
each parameter in 2003. The given banned and lifted
classifications, as well as their corresponding dates of sample
collection, were overlaid on the time series plots. Based on the
plots, the lag period for each parameter was estimated. For chl-a,
this was measured as the delay between the sample collection
date and the first ban advisory. For sites with multiple sample
collection dates, the first ban after the earlier collection period
was used as the reference point for the next estimation. The same
logic was applied to other parameters except SST. For SST, the
lag period was measured by identifying when it reached the
optimal range of 28°C to 30°C for the growth of P. bahamense,
the most common causative organism (Smayda, 1997; Folio &
Yap-Dejeto, 2022). The gap was calculated from the point of
optimal SST value until the first ban advisory after the chl-a
collection date, since it is the most commonly used proxy for
algal blooms (Manzar Abbas et

al., 2019; Izadi et al., 2021; Joshi et al., 2024). This delay was a
critical factor in estimating the lag period for each parameter
because it affected the timing of red tide alerts.

2.43 Baseline Model Evaluation: To gauge the potential
model performance of XGBoost using the given datasets, Lazy
Predict was utilized. Lazy Predict is a library in Python that
facilitates model training and evaluation of model performance.
In this study, it was used to gain insight into the baseline values
of evaluation metrics that could be achieved by XGBoost given
the available data without any tuning process. The performance
metrics tested include accuracy, balanced accuracy, ROC AUC,
F1 score, and runtime. The results helped set realistic
expectations and served as a benchmark for further
improvements, particularly for XGBoost.

2.4.4 Time Series Analysis: Time series analysis serves as a
valuable preliminary method for examining the trend and
seasonality in datasets with chronologically arranged
observations (Donatelli et al., 2022). To conduct the analysis, the
extracted pixel values for each site-parameter combination were
plotted and exported as individual images through RStudio. This
involved generating time series plots of each parameter and
decomposing the data into trend, seasonality, and residual
components. Afterward, the plots were visually analyzed based
on the trend and seasonality of each parameter.

More specifically, the Seasonal and Trend decomposition using
LOESS (STL) method was used in R version 4.4.2 to break down
time series objects into trend, seasonal, and remainder
components. The seasonal component shows the recurring
patterns that happen at regular intervals; the trend component
provides the overall direction of the data; and the remainder
component captures the random variations or residuals (Gordan
et al., 2024). To extract these components, a custom R version
4.4.2 script was used to apply STL to all five parameters, and they
were plotted and saved. The median value of all 8-day composite
pixel values in a month was used to represent values for each
month per parameter-site combination, addressing missing pixel
values in some oceanographic parameters, which could be due to
cloud cover, as STL cannot handle trailing missing values. Thus,
a frequency of 12, representing 12 months, was used. In instances
where an 8-day period overlapped two months, it was assigned to
the month it was temporally closest to.

2.5 XGBoost Modeling

This study leveraged the loss and regularization capabilities of
XGBoost, iteratively minimizing residual errors and preventing
overfitting. Its capability to handle missing data and proven
success in past red tide prediction studies further support its
selection as the algorithm for this study (Izadi et al., 2021).

2.5.1 Feature Engineering: Since the parameters do not have
the same range of values, feature scaling, which is a technique
employed to standardize the data, was implemented using mean
normalization, as shown by Equation 2. This ensured that model
training is more efficient. To capture temporal patterns and
historical trends, lag features were created using the determined
1-period lag, corresponding to the previous 8-day value for each
parameter.

r_ X - U
= max(x) — min(x) (2)
x = individual value of a feature

p = average mean of the values of a feature
min(x) = minimum feature value

where
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max(x) = maximum feature value

2.5.2 Data Splitting: Using a time-based stratified data
splitting method, the 2003 to 2021 extracted pixel values for each
8-day composite oceanographic parameter and their
corresponding 1-period lag values for every unique site, were
split into training (80%), validation (10%), and testing (10%)
datasets, the most common ratio for data split and helps prevent
data leakage (Delisi, 2024). Given the complex dynamics of red
tide events, allocating a larger portion for training is ideal to
allow the model to learn intricate patterns in the data better. To
avoid bias and ensure reliable performance, a balanced
representation of banned and lifted classifications was preserved
across all three datasets.

