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Abstract

This study presents a deep learning-based approach for mapping mangrove forests in Bohol, Philippines using high-resolution Sentinel-
2 imagery. Given the limitations of traditional mapping techniques and the ecological importance of mangroves, four convolutional
neural network (CNN) architectures—U-Net, Attention U-Net, MSNet, and SegNet—were trained and evaluated. The preprocessing
pipeline included patch generation, normalization, and random sampling to ensure spatial representativeness. Hyperparameter tuning
explored combinations of loss functions and learning rates to optimize model performance. Results showed that U-Net consistently
achieved the highest accuracy across all evaluation metrics, with an IoU of 0.93, accuracy of 0.98, precision of 0.966 and F1-score of
0.963. Visual inspections confirmed U-Net and Attention U-Net’s superior ability to delineate mangrove boundaries, particularly in
complex coastal zones. In contrast, SegNet produced coarser edges but trained significantly faster, offering a practical alternative for
rapid assessments or resource-constrained deployments. These findings emphasize the value of skip connections and attention
mechanisms not just for performance enhancement but for improving the usability of outputs in real-world conservation. The study
recommends U-Net for integration into local government monitoring systems, supporting disaster risk reduction, marine zoning, and
restoration planning. Future work may incorporate drone imagery and transfer learning to improve adaptability across other Philippine

coastal ecosystems.

1. Introduction
1.1 Mangrove Ecosystems Mapping

Mangrove ecosystems are vital components of coastal
environments, providing essential ecological and economic
services such as coastal protection, nursery habitats for marine
species, and carbon sequestration. However, rapid degradation
of mangrove forests - driven by human activities and climate
change necessitates accurate and consistent monitoring to
support conservation and sustainable management efforts (Sun et
al., 2023).

The Philippines, home to extensive mangrove forests, has
experienced significant losses over the past decades, with
substantial percentage disappearing since 1990 (Bhowmik et al.,
2022; Conopio et al., 2021). To address this issue, previous
studies have explored mangrove mapping using Mangrove
Vegetation Index (MVI) derived from remote sensing
technologies (Baloloy et al., 2023). Remote sensing offers a cost-
effective and reliable solution for long-term mangrove
monitoring, overcoming the limitations of traditional field
surveys, which are often constrained by accessibility and
resource intensiveness (Nardin et al., 2021). While the MVI
demonstrates high index accuracy, its mapping effectiveness is
constrained by various biophysical and environmental factors,
potentially limiting its applicability in diverse mangrove
landscapes (Neri et al., 2021).

Given the ecological and economic importance of mangroves,
detailed mapping is crucial for effective conservation and
management, particularly in mega-biodiversity hotspots like
Bohol (Agduma et al., 2024; Cayetano et al., 2023; Faustino et
al., 2020; Giri, 2021; Jose et al., 2022). Bohol’s coastal landscape
is characterized by intricate shoreline morphologies, including
fringing mangroves, tidal flats, estuarine systems, and scattered

offshore islets. These geophysical features result in fragmented
mangrove patches, frequent water—vegetation mixing, and
complex spectral signatures, making accurate classification
difficult using conventional methods. This spatial complexity
presents a region-specific challenge that underscores the novelty
of applying deep learning-based approaches to Bohol. By
focusing on this biodiversity-rich and morphologically diverse
province, the study contributes not only to the methodological
advancement of mangrove mapping but also to localized
conservation strategies in one of the Philippines' ecologically
significant coastal zones.

1.2 Problem definition and Objectives

This study aims to develop an accurate and efficient deep
learning-based model for semantic segmentation of mangroves
using Sentinel-2 satellite imagery. Specifically, it aims to: (1)
gather remote sensing data from Google Earth Engine (GEE);
(2) design, train and evaluate convolutional neural network
(CNN) models such as U-Net, Attention U-Net, MSNet and
SegNet for semantic segmentation of mangrove and non-
mangrove areas; (3) fine-tune hyperparameters to improve
accuracy of chosen CNN models; and (4) compare convolutional
neural network (CNN) models for semantic segmentation of
mangrove and non-mangrove areas.

