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Abstract 
 
This study presents a deep learning-based approach for mapping mangrove forests in Bohol, Philippines using high-resolution Sentinel-
2 imagery. Given the limitations of traditional mapping techniques and the ecological importance of mangroves, four convolutional 
neural network (CNN) architectures—U-Net, Attention U-Net, MSNet, and SegNet—were trained and evaluated. The preprocessing 
pipeline included patch generation, normalization, and random sampling to ensure spatial representativeness. Hyperparameter tuning 
explored combinations of loss functions and learning rates to optimize model performance. Results showed that U-Net consistently 
achieved the highest accuracy across all evaluation metrics, with an IoU of 0.93, accuracy of 0.98, precision of 0.966 and F1-score of 
0.963. Visual inspections confirmed U-Net and Attention U-Net’s superior ability to delineate mangrove boundaries, particularly in 
complex coastal zones. In contrast, SegNet produced coarser edges but trained significantly faster, offering a practical alternative for 
rapid assessments or resource-constrained deployments. These findings emphasize the value of skip connections and attention 
mechanisms not just for performance enhancement but for improving the usability of outputs in real-world conservation. The study 
recommends U-Net for integration into local government monitoring systems, supporting disaster risk reduction, marine zoning, and 
restoration planning. Future work may incorporate drone imagery and transfer learning to improve adaptability across other Philippine 
coastal ecosystems. 
 
 

1. Introduction 

1.1 Mangrove Ecosystems Mapping 

Mangrove ecosystems are vital components of coastal 
environments, providing essential ecological and economic 
services such as coastal protection, nursery habitats for marine 
species, and carbon sequestration.  However, rapid degradation 
of mangrove forests - driven by human activities and climate 
change necessitates accurate and consistent monitoring to 
support conservation and sustainable management efforts (Sun et 
al., 2023).  
 
The Philippines, home to extensive mangrove forests, has 
experienced significant losses over the past decades, with 
substantial percentage disappearing since 1990 (Bhowmik et al., 
2022; Conopio et al., 2021). To address this issue, previous 
studies have explored mangrove mapping using Mangrove 
Vegetation Index (MVI) derived from remote sensing 
technologies (Baloloy et al., 2023). Remote sensing offers a cost-
effective and reliable solution for long-term mangrove 
monitoring, overcoming the limitations of traditional field 
surveys, which are often constrained by accessibility and 
resource intensiveness (Nardin et al., 2021). While the MVI 
demonstrates high index accuracy, its mapping effectiveness is 
constrained by various biophysical and environmental factors, 
potentially limiting its applicability in diverse mangrove 
landscapes (Neri et al., 2021). 
 
Given the ecological and economic importance of mangroves, 
detailed mapping is crucial for effective conservation and 
management, particularly in mega-biodiversity hotspots like 
Bohol (Agduma et al., 2024; Cayetano et al., 2023; Faustino et 
al., 2020; Giri, 2021; Jose et al., 2022). Bohol’s coastal landscape 
is characterized by intricate shoreline morphologies, including 
fringing mangroves, tidal flats, estuarine systems, and scattered 

offshore islets. These geophysical features result in fragmented 
mangrove patches, frequent water–vegetation mixing, and 
complex spectral signatures, making accurate classification 
difficult using conventional methods. This spatial complexity 
presents a region-specific challenge that underscores the novelty 
of applying deep learning-based approaches to Bohol. By 
focusing on this biodiversity-rich and morphologically diverse 
province, the study contributes not only to the methodological 
advancement of mangrove mapping but also to localized 
conservation strategies in one of the Philippines' ecologically 
significant coastal zones. 
 
