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Abstract 
 
3D point clouds generated from laser scanning techniques offer opportunities for precise and efficient reality capture with higher spatial 
resolution compared to traditional point-wise techniques. The consequent 3D change detection and analysis based on multitemporal 
point clouds have seen rapid advancements over the past two decades. In this context, numerous methods have been proposed to detect 
and analyze surface changes in general or specific scenarios. This paper systematically reviews and illustrates various methodologies 
for change analysis based on laser scanning point clouds, focusing particularly on the definitions of correspondences. These 
correspondences between compared point clouds are defined according to the types of changes that are expected to be detected, 
including surface differences, displacement vectors, and parametric changes, which result in different analytical approaches. Using bi-
temporal laser scanning point clouds of a rock glacier surface, we demonstrate and evaluate the impact of different methods on 
quantified changes and provide suggestions for selecting appropriate methods across different application scenarios. Additionally, we 
highlight existing challenges and research directions for advancing change analysis using laser scanning point clouds. 
 
 

1. Introduction 

Traditional point-wise geodetic monitoring methods, such as 
leveling, total stations, and Global Navigation Satellite System 
(GNSS), offer high-precision deformation measurements 
coupled with rigorous statistical analyses, benefiting from 
convenient acquisitions of identical points and their stochastic 
characteristics. Nevertheless, selecting representative measured 
points requires careful consideration with prior knowledge of the 
expected changes and often results in a sparse distribution of 
derived deformations (Harmening, 2020). To address these 
limitations, area-wise monitoring strategies were introduced, 
enabling the acquisition of 2D images or 3D point clouds over 
multiple epochs, which have been widely applied in geodesy, 
photogrammetry, and remote sensing. (Holst and Kuhlmann, 
2016; Qin et al., 2016; Hussain et al., 2013). By recording 
densely distributed measurements — such as 2D pixels or 3D 
points — within a short time, these areal acquisition techniques 
provide comprehensive spatial information. Among these, 3D 
point clouds serve as one of the most straightforward 
representations of area-wise spatial data. They can be rapidly 
generated from laser scanning or photogrammetric techniques 
and further exploited to reveal the 3D dynamics of monitored 
objects (Qin et al., 2016; Stilla and Xu, 2023). 
 

 
Figure 1. Typical acquisition methods of 3D point clouds and 

their common properties. 

Figure 1 presents an overview of the current approaches to 
acquiring point clouds and their common properties. Point clouds 

collected from different sensors (e.g., cameras or laser scanners) 
on different platforms (e.g., tripods or vehicles) display generally 
similar representations but with dissimilar geometric or 
radiometric characteristics (e.g., point density, accuracy, 
reflectance, etc.) (Yang, 2023). To detect geometric changes 
occurring between multitemporal point clouds, theoretically, 
only geometric information is needed. The radiometric values 
can be beneficial in finding the regions or objects of interest and 
establishing reliable correspondences. In addition, radiometric 
changes can also be evaluated based on these values appended to 
the point cloud data. It should be emphasized that, in this paper, 
the changes we discuss in point clouds merely refer to the 
geometric changes. 
In the field of geodesy, the process of detecting and quantifying 
these changes occurring on the monitored surface is usually 
formulated as “deformation analysis” (Kuhlmann et al., 2014; 
Holst and Kuhlmann, 2016), where the term “deformation” here, 
including both rigid-body movement and shape deformation (or 
distortion), has equivalent implications to “change” used in the 
geoscientific domain. 
Gehrung et al. (2020) defined change as the action with semantic 
meanings used for object instances, deriving five major types: 
 Appeared: the appearance of an object instance. 
 Disappeared: the disappearance of an object instance. 
 Partially moved: the movement of an object instance with 

overlaps in the two states. 
 Fully moved: the movement of an object instance without 

overlaps in the two states. 
 Deformed: the object instance occupies the same space 

during a period but changes its geometric form. 