2. Review of Related Literature

Mangrove forests are critical coastal ecosystems that require
accurate and timely monitoring for conservation (Lu & Wang,
2021). With the availability of high-resolution multispectral data
from Sentinel-2, recent studies have applied machine learning
and deep learning techniques to improve mangrove mapping
accuracy. This review highlights recent works that utilize deep
learning approaches, presenting their data sources, algorithms
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and performance metrics as benchmarks relevant to the present
study in Bohol, Philippines.

Based from Table 1, previous studies indicate that UNet-based
deep learning models remain the dominant approach for
mangrove mapping, Various satellite imagery sources, including
Landsat 8, ZY-301, ZY-302, GF-1, GF-2, and GF-6, have been
widely utilized for this purpose due to their high availability and
accessibility (Guo et al., 2021; Wang et al., 2023; Xu et al., 2023,
Sun et al., 2023). However, most of these studies have been
conducted in China (Sun et al., 2023; Wang et al., 2023), Pakistan
(Xu et al., 2023), and other parts of Southeast Asia (Guo et al.,
2021; Lomeo & Singh, 2022). Notably, while Sentinel-2 has been
used in prior research, only Lomeo and Singh (2022) attempted
to apply it for mangrove mapping, explicitly excluding Indonesia
and the Philippines. This exclusion was attributed to the
complexity of the countries’ coastlines and their relatively small
land areas, which pose challenges in image processing and class
identification.
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Table 1. Deep Learning Techniques and Data in Mangrove
Mapping

U-Net serves as a strong baseline due to its proven effectiveness
and adaptability(Xu et al., 2023). Attention mechanisms can be
incorporated into U-Net to improve performance. These
mechanisms establish associations between features and explore
global context information (Cai & Wang, 2022). MSNet offers a
way to address spatial information loss and reduce model
complexity (Xu et al., 2023). While SegNet is a more traditional
architecture, it provides a useful point of comparison (Xu et al.,
2023). By evaluating these models this research can contribute to
identifying the most effective techniques for accurate and
efficient mangrove mapping.

Bohol stands out as a particularly important study area due to its
rich biodiversity and complex coastal ecosystems. Considering

the limited research in this region, this study is significant since
Bohol is known to have the most diverse mangrove ecosystem
in the Philippines (Cuenca-Ocay et al., 2023).

3. Conceptual Framework

This study is anchored on the integration of remote sensing and
deep learning technologies to enhance the accuracy and
efficiency of mangrove forest mapping. Specifically, it utilizes
Sentinel-2 satellite imagery processed through deep learning
models for semantic segmentation of mangrove areas in Bohol,
Philippines. The conceptual framework (Figure 1) follows a
structured flow: (1) Sentinel-2 Imagery Acquisition; (2) Image
Pre-Processing; (3) Model Training with Deep Learning; (4)
Hyperparameter Tuning; (5) Model Selection; (6) Accuracy
Evaluation.
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Figure 1. Conceptual Framework of the Study

The process begins with the acquisition of high-resolution
Sentinel-2 imagery. These multispectral images are pre-
processed through techniques such as band selection, resampling
and normalization.

At the core of the framework is the training and optimization of
deep learning segmentation models. A key element of the model
development is hyperparameter tuning, which involves
systematically adjusting parameters such as learning rate, loss
function and number of epochs to identify the optimal
configuration that yields the highest segmentation performance.

Once the optimal model is selected through validation
performance, it is used to generate a classified mangrove map,
delineating mangrove and non-mangrove areas. The model’s
output is evaluated using standard accuracy metrics, including
overall accuracy, precision, recall, Fl-score, and Intersection
over Union (IoU).
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4. Methodology

4.1 Study Area
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Figure 2. Map of the Study Area

The study was conducted in the coastal areas of Bohol,
Philippines (Figure 2), an island province known for its extensive
and ecologically significant mangrove ecosystems. These coastal
zones were selected due to their environmental relevance and the
increasing need for accurate monitoring to support sustainable
resource management and conservation.

4.2 Data Acquisition

Multispectral satellite imagery was obtained from the Sentinel-2
satellite mission through the Google Earth Engine (GEE) (Xu et
al., 2023). Images were selected based on their spatial coverage
of Bohol’s coastal zones, acquisition between January 1, 2020 to
December 31, 2020 (Figure 3) and minimal cloud cover (less than
10%). Sentinel-2 data was preferred due to its spatial resolution
(10-20 meters) and rich spectral bands suitable for vegetation
classification tasks, including the identification of mangrove
forests.
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Figure 3. Sentinel-2 2020 Imagery used in Image Processing.