1.2 Problem definition and Objectives 

This study aims to develop an accurate and efficient deep 
learning-based model for semantic segmentation of mangroves 
using Sentinel-2 satellite imagery. Specifically, it aims to: (1) 
gather remote sensing data from Google Earth Engine (GEE); 
(2) design, train and evaluate convolutional neural network 
(CNN) models such as U-Net, Attention U-Net, MSNet and 
SegNet for semantic segmentation of mangrove and non-
mangrove areas; (3) fine-tune hyperparameters to improve 
accuracy of chosen CNN models; and (4) compare convolutional 
neural network (CNN) models for semantic segmentation of 
mangrove and non-mangrove areas. 
 

2. Review of Related Literature 

Mangrove forests are critical coastal ecosystems that require 
accurate and timely monitoring for conservation (Lu & Wang, 
2021). With the availability of high-resolution multispectral data 
from Sentinel-2, recent studies have applied machine learning 
and deep learning techniques to improve mangrove mapping 
accuracy. This review highlights recent works that utilize deep 
learning approaches, presenting their data sources, algorithms 
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and performance metrics as benchmarks relevant to the present 
study in Bohol, Philippines. 
 
Based from Table 1, previous studies indicate that UNet-based 
deep learning models remain the dominant approach for 
mangrove mapping, Various satellite imagery sources, including 
Landsat 8, ZY-301, ZY-302, GF-1, GF-2, and GF-6, have been 
widely utilized for this purpose due to their high availability and 
accessibility (Guo et al., 2021; Wang et al., 2023; Xu et al., 2023, 
Sun et al., 2023). However, most of these studies have been 
conducted in China (Sun et al., 2023; Wang et al., 2023), Pakistan 
(Xu et al., 2023), and other parts of Southeast Asia (Guo et al., 
2021; Lomeo & Singh, 2022). Notably, while Sentinel-2 has been 
used in prior research, only Lomeo and Singh (2022) attempted 
to apply it for mangrove mapping, explicitly excluding Indonesia 
and the Philippines. This exclusion was attributed to the 
complexity of the countries’ coastlines and their relatively small 
land areas, which pose challenges in image processing and class 
identification. 
 

Study Data and Study Area Algorithm Accurac
y 

Wang et 
al. [8] 

Satellite images from 
GF-1 and GF-6 
Study Area: 
northeastern coast of 
Beibu Gulf, Guangxi, 
China 

Swin-
UperNet 

98.87 

Guo et 
al. [9] 

LandSat 8 images 
Study Area: Maritime 
Silk Road 

U-Net 81 
Capsuls-

UNet 
86 

Xu et al. 
[10] 

Landsat 8 images 
(Band 1-7), Landuse 
data from ESA World 
Cover project 
Study Area: Indus 
Delta in Sindh 
Pakistan 

MSNet 97.64 
U-Net 97.12 

Lomeo 
and 

Singh 
[11] 

Sentinel-2 data from 
January – December, 
2016 
Study Area: South 
East Asia (SEA) 

U-Net 91 
VGG19 90 

ResNet50 73 

Sun et 
al. [1] 

ZY-301, ZY-302, GF-
1, GF-2, GF-6, 
satellite images 
Study Area: Beibu 
Gulf of Guangxi, 
China 

U-Net 93.29 

Table 1. Deep Learning Techniques and Data in Mangrove 
Mapping 

 
U-Net serves as a strong baseline due to its proven effectiveness 
and adaptability(Xu et al., 2023). Attention mechanisms can be 
incorporated into U-Net to improve performance. These 
mechanisms establish associations between features and explore 
global context information (Cai & Wang, 2022). MSNet offers a 
way to address spatial information loss and reduce model 
complexity (Xu et al., 2023). While SegNet is a more traditional 
architecture, it provides a useful point of comparison (Xu et al., 
2023). By evaluating these models this research can contribute to 
identifying the most effective techniques for accurate and 
efficient mangrove mapping. 
 
Bohol stands out as a particularly important study area due to its 
rich biodiversity and complex coastal ecosystems. Considering 

the limited research in this region, this study is significant since 
Bohol is known to have the most diverse mangrove ecosystem 
in the Philippines (Cuenca-Ocay et al., 2023). 
 