The appeared and disappeared changes are the classes usually 
used in change detection, giving a binary answer, while the 
similar term deformation analysis in the geodetic domain 
normally solves the problem of quantifying the change 
magnitudes (movements or shape deformation) of the objects that 
merely change within the measured scene (Gehrung et al., 2020; 
Lindenbergh and Pietrzyk, 2015). To facilitate the understanding 
and harmonize the concepts, change analysis is adopted herein to 
encapsulate change detection and deformation analysis. 
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Typically, changes between two point clouds are calculated 
between assumed common elements which can be called 
correspondences. Since laser scanning does not measure 
identical points in different epochs, such as a total station does, 
these correspondences are usually the same artificial targets 
placed in the measured scenes or extracted and matched features 
by efficient algorithms (Lindenbergh and Pietrzyk, 2015). 
However, these point-wise correspondences are limited to 
represent the details of change events if they are relatively sparse 
in the scene. Besides, identical elements are hardly found in the 
point clouds that are fully distorted or lack artificial markers. 
In the last two decades, numerous methods have been proposed 
and applied to analyze the possible changes in infrastructural 
(Kermarrec et al., 2020), industrial (Holst et al., 2019), and 
environmental objects (Anders et al., 2020) based on laser 
scanning point clouds. The accuracy and resolution of detected 
changes have been significantly improved by these advanced 
approaches. Furthermore, some general methods by comparing 
two point cloud surfaces enable the availability of change 
analysis in point clouds to more applications and scenarios 
(Girardeau-Montaut et al., 2005; Lague et al., 2013). Within these 
general methods, the change at each position is quantified on its 
nearest distance or the distance along specifically defined 
directions to the other point cloud. Since no explicit 
correspondences are defined in these point cloud comparison 
techniques, realistic changes (e.g., displacements of objects) on 
the surface may be underestimated (Gojcic et al., 2021). Besides, 
the change values calculated by different methods may show 
inconsistency in the same data, especially when the change 
directions are not well considered or the change types are not 
correctly assumed (Yang, 2023). Therefore, a comprehensive and 
accurate categorization of typical surface changes as well as 
change analysis methods should be clarified to adapt to different 
monitoring tasks and applications. 
Mukupa et al. (2016) classified point cloud-based change 
analysis (PCCA) methods into three general categories: 
 Point to point-based: calculating distances between the 

corresponding points in two point clouds. 
 Point to surface-based: calculating distances between the 

points in one point cloud and the modeled surface or mesh of 
another point cloud. 

 Surface to surface-based: calculating distances between the 
generated points from modeled surfaces or estimating 
parametric changes between the models of two point clouds. 

Neuner et al. (2016) proposed five categories to systematize the 
methods for change (deformation) analysis from the perspective 
of point cloud modeling: 
 Point-based: using single (identical) points. 
 Point cloud-based: using partial or entire point clouds. 
 Surface-based: using grid structures (e.g., mesh and voxels). 
 Geometry-based: using geometric forms in the point clouds. 
 Parameter-based: using parameters of approximating 

surfaces of the point clouds. 

Stilla and Xu (2023) formulated point cloud-based change 
detection as a spatial difference estimation problem and listed 
three main types: 
 Point-based: comparing spatial positions of identical points. 
 Voxel- or occupancy-grid-based: comparing the occupancy 

states of divided grids or voxels. 
 Segment- or object-based: comparing positions and shapes of 

segmented clusters or object instances in the point clouds. 

The above three taxonomies are categorized in terms of the 
compared elements, and to a certain extent, there are duplications 
or omissions. For example, feature points may be extracted to 
calculate changes from two modeled surfaces by the surface-to-
surface methods, which eventually return to a point-to-point 