As for the mangrove masks, coastal resource map of 2020 were
downloaded from the GeoPortal. PH and were manually refined
with visual interpretation of the Sentinel-2 imagery using the
QGIS software. Figure 4 shows a sample mangrove mask.
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Figure 4. Mangrove Mask in a Sample Coastal Region.

4.3 Image Pre-processing

Prior to model training, the acquired imagery underwent several
preprocessing steps using OpenCV and Rasterio in a Jupyter
Notebook environment. All images were resampled to a uniform
spatial resolution of 10 meters to ensure consistency across
datasets. Pixel values were normalized between 0 and 1 to
facilitate model convergence (Figure 5a). To generate training
data, the satellite image and its corresponding mangrove mask
were divided into fixed-size patches of 128x128 pixels. Patches
with less than 10% valid mangrove or non-mangrove content
were excluded to eliminate mostly empty regions. A total of 836
image-mask patch pairs (128x128 pixels) were generated to
represent the mangrove and non-mangrove areas across the
coastal region of Bohol. These patches were derived from
preprocessed Sentinel-2 imagery and reference ground-truth
masks and served as the complete dataset for model training and
evaluation. To ensure an unbiased and representative sample, the
dataset was randomly split into 70%-15%-15% for training
validation and test sets, respectively. This random sampling
approach minimizes spatial bias and supports the
generalizability of model performance, as recommended in
remote sensing accuracy frameworks (Stehman, 2013; Foody,
2002).
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Figure 5. Sentinel-2 RGB Image and Corresponding
Segmentation Mask

Ground truth data was prepared using the coastal resource map
of 2020 from the Department of Environment and Natural
Resources (DENR) as a reference map. Areas identified as
mangrove and non-mangrove were labelled and converted into
binary mask images (Figure 5b).

4.4 Model Training with Deep Learning

The study utilized four convolutional neural network (CNN)
architectures for semantic segmentation: U-Net, Attention U-
Net, MSNet, and SegNet. All models were implemented in
Jupyter Notebook using TensorFlow and Keras libraries, and
their performance was systematically evaluated to determine the
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most accurate and computationally efficient model for mangrove
mapping. The deep learning models were trained using a local
machine with an Intel Iris Xe Graphics, Intel Core i5 processor
and 16GB RAM. Due to the machine’s memory constraints, the
training batch size was limited to 16, resulting in each epoch
being iterated 73 times (Xu et al., 2023).

4.5 Hyperparameter Tuning

To identify the most effective model configuration for mangrove
segmentation, a systematic hyperparameter tuning process was
conducted. This involved training each of the four CNN
architectures — U-Net, Attention U-Net, MSNet, and SegNet —
under different combinations of loss functions and learning rates.
Two loss functions were evaluated: binary cross-entropy (BCE),
and a composite loss combining BCE with Dice loss. Each model
was trained using two initial learning rates, 1 x 10"-3 and 1 x 10"-
4, resulting in a total of 16 training configurations.

Each model variant was compiled using the Adam optimizer,
with evaluation metrics including accuracy, precision, recall, F1-
score and Intersection over Union (IoU).

4.6 Model Selection

Model selection was guided by performance comparisons across
multiple training configurations. Model training was monitored
using callbacks such as ModelCheckpoint to save the best-
performing  weights  based on  validation  loss,
ReduceLROnPlateau to adjust the learning rate dynamically, and
EarlyStopping to prevent overfitting by halting training when no
improvement was observed after eight consecutive epochs.

To ensure fairness and reproducibility, all models were initialized
and trained independently for each configuration, and training
histories were logged and stored for comparative analysis. The
final model selection was based on a combination of metrics —
training loss, Intersection over Union (IoU), and F1-score. This
allowed identification of the most accurate and robust model for
mangrove semantic segmentation.