2.5.3 Hyperparameter Tuning: To enhance the predictive
performance of the model, hyperparameter tuning was done
before every model training. This was performed using Optuna
in Google Colaboratory, which employed Random Search. A
hundred trials using this method were performed, selecting
random hyperparameter values from a set range rather than going
through all possible hyperparameter combinations. To prevent
possible overfitting, the tuning process was also configured to
stop early when the F1-score did not show improvement over the
trials.

2.54 Model Development and Evaluation: In each trial,
after sampling a specific hyperparameter combination, the model
was trained using the mean values and lagged values of Chl-a,
SST, PAR, Kd(490), and bvp(443) per site from 2003 to early
2020. Model performance was evaluated using AUC-ROC to
guide hyperparameter selection. The best combination was then
used to retrain the model and generate prediction probabilities for
red tide classifications (“1” for banned, “0” for lifted) in the
validation set covering late 2020 to early 2021. These
probabilities were converted into binary outcomes using the
optimal threshold from Youden’s J Statistic. Predictions were
marked “TRUE” or “FALSE” based on actual classifications.
Model performance was assessed through a confusion matrix
(Table 1), using accuracy (Equation 3), recall (Equation 4),
precision (Equation 5), Fl-score (Equation 6), macro average
(Equation 7), and weighted average (Equation 8) as metrics. The
macro average equally weights all classes, while the weighted
average accounts for class imbalance. It was also assessed against
two benchmarks: (1) Inokuchi et al. (2024), whose red tide
classification model achieved 52-58% across metrics; and (2)
Lazy Predict results, representing baseline performance without
tuning. SHAP (SHapley Additive exPlanations) was also used to
interpret feature contributions. Final evaluation on the test set,
covering the unseen data from 2020-2021, used the same metrics
and SHAP, with results visualized across FMAs.

Classified as banned Classified as lifted
Banned True Positive (TP) False Negative (FN)
Lifted False Positive (FP) True Negative (TN)

Table 1. Confusion Matrix

TP +TN

Accuracy = TP+ FN +FP + TN ©)
Recall = —=— “4)
TP+FN
Precision = —— 5)
TP+FP

2 (170 )
F1— Score = m (6)
TP +FP TP +FN.
Macro Average = %Z?Ll Metric; 7
N ic: .
Weighted Average = Zimq(Metric, x Support) ®)

>N Support;

N = total number of classes
Metrici = performance metric for class i
Supporti = number of samples in class i

where

3. Results and Discussions
3.1 Exploratory Data Analysis (EDA)

3.1.1 Relationship Among the Oceanographic Parameters:
The strong positive relationship between chl-a and Ka(490), as
observed in Figure 3, suggests that when the phytoplankton
biomass gets high, it inhibits light penetration in the water
column, which has been noted in other studies. Moderate
correlation between chl-a and bwp(443) implies that when chl-a
levels increase, the concentration of suspended particles also
increases, resulting in increased light backscattering. This also
highlights that bup(A) is sensitive to both phytoplankton and non-
algal particles, limiting the strength of the correlation.

1.0
0.07 I
0.8

Correlation Matrix of the Oceanographic Parameters

chl-a

bbp(443) par

sst

i
chl-a kd(490) par

bbp(443)

Figure 3. Correlation Matrix of All Oceanographic Parameters

Contrary to the results, a weak negative correlation between chl-
aand SST has been observed, following the overall trend in some
equatorial and tropical oceans where higher SST is normally
linked with higher stratification, which lowers nutrient upwelling
and suppresses phytoplankton growth. However, such trends do
not apply to this study, as some red tide-affected areas may have
experienced high river discharge, allowing phytoplankton growth
despite high SST. A similar pattern of positive correlation
between SST and chl-a was observed in areas with high nutrient
runoff. Likewise, a weak negative correlation was evident
between chl-a and PAR, implying that while PAR supports
photosynthesis, excessive light can trigger photoinhibition and
reduce photosynthetic efficiency. Similar to chl-a, Ka(490) also
shows moderate correlation with bbp(443), suggesting that more
suspended particles result in higher light backscattering and
attenuation. In contrast, it has weak correlations with SST and
PAR, revealing that temperature and the amount of sunlight have
less influence on light penetration than particles.