3. Conceptual Framework 

This study is anchored on the integration of remote sensing and 
deep learning technologies to enhance the accuracy and 
efficiency of mangrove forest mapping. Specifically, it utilizes 
Sentinel-2 satellite imagery processed through deep learning 
models for semantic segmentation of mangrove areas in Bohol, 
Philippines. The conceptual framework (Figure 1) follows a 
structured flow: (1) Sentinel-2 Imagery Acquisition; (2) Image 
Pre-Processing; (3) Model Training with Deep Learning; (4) 
Hyperparameter Tuning; (5) Model Selection; (6) Accuracy 
Evaluation.  
  

 
Figure 1. Conceptual Framework of the Study 

 
The process begins with the acquisition of high-resolution 
Sentinel-2 imagery. These multispectral images are pre-
processed through techniques such as band selection, resampling 
and normalization. 
 
At the core of the framework is the training and optimization of 
deep learning segmentation models. A key element of the model 
development is hyperparameter tuning, which involves 
systematically adjusting parameters such as learning rate, loss 
function and number of epochs to identify the optimal 
configuration that yields the highest segmentation performance.   
 
Once the optimal model is selected through validation 
performance, it is used to generate a classified mangrove map, 
delineating mangrove and non-mangrove areas. The model’s 
output is evaluated using standard accuracy metrics, including 
overall accuracy, precision, recall, F1-score, and Intersection 
over Union (IoU). 
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4. Methodology 

4.1 Study Area 

Figure 2. Map of the Study Area 
 

The study was conducted in the coastal areas of Bohol, 
Philippines (Figure 2), an island province known for its extensive 
and ecologically significant mangrove ecosystems. These coastal 
zones were selected due to their environmental relevance and the  
increasing need for accurate monitoring to support sustainable 
resource management and conservation. 
 
4.2 Data Acquisition 

Multispectral satellite imagery was obtained from the Sentinel-2 
satellite mission through the Google Earth Engine (GEE) (Xu et 
al., 2023). Images were selected based on their spatial coverage 
of Bohol’s coastal zones, acquisition between January 1, 2020 to 
December 31, 2020 (Figure 3) and minimal cloud cover (less than 
10%). Sentinel-2 data was preferred due to its spatial resolution 
(10-20 meters) and rich spectral bands suitable for vegetation 
classification tasks, including the identification of mangrove 
forests. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Sentinel-2 2020 Imagery used in Image Processing. 
 
As for the mangrove masks, coastal resource map of 2020 were 
downloaded from the GeoPortal.PH  and were manually refined 
with visual interpretation of the Sentinel-2 imagery using the 
QGIS software. Figure 4 shows a sample mangrove mask.  

 
Figure 4. Mangrove Mask in a Sample Coastal Region. 

 
4.3 Image Pre-processing 

Prior to model training, the acquired imagery underwent several 
preprocessing steps using OpenCV and Rasterio in a Jupyter 
Notebook environment. All images were resampled to a uniform 
spatial resolution of 10 meters to ensure consistency across 
datasets. Pixel values were normalized between 0 and 1 to 
facilitate model convergence (Figure 5a). To generate training 
data, the satellite image and its corresponding mangrove mask 
were divided into fixed-size patches of 128x128 pixels. Patches 
with less than 10% valid mangrove or non-mangrove content 
were excluded to eliminate mostly empty regions. A total of 836 
image-mask patch pairs (128x128 pixels) were generated to 
represent the mangrove and non-mangrove areas across the 
coastal region of Bohol. These patches were derived from 
preprocessed Sentinel-2 imagery and reference ground-truth 
masks and served as the complete dataset for model training and 
evaluation. To ensure an unbiased and representative sample, the 
dataset was randomly split into 70%-15%-15% for training 
validation and test sets, respectively. This random sampling 
approach minimizes spatial bias and supports the 
generalizability of model performance, as recommended in 
remote sensing accuracy frameworks (Stehman, 2013; Foody, 
2002).  
  