approach. In the geometry-based model of the second taxonomy, 
the derived positions and orientations of geometric primitives 
(e.g., planes, spheres, cylinders, etc.) contained in two point 
clouds can also be regarded as estimated parameters in the 
parameter-based method. 
Regardless of the type of changes or the methods to analyze them, 
it is essential to establish correspondences between two or more 
point clouds either explicitly or implicitly. However, when 
objects appear or disappear from the scene, or undergo complete 
shape deformation, identical corresponding elements may no 
longer exist. Thus, we extend the implication of correspondences 
within the context of PCCA, which is not limited to (assumed) 
identical elements. Based on varying correspondence definitions, 
we propose a new categorization for existing PCCA methods. 
The outputs of these methods are further classified into three 
categories: surface differences, displacement vectors, and 
parametric changes, which help account for the inconsistencies 
in the results from different approaches. For different types of 
changes in diverse scenarios, appropriate analytical methods 
should be selected to achieve accurate and meaningful change 
results. Therefore, this paper intends to  
— point out what needs to be considered when utilizing laser 

scanning point clouds for change detection and analysis, 
— define strict categories for types of geometric changes and 

types of results from PCCA based on a new categorization of 
correspondence definitions, 

— imply how to choose the most appropriate categories and 
processing methods to avoid misleading results. 

In view of the current research state, we also analyze the existing 
challenges and possible solutions and outline future trends. 
Section 2 provides an overview of the possible types of geometric 
changes in the real world and the representations of change 
analysis results. Section 3 proposes a new categorization of 
current PCCA methods from a perspective on correspondence 
definitions in point clouds and demonstrates the influence of 
different methods on change values. Section 4 and Section 5 
summarize the workflow and considerations of method selection, 
and list the current challenges in change analysis, followed by the 
concluding remarks in Section 6. 
 
2. Change Types in Reality and Results of Change Analysis 

Geometric changes of real-world objects can be complex, yet we 
could decompose them into a variety of simpler types and regard 
the actual changes as a combination or hybrid of these 
fundamental forms. In engineering geodesy, Heunecke et al. 
(2013) categorized the term “deformation” (change) into rigid-
body movements and distortions, assuming that the monitored 
objects remain in the captured scene throughout the monitoring 
period. The former refers to the object undergoes solely 
translations and rotations, and the latter means a certain level of 
changes in shape (i.e., shape deformation). This taxonomy 
facilitates the selection of suitable deformation analysis methods 
tailored to specific types of changes. 
To integrate the change categories in the change detection 
problem (Gehrung et al., 2020), we redefine the types of 
geometric changes that may happen on object surfaces 
represented by measured 3D point clouds, as shown in Figure 2. 
Beyond rigid-body movements and shape deformation, we 
incorporate states of object existence, including appearance and 
disappearance, which cannot be expressed in terms of the former 
two types. Specifically, the distortion of a region can be viewed 
as the rigid-body movements of numerous small sub-areas within 
that region. Similarly, the appearance or disappearance of an 
object can be interpreted as movement into or out of the scene, 
respectively. Consequently, most object changes can be 
characterized as rigid-body movements, either globally or locally, 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-1003-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1004



 

 

which are further detailed by three translation components (𝑡௫, 
𝑡௬, 𝑡௭) and three rotation angles (𝑅௫, 𝑅௬, 𝑅௭) (Yang, 2023). 
 

 
Figure 2. Types of geometric changes of monitored surface. 

These real-world changes can reflect the geometric differences 
between point clouds and be quantified by appropriate methods. 
Nevertheless, each method produces a specific output format, 
which may not directly correspond to the types illustrated in 
Figure 2. Considering the existing mainstream methods and the 
intuitiveness and interpretability of results, we classify the PCCA 
outputs into three categories: surface differences, displacement 
vectors, and parametric changes, as listed in Figure 3. 
 

 
Figure 3. Types of results of point cloud-based change analysis. 