4.7 Accuracy Evaluation

The classification performance of each model was assessed using
a held-out test dataset, independent from the training and
validation sets. Evaluation metrics included overall accuracy,
precision, recall, Intersection over Union (IoU), and F1-score,
which are widely used in both machine learning and remote
sensing for assessing segmentation quality at the pixel level.
These metrics were computed using TensorFlow’s built-in metric
classes and custom functions integrated into the training pipeline.
While commonly applied in deep learning, these pixel-wise
metrics are particularly relevant for remote sensing applications
where precise delineation of land cover classes—such as
mangroves—is essential. Beyond numerical evaluation, model
performance was further validated through side-by-side visual
comparisons of RGB images, ground truth masks, and predicted
segmentation results from each model’s best configuration—
aligning with standard remote sensing practice for qualitative
accuracy assessment.

5. Results and Discussion
5.1 Model Performance Comparison
Figure 6 illustrates the training loss curves for the best

configurations of U-Net, MSNet, SegNet and Attention U-Net.
The curves reveal distinct convergence behaviors. U-Net

demonstrated the fastest and most consistent convergence,
rapidly reducing its training loss and achieving the lowest final
loss value among all models. This suggests that U-Net’s skip
connections and balanced architecture enabled it to learn spatial
features more effectively while minimizing overfitting (Lomeo
& Singh, 2022; Xu et al., 2023).
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Figure 6. Training Losses of Attention U-Net, MSNet, SegNet
and U-Net.

Attention U-Net also showed a steady decrease in training loss
but plateaued at a slightly high loss value compared to U-Net.
MSNet achieved a moderate convergence rate, reflecting its
ability to capture multi-scale features (Xu et al., 2023). SegNet,
while comparable in final loss values, exhibited slower
convergence due to its simpler pooling-based decoder (Guo et
al.,, 2021). The consistently decreasing training losses and
relatively low final values across all models highlight the
effectiveness of the preprocessing pipeline and hyperparameter
tuning strategies. In particular, U-Net’s performance reinforces
its suitability for mangrove mapping in coastal landscapes with
limited computational resources (Sun et al., 2023).

Comparison of Final Metrics for Each Model

AttentionU-Net MSNet SegNet U-N

Figure 7. Comparison of Evaluation Metrics for each Model

Figure 7 shows the final validation metrics —F1-score, accuracy,
IoU, recall and precision — for the best configurations of each
model. U-Net consistently led across all metrics, reflecting its
strong capability in accurately segmenting mangrove areas, with
particularly high IoU and F1 values. SegNet, while slightly
behind, still delivered competitive performance with well-
balanced precision and recall, demonstrating its efficiency
despite a simpler architecture (Guo et al., 2021). Attention U-
Net demonstrated strong F1-score and precision but had slightly
lower recall compared to U-Net, suggesting conservative
segmentation that might miss some minor mangrove fragments.
Nonetheless, its attention gates supported focused and accurate
delineation of complex spatial features (Cai & Wang, 2022).
Lastly, MSNet’s strong precision and recall metrics demonstrate
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the utility of multi scale feature extraction in heterogeneous
coastal scenes (Xu et al., 2023).

These quantitative results align with previous studies
highlighting the dominance of U-Net-based architectures for
mangrove mapping (Lomeo & Singh, 2022; Wang et al., 2023).
The convergence of high validation metrics across all models
shows the importance of effective hyperparameter tuning and
preprocessing, ensuring robust and generalizable models for
remote sensing applications.

5.2 Segmentation Results of Mangroves

To gain deeper understanding of the segmentation accuracy of
the deep learning models, representative mangrove distribution
areas were chosen for qualitative evaluation.

The visual comparison in Figure 8 illustrates how different CNN
architectures handle the spatial complexity of Bohol’s
fragmented mangrove coastlines. The errors for each model
output are highlighted in red circles. Notably, SegNet’s outputs
often appear less refined, with rougher edges (Figures 8-a, 8-c, 8-
f) and omissions near water-mangrove interfaces (Figures 8-b,8-
d, 8-¢). This can be attributed to the absence of skip connections
which are crucial for preserving spatial detail during upsampling.
In contrast, U-Net, with its encoder-decoder skip pathways,
maintains more continuous and accurate boundaries, even in
ecotone zones where mangrove patches transition into open water
or built-up areas. Similarly, Attention U-Net benefits from spatial
attention mechanisms, which allow the model to focus on
irregular or narrow mangrove shapes that might otherwise be
overlooked (Figures 8-d, 8-e).
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Figure 8. Results of Mangrove Segmentation for the Four
Models.