The weak correlation between SST and PAR has also been
observed, revealing that higher sea surface temperatures do not
always result in higher levels of PAR. In contrast, some
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observations of increased SST and PAR levels during the dry
season are accompanied by decreases in algal biomass, whereas
decreases in both parameters during the wet season enhance algal
growth. Meanwhile, the negligible or weak negative correlations
of bbp(443) with PAR and SST demonstrate its responsiveness to
other parameters. Particularly, while bep(A) is linked with
phytoplankton carbon, the presence of non-algal particles also
plays a significant role in influencing byp(A).

While there are slight variations in the findings, these only
highlight the dynamic nature of marine ecosystems. These
ecosystems in various water bodies can have distinct features that
vary with time and space (Titaley et al., 2024). Thus, the
interactions between oceanographic parameters vary depending
on the region and the time being considered.

3.1.2 Lagged Effects of Oceanographic Parameters on Red
Tide: Figure 4 shows the plot integrating 2003 red tide records
with satellite-derived parameter values for bays and coastal
waters. These plots were used to estimate all possible lag periods
per parameter, revealing that a one (1) week lag was most
frequent. On average, the five (5) parameters underwent changes
a week before BFAR issued red tide advisories, affecting the
timing of red tide alerts. These observations informed the
creation of lag features for chl-a, SST, PAR, Ku(490), and
bup(443). Since the parameter values were from 8-day
composites, the lag features corresponded to the previous 8-day
window value for each parameter, enabling the model to identify
temporal patterns and historical trends and improving red tide
prediction (Analytics Vidhya, 2024).

TIME SERIES OF PARAMETERS IN DUMANQUILLAS BAY (2003)
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Figure 4. Parameter Time Series in Dumanquillas Bay in 2003

3.2 Time Series Analysis of Oceanographic Parameters

Most of the trends in the STL plots were fluctuating across all
sites and parameters, with short-term spikes and inconsistent
patterns, reflecting the realistic and dynamic environmental
conditions commonly linked to red tide events. For instance,
sudden increases followed by sharp declines in chl-a suggest a
bloom-bust mechanism, typical of phytoplankton dynamics.
Similar trends in K4(490) and slight deviations in by(443) further
indicate the influence of phytoplankton presence on light
penetration, while non-algal particles may explain anomalies.
SST trends showed a general increase over time, likely due to
global warming, while PAR varied seasonally with sunlight
availability.

The clustering of seasonality patterns revealed that FMAs 2, 6, 7,
9, 10, and 11 mostly followed one or two low-high cycles per
year, likely influenced by monsoonal patterns. In contrast, FMAs
3, 4, and 8 showed more complex cycles, possibly due to
localized anthropogenic or environmental factors. FMAs 5 and
12 showed no consistent patterns, indicating highly site-specific
conditions. These seasonal trends were particularly consistent
between chl-a and Ka(490), supporting their strong correlation in
understanding phytoplankton growth. Similarly, bvy(443) showed
recurring two low-high cycles in many FMAs, reflecting
particulate matter variation likely driven by sediment
resuspension  during  monsoon  transitions, allowing
phytoplankton growth. SST and PAR exhibited two high-low
cycles annually, consistent with seasonal monsoons.

Overall, while seasonality is present across all sites, the pattern,
timing, and frequency of these seasonal cycles vary considerably,
especially in parameters heavily affected by localized
environmental and anthropogenic factors, such as chl-a, Ka(490),
and bpp(443). These seasonal variations only highlight the
importance of understanding context-specific environmental
conditions in analyzing red tide occurrences.

3.3 Model Development

Table 2 shows that the learning rate of the model was extremely
slow, preventing it from overfitting. To compensate for the low
learning rate, a high number of trees (n_estimators) was applied,
allowing the model to pick up intricate patterns in the data over
time slowly. Moderate deep trees (max_depth) and splits with
little data (min_child weight) were also used to capture
significant interactions without becoming too complicated. A
considerably small value for the gamma was selected, enabling
the model to be flexible and open to potential splits to improve
accuracy. The subsample and colsample bytree values indicate
how much data and features each tree used, reducing overfitting
and improving generalization to newer data. For regularization,
both L1 (reg alpha) and L2 (reg lambda) penalties were
moderate, acting as barriers to control model complexity and
avoid overfitting. The small max_delta_step allowed the model
learning to be more stable by limiting the maximum allowed
adjustment of the model per round of learning. Lastly, the model
grew trees based on balanced depth, which can be suited for
temporal and spatial oceanographic data.