The 1D surface differences can be calculated as surface distances 
in Euclidean space at each point or as volumetric changes within 
specific areas, typically visualized with a color map to represent 
the change values. The 2D or 3D displacement vectors provide 
information on both direction and magnitude of changes, offering 
more details than surface differences. Parametric changes 
involve a parameter estimation procedure that models the point 
cloud surface globally or locally, yielding specific parameters. 
These parameters, estimated over multiple epochs, may explicitly 
show the dimensional, positional, or postural changes of objects 
(e.g., the radius and center of a sphere, or the normal of a plane), 
or implicitly indicate the geometric changes of the surface (e.g., 
the coefficients of a quadric surface). The type of processing 
results depends on the correspondences established in the chosen 
strategies. The correspondence definitions and associated change 
analysis methods will be elaborated in Section 3. 
Surface differences provide a general means of representing 
geometric changes through straightforward calculations. 
However, the realistic change directions are missing in the results, 
though they can be signed as positive or negative to indicate 
increases or decreases relative to the reference surface. Besides, 
movements along the surface may be underestimated or even not 
detected by surface differences (Gojcic et al., 2021). 
Displacement vectors can reveal realistic changes as long as 
correct correspondences are established. Dense vectors derived 
by advanced algorithms can generate displacement fields for 
changed areas, enabling the inference about underlying dynamics. 
However, these vectors may not be distributed in some distorted 
areas where identical points cannot be found between epochs. 

Parametric changes can be derived from the estimated 
parameters of geometric primitives (e.g., planes, cylinders, 
spheres, paraboloids) or constructed free-form surface models 
(e.g., B-spline surfaces). Accurate segmentation and surface 
modeling are thus crucial for detecting these changes. Certain 
parametric changes can be interpreted as surface differences (e.g., 
distances between corresponding control points on two B-spline 
surfaces (Harmening et al., 2021)) or as displacement vectors 
(e.g., the movement of a sphere’s center (Yang et al., 2021)). 
 

3. Correspondence Definitions in Change Analysis 

3.1 Correspondence Definitions and Associated Methods 

As mentioned in Section 1, changes between point clouds are 
calculated between assumed corresponding elements. Thereby, 
considering the construction process of correspondences, we 
categorize the existing methods into five categories, as listed in 
Table 1, along with their principles, advantages, and limitations. 
Taking the closest elements as the correspondences is a 
straightforward and simple way that is applicable to all kinds of 
point clouds. The correspondence construction can be regarded 
as a nearest-neighbor search (NNS) problem in point clouds, 
which are commonly solved based on the kd-tree data structure 
(Bentley, 1975). For example, the nearest points or structured 
voxels between two point clouds are calculated as the 
correspondences in cloud-to-cloud (C2C) method (Girardeau-
Montaut et al., 2005), and in cloud-to-mesh (C2M) or mesh-to-
mesh (M2M) the closest facet (triangle) or edge in the meshed 
point cloud are taken as correspondences (Cignoni et al., 1998; 
Aspert et al., 2002). The changes calculated by NNS, however, 
merely represent the minimum Euclidean distance (ED) between 
two surfaces and may underestimate actual change magnitudes 
for variable topographies or in-plane movements (Yang, 2023). 
The feature-based methods are capable of finding realistic 
corresponding elements, thus deriving actual displacement 
vectors. These algorithms are sensitive to both in-plane and out-
of-plane changes. Nevertheless, the identical features between 
scans are still challenging to be readily extracted and matched, 
especially when shape deformations or non-overlapping areas 
occur during monitoring. Gojcic et al. (2020) proposed feature-
to-feature supervoxel-based spatial smoothing (F2S3) algorithm 
that introduces learned 3D feature descriptors instead of 
handcrafted feature points and establishes correspondences in the 
feature space. This neural network-based technique has 
dramatically improved the detection and matching of features in 
3D point clouds from natural scenes. However, smooth or highly 
deformed surfaces and the surfaces with repetitive structures are 
still challenging for this pipeline (Gojcic et al., 2021). 
Correspondence-driven plane-based M3C2 (CD-PB M3C2) 
proposed by Zahs et al. (2022) extracts individual planar surfaces 
from point clouds by region growing-based segmentation and 
establishes corresponding feature planes between epochs based 
on the plane’s parameters. The spatial distances are then 
calculated between corresponding planes, and thus lower 
uncertainties are achieved. Besides, building correspondences in 
converted 2D images from 3D point clouds based on feature 
detection in hillshade images (Hosseini et al., 2023) has also 
become an efficient way to derive dense displacement vectors. 
The parameter-based methods take the same estimated 
parameters as correspondences. The type of derived parametric 
changes depends on how these parameters are defined. For 
example, when local normals are used as parameters, changes 
could be expressed as angle differences in surface orientations, 
whereas if parameters are the 3D positions of geometric 
primitives, changes may be represented as displacement vectors. 
The choice of estimated parameters should consider the specific 
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requirements of monitoring tasks and application scenarios. 
Since the variances of these parameters can be derived from the 
adjustment process, we can directly perform significance tests on 
these parametric changes. 
In defined direction-based methods, correspondences are 
implicitly constructed along defined directions that are assumed 
to align with the deformation directions. For example, the DEM 
of difference (DoD) method simply calculates the vertical 
distances of corresponding pixels of DEMs generated from point 
clouds (Lane et al., 2003). The standard M3C2 adopts multi-scale 
to estimate surface normals and treat them as the local change 
directions. Correspondences are then constructed by averaging 
the sub-clouds captured by a cylinder whose axis is along the 
predefined direction (Lague et al., 2013). An M3C2 variant called 
Patch-based M3C2 generates planar patches for the entire point 