 
 
Legend 
Synthetic Bands:               Red: Band4                Green: Band3                Blue: Band2         
                                            Mangrove                   Non-mangrove 

Figure 5. Sentinel-2 RGB Image and Corresponding 
Segmentation Mask 

 
Ground truth data was prepared using the coastal resource map 
of 2020 from the Department of Environment and Natural 
Resources (DENR) as a reference map. Areas identified as 
mangrove and non-mangrove were labelled and converted into 
binary mask images (Figure 5b).  
 
4.4 Model Training with Deep Learning  

The study utilized four convolutional neural network (CNN) 
architectures for semantic segmentation: U-Net, Attention U-
Net, MSNet, and SegNet. All models were implemented in 
Jupyter Notebook using TensorFlow and Keras libraries, and 
their performance was systematically evaluated to determine the 

(a) Sentinel-2 RGB 
Image 

(b) Mangrove Segmentation 
Mask 
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most accurate and computationally efficient model for mangrove 
mapping.  The deep learning models were trained using a local 
machine with an Intel Iris Xe Graphics, Intel Core i5 processor 
and 16GB RAM. Due to the machine’s memory constraints, the 
training batch size was limited to 16, resulting in each epoch 
being iterated 73 times (Xu et al., 2023). 
 
4.5 Hyperparameter Tuning 

To identify the most effective model configuration for mangrove 
segmentation, a systematic hyperparameter tuning process was 
conducted. This involved training each of the four CNN 
architectures – U-Net, Attention U-Net, MSNet, and SegNet – 
under different combinations of loss functions and learning rates. 
Two loss functions were evaluated: binary cross-entropy (BCE), 
and a composite loss combining BCE with Dice loss. Each model 
was trained using two initial learning rates, 1 x 10^-3 and 1 x 10^-
4, resulting in a total of 16 training configurations.  
 
Each model variant was compiled using the Adam optimizer, 
with evaluation metrics including accuracy, precision, recall, F1-
score and Intersection over Union (IoU).  
 
4.6 Model Selection 

Model selection was guided by performance comparisons across 
multiple training configurations. Model training was monitored 
using callbacks such as ModelCheckpoint to save the best-
performing weights based on validation loss, 
ReduceLROnPlateau to adjust the learning rate dynamically, and 
EarlyStopping to prevent overfitting by halting training when no 
improvement was observed after eight consecutive epochs.  
  
To ensure fairness and reproducibility, all models were initialized 
and trained independently for each configuration, and training 
histories were logged and stored for comparative analysis. The 
final model selection was based on a combination of metrics – 
training loss, Intersection over Union (IoU), and F1-score. This 
allowed identification of the most accurate and robust model for 
mangrove semantic segmentation.  
 
4.7 Accuracy Evaluation 

The classification performance of each model was assessed using 
a held-out test dataset, independent from the training and 
validation sets. Evaluation metrics included overall accuracy, 
precision, recall, Intersection over Union (IoU), and F1-score, 
which are widely used in both machine learning and remote 
sensing for assessing segmentation quality at the pixel level. 
These metrics were computed using TensorFlow’s built-in metric 
classes and custom functions integrated into the training pipeline. 
While commonly applied in deep learning, these pixel-wise 
metrics are particularly relevant for remote sensing applications 
where precise delineation of land cover classes—such as 
mangroves—is essential. Beyond numerical evaluation, model 
performance was further validated through side-by-side visual 
comparisons of RGB images, ground truth masks, and predicted 
segmentation results from each model’s best configuration—
aligning with standard remote sensing practice for qualitative 
accuracy assessment. 
 

5. Results and Discussion 

5.1 Model Performance Comparison 

Figure 6 illustrates the training loss curves for the best 
configurations of U-Net, MSNet, SegNet and Attention U-Net. 
The curves reveal distinct convergence behaviors. U-Net 

demonstrated the fastest and most consistent convergence, 
rapidly reducing its training loss and achieving the lowest final 
loss value among all models. This suggests that U-Net’s skip 
connections and balanced architecture enabled it to learn spatial 
features more effectively while minimizing overfitting (Lomeo 
& Singh, 2022; Xu et al., 2023). 
 