These architectural differences are not merely reflected in metric
performance; they have tangible implications for real-world
usability — particularly for local conservation planning, where
accurate boundary delineation is essential for monitoring
deforestation, zoning rehabilitation areas, and enforcing
protection policies in fragmented mangrove systems.

In summary, the side-by-side visualization of RGB images,
ground-truth masks, and predicted masks across the four models
underscores U-Net and Attention U-Net’s superior visual
consistency which supports data-driven conservation efforts
(Baloloy et al., 2023). MSNet’s outputs are reliable for general
mapping, while SegNet, despite slightly rougher boundaries, still
provides coherent and operationally useful masks for large-scale
mangrove assessments. These findings have practical
implications for scaling mangrove mapping efforts across the
Philippines and other Southeast Asian regions, contributing to
the global discourse on sustainable coastal resource management
(Bhowmik et al., 2022; Neri et al., 2021).

5.3 Computational Efficiency

Beyond segmentation accuracy, computational efficiency is a
critical consideration for real-world implementation, especially
in resource-constrained contexts such as local government units
(LGUs), small NGOs, or academic institutions. Table 2
summarizes the total training time (in seconds) for each model.
MSNet exhibited the fastest training time at 1,974 seconds,
followed by SegNet (4,884 s), U-Net (6,435 s), and Attention U-
Net, which required significantly more time at 13,588 seconds
due to the added computational complexity of attention
mechanisms. While U-Net achieved the highest segmentation
performance across all metrics, its training duration was more
than three times that of MSNet and about 32% longer than
SegNet’s. In contrast, SegNet, despite slightly lower IoU and F1-
scores, offers a reasonable balance of speed and segmentation
quality, making it a viable alternative for large-area mapping or
low-resource  deployments. These trade-offs between
computational cost and output quality are crucial for informing
deployment decisions in practice, especially when regular
monitoring or rapid updates are required.

Model Training Remarks

Time (in

seconds)
MSNet 1,974 Fastest, decent performance
SegNet 4,884 Balanced speed and accuracy
U-Net 6,435 Highest accuracy, moderate

time

Attention 13,588 Most accurate in details,
U-Net slowest

Table 2. Computational Efficiency of each CNN Model

6. Conclusion

This study successfully demonstrated the effectiveness of deep
learning-based convolutional neural networks — U-Net,
Attention U-Net, MSNet, and SegNet — in accurately mapping
mangrove forests in Bohol, Philippines, using Sentinel-2
imagery. The qualitative and quantitative analysis highlight U-
Net as the most consistent and precise model, providing highly
detailed and visually coherent mangrove boundaries. Attention
U-Net also performed strongly, offering nuanced segmentation
for complex scenes and multi-scale features, respectively.
SegNet, while somewhat less precise at boundaries, still
produced operationally useful mangrove masks suitable for rapid
mapping applications. The convergence of high validation
metrics and visually robust outputs across these models
underscores the reliability of deep learning for environmental
monitoring tasks in coastal landscapes.
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7. Recommendations

Based on the findings, it is recommended that U-Net be
prioritized for operational mangrove mapping and regular
monitoring by local government units (LGUs), the Department
of Environment and Natural Resources (DENR), and other
agencies managing coastal ecosystems. Its superior accuracy and
spatial consistency make it highly suitable for generating updated
mangrove extent maps, which can be integrated with flood hazard
maps, erosion-prone zones, and marine protected areas for use in
disaster risk reduction (DRR) and coastal zoning plans. For areas
with complex shoreline features or fragmented mangrove
patches, such as estuaries or river mouths, Attention U-Net offers
a complementary solution, enabling more detailed assessment
and management at the barangay or municipal level. In cases
where computational resources are limited, such as in
community-managed or academic settings, SegNet remains a
viable alternative for rapid, large-area mapping. To further
enhance map accuracy and usability, future initiatives should
explore the incorporation of drone or UAV imagery for higher-
resolution validation and apply transfer learning techniques to
adapt trained models to other provinces with similar coastal
characteristics.
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