clouds and projects measurements on associated patch planes, 
allowing lower uncertainties and better detection of small 
changes in complex topographies (Yang and Schwieger, 2023a). 
Notably, these defined direction-based methods primarily aim to 
quantify surface distances between point clouds. Nonetheless, the 
derived distance values have the potential to agree with the 
magnitudes of actual displacements, given appropriately defined 
change directions based on prior knowledge. Besides, the spatial 
resolution of calculated changes is not constrained compared to 
the limited spatial coverage of features or parameters in feature- 
or parameter-based methods. The deformation direction can be 
tailored to specific monitoring tasks or informed by prior 
knowledge, such as using the vertical direction when gravity is 
the primary deformation driver, or the radial direction when 
monitoring tunnel convergence (Yang and Schwieger, 2023a).

 
Methods General principles Advantages Limitations Representative algorithms 

Nearest 
neighbor-
based 

Calculating EDs of the points in one 
point cloud to their nearest neighbors in 
another point cloud. 

Simple, fast and easy 
to implement. 

Change values are 
sometimes underestimated. 

C2C, C2M (Cignoni et al., 1998), 
M2M (Aspert et al., 2002) 

Feature-based Calculating EDs of feature elements 
(e.g., points and planes) extracted and 
matched from two scans or their 
converted 2D images. 

Real displacement 
vectors can be derived. 

Low spatial resolution and 
incorrect correspondences 
in repetitive structures. 

F2S3 (Gojcic et al., 2020), 
CD-PB M3C2 (Zahs et al., 2022), 
Image-based feature points 
(Hosseini et al., 2023) 

Parameter-
based 

Calculating changes of parametric 
elements (e.g., normals of planes or 
centers of spheres) estimated by the 
parameterization of point cloud surfaces. 

Parameters of interest 
and their uncertainties 
can be estimated. 

Required prior knowledge 
for parameterized objects; 
Challenging for highly 
irregular surfaces. 

Geometric primitives (Yang et al., 
2021), 
B-spline surface (Harmening et al., 
2021) 

Defined 
direction-
based 

Calculating EDs of constructed 
corresponding points from two scans 
along defined directions (e.g., gravity 
direction or surface normal). 

Introducing defined 
directions to calculate 
changes with high 
resolution. 

Change values are under- 
or over-estimated if 
defined directions are 
unrealistic. 

DoD (Lane et al., 2003), 
M3C2 (Lague et al., 2013), 
Patch-based M3C2 (Yang and 
Schwieger, 2023a) 

Local (rigid) 
registration-
based 

Performing a rigid registration procedure 
locally on selected subsets of two scans 
to derive the transformation matrix and 
displacement vectors. 

Dense displacement 
fields can be derived 
without feature 
detection procedure. 

Extracting corresponding 
rigid areas without prior 
knowledge is challenging. 

Local ICP (Teza et al., 2007), 
Patch matching (Raffl and Holst, 
2024) 

Table 1. Five categories of point cloud-based change analysis methods by the correspondence definition (Yang, 2023). 