 
Figure 6. Training Losses of Attention U-Net, MSNet, SegNet 

and U-Net. 
 
Attention U-Net also showed a steady decrease in training loss 
but plateaued at a slightly high loss value compared to U-Net. 
MSNet achieved a moderate convergence rate, reflecting its 
ability to capture multi-scale features (Xu et al., 2023). SegNet, 
while comparable in final loss values, exhibited slower 
convergence due to its simpler pooling-based decoder (Guo et 
al., 2021). The consistently decreasing training losses and 
relatively low final values across all models highlight the 
effectiveness of the preprocessing pipeline and hyperparameter 
tuning strategies. In particular, U-Net’s performance reinforces 
its suitability for mangrove mapping in coastal landscapes with 
limited computational resources (Sun et al., 2023). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Comparison of Evaluation Metrics for each Model   
 
Figure 7 shows the final validation metrics –F1-score, accuracy, 
IoU, recall and precision – for the best configurations of each 
model. U-Net consistently led across all metrics, reflecting its 
strong capability in accurately segmenting mangrove areas, with 
particularly high IoU and F1 values. SegNet, while slightly 
behind, still delivered competitive performance with well-
balanced precision and recall, demonstrating its efficiency 
despite a simpler architecture (Guo et al., 2021). Attention U-
Net demonstrated strong F1-score and precision but had slightly 
lower recall compared to U-Net, suggesting conservative 
segmentation that might miss some minor mangrove fragments. 
Nonetheless, its attention gates supported focused and accurate 
delineation of complex spatial features (Cai & Wang, 2022). 
Lastly, MSNet’s strong precision and recall metrics demonstrate 
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the utility of multi scale feature extraction in heterogeneous 
coastal scenes (Xu et al., 2023). 
 
These quantitative results align with previous studies 
highlighting the dominance of U-Net-based architectures for 
mangrove mapping (Lomeo & Singh, 2022; Wang et al., 2023). 
The convergence of high validation metrics across all models 
shows the importance of effective hyperparameter tuning and 
preprocessing, ensuring robust and generalizable models for 
remote sensing applications. 
 
5.2 Segmentation Results of Mangroves 

To gain deeper understanding of the segmentation accuracy of 
the deep learning models, representative mangrove distribution 
areas were chosen for qualitative evaluation. 
 
The visual comparison in Figure 8 illustrates how different CNN 
architectures handle the spatial complexity of Bohol’s 
fragmented mangrove coastlines. The errors for each model 
output are highlighted in red circles. Notably, SegNet’s outputs 
often appear less refined, with rougher edges (Figures 8-a, 8-c, 8-
f) and omissions near water-mangrove interfaces (Figures 8-b,8-
d, 8-e). This can be attributed to the absence of skip connections 
which are crucial for preserving spatial detail during upsampling. 
In contrast, U-Net, with its encoder-decoder skip pathways, 
maintains more continuous and accurate boundaries, even in 
ecotone zones where mangrove patches transition into open water 
or built-up areas. Similarly, Attention U-Net benefits from spatial 
attention mechanisms, which allow the model to focus on 
irregular or narrow mangrove shapes that might otherwise be 
overlooked (Figures 8-d, 8-e).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Results of Mangrove Segmentation for the Four 
Models. 

 
These architectural differences are not merely reflected in metric 
performance; they have tangible implications for real-world 
usability – particularly for local conservation planning, where 
accurate boundary delineation is essential for monitoring 
deforestation, zoning rehabilitation areas, and enforcing 
protection policies in fragmented mangrove systems. 