Hyperparameter Value
learning_rate 0.008727037
n_estimators 1084
max_depth 4

min_child weight 1

gamma 8.07E-06
subsample 0.826645452
colsample bytree 0.603955538
reg_alpha 0.194025081
reg_lambda 0.268606812
max_delta_step 2
grow_policy depthwise

Table 2. Optimal Hyperparameters for the Model
3.4 Model Evaluation

Using the test set, the model performed moderately, as shown in
Table 3, with accuracy (58%), F1-score (59%), and AUC (61%).
Precision for Class 0 (lifted) and 1 (banned) was 58%, the recall
was 58% and 59%, and F1 scores were also 58% and 59%,
respectively. The macro and weighted averages across metrics
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were 58%. It surpassed the baseline model performance produced
by LazyPredict with accuracy, balanced accuracy, ROC AUC,
and F1 score of 54%. These values were similar to the findings
of Inokuchi et al. (2024), who applied a comparable methodology
for red tide detection and achieved metrics of 58-61% using the
VGGI11 model. Although moderate, it performed relatively
steadily and well-balanced, showing its potential as a practical
solution in resource-constrained situations and as a stepping-
stone for red tide early detection using satellite imagery through
complementing existing methods. The non-inclusion of spatial
aspects surrounding the red tide-affected sites, such as
environmental factors and anthropogenic influences, may have
contributed to limiting its ability to entirely capture the complex
ecological interactions influencing red tide events, potentially
reducing its performance.

Test Set
Accuracy 0.58
F1-score 0.59
AUC 0.61

Precision Recall F1-Score Support
Class 0 (Lifted) 0.58 0.58 0.58 493
Class 1 (Banned) 0.58 0.59 0.59 494
Macro Average 0.58 0.58 0.58 987
Weighted Average 0.58 0.58 0.58 987

Table 3. Performance Metrics for Test Set

SHAP analysis gives directional insights into the role of each
oceanographic parameter in predicting red tide bans, as indicated
by positive SHAP values, and lifts, as represented by negative
SHAP values (Britton et al., 2024). As shown in Figure 5, SST
had the strongest impact, where higher values leaned toward
lifted predictions and lower values toward banned predictions, a
pattern mirrored by its 8-day lag. Chl-a and its lag showed a
similar, but weaker, pattern. In contrast, Ka(490) and its lagged
counterpart have a smaller overall impact, with higher values
leaning toward banned predictions and lower values toward lifted
ones. Meanwhile, PAR and byp(443), including their lags,
showed complex and non-linear relationships with both high and
low values contributing to both SHAP directions, indicating a
non-linear influence on predictions.

SHAP Summary Plot (Test Set)
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Figure 5. SHAP Summary Plot of the Test Set

These findings align with Karki et al. (2018), Hill et al. (2020),
and Izadi et al. (2021), identifying SST, chl-a, and Ka(490) as key
red tide detection drivers. The behavior of SST and its lag relates
to the most prevalent causative organism of red tide in the
Philippines, P. bahamense, which grows best at 28-30°C,
suggesting temperature beyond this level may limit its growth

(Smayda, 1997; Folio & Yap-Dejeto, 2022). Meanwhile, the
behavior of chl-a and its lag can be explained by distinct water
profiles in the Philippines, where its trends vary across areas.