In point cloud registration tasks, correspondences are also 
established to build identical elements and estimate the optimal 
transformation. Conversely, if the transformation parameters are 
obtained between two locally rigid areas (rigid patches), we can 
simply calculate the distance at any position between two patches. 
These distances can be regarded as realistic displacement vectors 
if the registration accurately matches the patches between epochs 
(Raffl and Holst, 2024). Hence, we categorize the local (rigid) 
registration-based methods separately, as their correspondence 
definitions are not exclusive. For instance, when the Iterative 
Closest Point (ICP) algorithm is used (Besl and McKay, 1992), 
correspondences are built by the nearest neighbors; alternatively, 
correspondences become feature-based if feature points are 
employed for registration (Yang et al., 2016). Regardless of the 

registration approach adopted, all local registration-based 
methods compute the transformation parameters by aligning two 
rigid patches, allowing for displacement vectors to be calculated 
at each position within these rigid areas. Consequently, the 
resolution of displacement vectors is unrestricted in these areas.  
To explain the definitions of these correspondences and their 
implications in 3D point clouds more clearly, an intuitive 
schematic diagram is presented in Figure 4. 
 
3.2 Impact of Different Correspondence Definitions 

Different correspondence definitions can yield inconsistent 
change magnitudes at the same location. Except for certain 
parametric changes — such as coefficient changes in surface 

Figure 4. A schematic illustration of five types of correspondence definitions in point cloud-based change analysis. 
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models — that are not directly comparable to surface distances 
or displacement vectors, this section explores the impact of 
correspondence definitions within PCCA. 
First, we provide a schematic comparison of distance and 
displacement calculations at a point, as illustrated in Figure 5. 
Displacement vectors represent the actual movement between 
corresponding elements (with explicit direction information), 
whereas surface distances are computed under specific criteria 
(e.g., between the nearest points or along a defined direction), 
ignoring the actual change directions. Consequently, the distance 
value (Dist) from one epoch to another may differ if the order is 
reversed, while the displacement magnitude (Disp) remains 
unaffected by the sequence of comparison. However, in areas 
with complete distortions or object appearance/disappearance, 
accurate displacements cannot be calculated in the absence of 
realistic correspondences. In such scenarios, surface distances are 
usually used to quantify surface changes (Yang, 2023). 
 

 
Figure 5. The difference between surface distances and real 

displacement vectors (Yang, 2023). 

To demonstrate the differences, herein, we calculate the changes 
in a selected area of bi-temporal laser scanning point clouds1 of 
an active rock glacier in the Alpine regions (Zahs et al., 2021). 
Significant changes (e.g., moving rocks and sliding debris) 
occurred during two measurement epochs (40 days). Figure 6 
shows the calculated changes in the form of surface distance or 
displacement vectors obtained from four different change 
analysis methods, including C2M, a feature point-based method 
(Hosseini et al., 2023), M3C2, and local ICP (using manually 
selected rigid patches). Since this rock glacier surface is highly 
rough and irregular, lacking corresponding geometric primitives 
for deriving surface distances or displacements, the parameter-
based approaches are not included in this result comparison. 
Additionally, the magnitudes of calculated surface distances or 
displacements are distributed in a histogram for comparative 
analysis, as displayed in Figure 7. 
Generally, surface changes in the selected area are all detected by 
four methods and are well represented by surface distances or 
displacement vectors. However, differences regarding the 
directions, magnitudes, and resolution of derived changes arise 
due to different correspondence definitions. Specifically, feature-
based and local registration-based methods can indicate 3D 
change directions because realistic correspondences are assumed 
based on correct feature matching and patch alignment. In 
contrast, real 3D directions cannot be derived by C2M and M3C2. 
However, in Figure 6, the nearest neighbor-based and defined 
direction-based methods produce changes with a higher 
resolution than the other two, particularly in some smooth or fully 
distorted areas. Compared to the feature point-based method, 
local ICP generates more displacement vectors, even in areas 
with fewer features (e.g., the left and right sides of the selected 
area). This is owing to the ability to establish correspondences at 
any position within the matched rigid patches. 