 
In summary, the side-by-side visualization of RGB images, 
ground-truth masks, and predicted masks across the four models 
underscores U-Net and Attention U-Net’s superior visual 
consistency which supports data-driven conservation efforts 
(Baloloy et al., 2023). MSNet’s outputs are reliable for general 
mapping, while SegNet, despite slightly rougher boundaries, still 
provides coherent and operationally useful masks for large-scale 
mangrove assessments. These findings have practical 
implications for scaling mangrove mapping efforts across the 
Philippines and other Southeast Asian regions, contributing to 
the global discourse on sustainable coastal resource management 
(Bhowmik et al., 2022; Neri et al., 2021). 
 
5.3 Computational Efficiency 

Beyond segmentation accuracy, computational efficiency is a 
critical consideration for real-world implementation, especially 
in resource-constrained contexts such as local government units 
(LGUs), small NGOs, or academic institutions. Table 2 
summarizes the total training time (in seconds) for each model. 
MSNet exhibited the fastest training time at 1,974 seconds, 
followed by SegNet (4,884 s), U-Net (6,435 s), and Attention U-
Net, which required significantly more time at 13,588 seconds 
due to the added computational complexity of attention 
mechanisms. While U-Net achieved the highest segmentation 
performance across all metrics, its training duration was more 
than three times that of MSNet and about 32% longer than 
SegNet’s. In contrast, SegNet, despite slightly lower IoU and F1-
scores, offers a reasonable balance of speed and segmentation 
quality, making it a viable alternative for large-area mapping or 
low-resource deployments. These trade-offs between 
computational cost and output quality are crucial for informing 
deployment decisions in practice, especially when regular 
monitoring or rapid updates are required. 
 

Model Training 
Time (in 
seconds) 

Remarks 

MSNet 1,974 Fastest, decent performance 
SegNet 4,884 Balanced speed and accuracy 
U-Net 6,435 Highest accuracy, moderate 

time 
Attention 
U-Net 

13,588 Most accurate in details, 
slowest 

Table 2. Computational Efficiency of each CNN Model 
 

6. Conclusion 

This study successfully demonstrated the effectiveness of deep 
learning-based convolutional neural networks – U-Net, 
Attention U-Net, MSNet, and SegNet – in accurately mapping 
mangrove forests in Bohol, Philippines, using Sentinel-2 
imagery. The qualitative and quantitative analysis highlight U-
Net as the most consistent and precise model, providing highly 
detailed and visually coherent mangrove boundaries. Attention 
U-Net also performed strongly, offering nuanced segmentation 
for complex scenes and multi-scale features, respectively. 
SegNet, while somewhat less precise at boundaries, still 
produced operationally useful mangrove masks suitable for rapid 
mapping applications. The convergence of high validation 
metrics and visually robust outputs across these models 
underscores the reliability of deep learning for environmental 
monitoring tasks in coastal landscapes. 

Input Image RGB                        Ground Truth                                U-Net                                AttentionU-Net                            SegNet                                   MSNet 

a 

b 

c 

d 

e 

f 
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7. Recommendations 

Based on the findings, it is recommended that U-Net be 
prioritized for operational mangrove mapping and regular 
monitoring by local government units (LGUs), the Department 
of Environment and Natural Resources (DENR), and other 
agencies managing coastal ecosystems. Its superior accuracy and 
spatial consistency make it highly suitable for generating updated 
mangrove extent maps, which can be integrated with flood hazard 
maps, erosion-prone zones, and marine protected areas for use in 
disaster risk reduction (DRR) and coastal zoning plans. For areas 
with complex shoreline features or fragmented mangrove 
patches, such as estuaries or river mouths, Attention U-Net offers 
a complementary solution, enabling more detailed assessment 
and management at the barangay or municipal level. In cases 
where computational resources are limited, such as in 
community-managed or academic settings, SegNet remains a 
viable alternative for rapid, large-area mapping. To further 
enhance map accuracy and usability, future initiatives should 
explore the incorporation of drone or UAV imagery for higher-
resolution validation and apply transfer learning techniques to 
adapt trained models to other provinces with similar coastal 
characteristics.  
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