3.5 Visualization of Prediction Results

Based on the test data, Table 4 shows overall moderate to weak
model performance in FMAs 2, 5, 7, 8, and 9 across the seasons.
These are attributed to similar environmental conditions across
clustered red-tide affected sites, minimal differences in parameter
values across seasons, missing pixel values in crucial parameters
such as chl-a and Kd(490), and training data distribution.
Collectively, these reduce the ability of the model to distinguish
between red tide and non-red tide events. Distinct parameter
values across seasons in FMA 7 helped to yield better
performance compared to other FMAs. While the results in
FMAs 3 and 6 appear promising, the predictive performance of
the model should be interpreted and analyzed carefully, given
that each has only one site, hence, only reflecting the predictive
performance at those particular sites and limiting the reliability
of the findings at a broader regional scale. Poor model
performance was observed in FMAs 10 and 11 due to minimal
differences in parameter values across seasons and mismatched
parameter values and red tide-linked conditions. Since FMA 7
had the most historical data across the seasons and the most
number of sites, it has the most representative and reliable
prediction results among all, with its relatively good performance
metrics, followed by FMA 2 in terms of generalizability of the
results.

FMA Precision Accuracy Recall F1-Score AUC
2 0.67 0.55 0.62 0.64 0.51

3 0.92 0.86 0.92 0.92 0.46
5 0.38 0.68 0.74 0.50 0.70
6 0.86 0.94 1.00 0.92 0.96
7 0.49 0.58 0.61 0.55 0.58
8 0.66 0.63 0.51 0.57 0.63
9 0.39 0.63 0.73 0.51 0.66
10 0.69 0.46 0.45 0.54 0.48
11 0.48 0.50 0.50 0.49 0.50
Macro ) 3¢ 0.58 0.58 0.58 0.58
Average

Table 4. Performance Metrics across FMAs

Figures 6-9 show that correct predictions are evenly spread
across FMAs in the dry season and become concentrated mainly
in FMA 7 during the wet season. Meanwhile, incorrect
predictions are more localized in FMA 7 during the dry season
and spread out to its adjacent FMAs, particularly 2 and 10, during
the wet season. This indicates that while FMA 7 had the most
recorded bans for both seasons, which could help the model to
predict correctly, the model still struggled to identify the red tide
events in the region. Notably, the model exhibited moderate to
poor predictive performance in neighboring FMAs 2, 7, and 10.
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Given the spatial resolution of 4.6 km, sudden seasonal
environmental variations may not easily be distinguished due to
overlapping or similar patterns across adjacent FMAs. The
incompleteness of parameter values may also prevent the model
from recognizing red tide-linked environmental patterns.
Specifically, there were instances wherein only one or two out of
the five parameters had valid values. Altogether, these affect the
predictive accuracy of the model across FMAs and seasons.

4. Conclusions and Recommendations

This study developed a predictive model for red tide events in the
Philippines using MODIS-derived oceanographic parameters and
XGBoost. The analysis revealed a strong positive correlation
between chl-a and Ka(490), which indicates that increased
phytoplankton biomass inhibits light penetration in the water
column, making them strong predictors of red tide. The moderate
correlation between chl-a and bbp(443) still supports this notion,
indicating the presence of both algal and non-algal particles.
Meanwhile, weak correlations of SST and PAR can be attributed
to excessive heat and light, causing delayed phytoplankton
growth and photoinhibition. Based on STL, chl-a and Kq(490)
shared similar and consistent seasonal and trend behavior across
red tide-affected areas. All parameters followed seasonal
patterns, with most showing fluctuating trends over time, which
reflects the dynamic nature of red tide and the influence of
localized factors like nutrient runoff and mariculture. These
suggest that red tide detection should account not only for
parameter interactions but also for their temporal trends and the
localized environmental conditions. The model achieved
moderate and stable performance as reflected in 58-59%
accuracy and Fl-score, and 61% AUC with SST, chl-a, and
Ka(490) as key red tide predictors. While this is not a replacement
for existing methods, it serves as a support tool and foundation
for early detection using MODIS-derived data. Model
performance across different FMAs and seasons varied due to
factors such as minor variation in parameter values across
adjacent FMAs and seasons, missing pixel values of crucial
parameters, mismatched parameter values, red tide-linked
conditions, incomplete and unevenly distributed training data
across seasons. Among all, the model produced the most reliable
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and representative results in FMA 7, and the poorest in FMAs 10
and 11.

Based on these findings, it is recommended to use higher-
resolution satellite imagery to better capture the spatial variability
in the oceanographic parameters and refine the prediction results.
Incorporating additional satellite-derived oceanographic and
external environmental parameters, and including cell density or
toxin level data for regression-based modeling when available,
may also improve the results.
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