 
1 The data is open source at https://doi.org/10.11588/data/TGSVUI. 

 
(a) Surface differences by C2M 

 
(b) Displacement vectors by feature point matching 

 
(c) Surface differences by M3C2 

 
(d) Displacement vectors by local ICP 

Figure 6. The geometric changes on a selected area of a rock 
glacier surface calculated by (a) the nearest neighbor-based 

method, (b) the feature-based method, (c) the defined direction-
based method, and (d) the local registration-based method. 
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Figure 7. The histogram of change values calculated by four 

different methods (since the number of change values based on 
feature points is much smaller than the other three methods and 
cannot be clearly displayed in the histogram, we highlight the 

extent of their distribution with a gray rectangle). 

Figure 7 shows the difference in change magnitudes. The mean 
C2M distance (7 cm) is the smallest since it calculates the nearest 
distance from each point to the mesh. M3C2 distances exhibit a 
higher mean (14 cm) because the local normals are considered to 
quantify surface distances. Nevertheless, both C2M and M3C2 
tend to underestimate surface changes, especially when in-plane 
movements occurred (Gojcic et al., 2021; Yang and Schwieger, 
2023a). In contrast, feature-based and local ICP-based methods 
report higher change magnitudes, with mean values of 33 cm and 
32 cm, respectively. This discrepancy can be attributed to the fact 
that most changes occurred along the glacier surface, which C2M 
and M3C2 cannot accurately quantify. Moreover, the number of 
detected changes in the feature-based method is much lower than 
in the other three methods (387 feature points in this area), as 
many features are mismatched and subsequently filtered out. 
This rock glacier monitoring case demonstrates that different 
methods with distinct correspondence definitions can lead to 
varying change analysis results for the same point clouds. 
Therefore, understanding the real-world change types, the 
desired form of change output, and choosing appropriate methods 
are prerequisites for achieving high-quality change analysis. 
Details of considerations and recommendations for method 
selection will be discussed in the following sections. 
 

4. Method Selection for Change Analysis 

4.1 General Workflow 
 
In this section, we provide an overview of the workflow for 
method selection in PCCA, as illustrated in Figure 8. This 
workflow considers the types of real-world changes (as listed in 
Figure 2), the types of correspondences defined in different 
PCCA methods (as listed in Table 1), and the types of output 
results produced by each method (as listed in Figure 3). The 
arrows indicate potential connections among these components. 
For example, to detect rigid-body movements between two scans, 
one can extract and match feature points to establish feature-
based correspondences, ultimately deriving displacement vectors. 
Another option is to segment and match rigid patches between 
scans and use local registration-based methods to generate dense 
displacement vectors in the rigid areas. Besides, parameter-based 
correspondences can be established by estimating the positions 
of key elements of existing (rigid) geometric primitives (e.g., the 
center of a sphere or vertex of a cone). Positional changes are 
then easily obtained by calculating the distances between 
corresponding parameters. 
After quantifying different types of changes, their significance 
should be evaluated if the associated uncertainties are known or 
estimated from the calculation process. A common approach 

involves estimating an interval to determine whether the changes 
are significant or merely influenced by uncertainties. This 
interval can be defined using simple (empirical) thresholds or by 
performing a statistical test (e.g., t-test or F-test) by considering 
the variance-covariance matrix (VCM) of change values. 
 
4.2 Considerations of Method Selection 

The surface geometry and its representation by captured 3D point 
clouds vary widely across real-world scenarios, and there is, to 
the best of the author’s knowledge, no universal change analysis 
method to cope with all cases perfectly. The complexity of 
change types necessitates a diverse range of relevant methods. 
Besides the workflow in Figure 8, selecting appropriate PCCA 
methods for specific scenarios should consider following aspects: 
 The requirements of monitoring tasks (e.g., areas of interest, 

types of desired output change, the temporal and spatial 
resolution of represented changes, expected accuracy, etc.). 

 The change process in the real world (e.g., change types, 
directions, magnitudes, velocity, etc.). 

 The surface geometries of monitored objects (e.g., dimension, 
shape, surface rigidity, roughness, etc.). 

 The characteristics and quality of captured point clouds (e.g., 
point density, spatial resolution, coverage, accuracy, etc.). 

Complex scenes or tasks with specific requirements may benefit 
from combining different methods. For instance, a defined 
direction-based method can be used to detect surface differences 
in the deformed areas of a landslide, while the local registration-
based or feature-based method might be used to calculate the 
movement of trees or boulders situated on the landslide. These 
monitored objects in the scene can be separated by point cloud 
classification techniques prior to conducting change analysis. 
 

5. Current Challenges and Future Directions 

In spite of the significant advancements in PCCA in recent years, 
several challenges and limitations still exist. This section outlines 
some of the key challenges in geodetic monitoring tasks. 
 
5.1 Accurate Registration/Georeferencing 
 
Accurate alignment between compared point clouds is the 
prerequisite for change analysis. For laser scans containing 
changed areas, only the points in stable areas can be involved in 
the registration process. These stable correspondences can be 
achieved by placing some artificial targets evenly distributed 
within the scanned area. However, several downsides of the 
target-based registration strategy are evident despite its high 
accuracy and reliability (Janßen et al., 2022), such as the 
necessity to access the monitored areas, and the instability of 
target positions due to possible movements of their located 
regions. Therefore, automatic identification of the stable areas in 
two unregistered point clouds plays a significant role in PCCA, 
especially in complex natural environments where distinguishing 
between stable and unstable regions manually is challenging 
(Wujanz et al., 2016; Yang and Schwieger, 2023b). 
 
5.2 Estimating Systematic and Stochastic Uncertainties 

Point clouds captured by laser scanners inherently contain both 
systematic and stochastic errors, arising from various sources 
such as instrumental errors (e.g., inaccurate calibration), 
atmospheric effects (e.g., refraction), surface properties (e.g., 
roughness), scanning geometries, and georeferencing errors. 
Incorrect change analysis may occur if these uncertainties are not 
adequately considered. For example, change values are 
inaccurately quantified due to incorporating the systematic errors 
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from uncalibrated scanners (Holst et al., 2019), or the classical 
significance test reports a contrary result when the standard 
deviations of parameters are underestimated (Yang, 2023). 
Systematic uncertainties should ideally be identified, quantified, 
and applied to correct observations (point clouds). However, 
completely isolating these systematic errors in laser scans 
remains challenging (Holst and Kuhlmann, 2016). In most 
practical cases, stochastic uncertainties of point clouds are simply 
estimated by using the scanner’s specifications or the residuals 
from surface modeling. These empirical ways often yield a 
simple diagonal VCM, which fails to account for correlations. As 
a result, the estimated uncertainties may not agree with the 
realistic error characteristics, leading to inaccurate parameter 
estimation and change detection. Thus, a more realistic stochastic 
model should be considered by integrating a fully populated 
VCM for the point cloud (Kerekes and Schwieger, 2020).  
 
5.3 Robust Identification of Features and Rigid Patches 
 
Most methods developed for PCCA are solely based on the 
geometric information of point clouds. Despite their generality 
and applicability on point cloud data captured from various 
sensors, correspondences from feature points and rigid patches 
may not be correctly established merely relying on geometric 
properties (e.g., correspondences might be ambiguous in areas 
with repetitive structures or planar surfaces). In local registration-
based methods, patches by manual and empirical segmentation 
(as conducted in Figure 6(d)) may not be fully rigid. The 
contained non-rigid parts can cause a local minimum in ICP, 
thereby reducing the accuracy of the derived displacements. 
Hence, automatically and precisely identifying the rigid patches 
in deformed point clouds remains a significant challenge. 
For feature matching, radiometric information like RGB colors 
or reflectance along with the point coordinates can be exploited 
to enhance the descriptiveness of extracted feature points 

(Gojcic, 2021). A current solution introduces photogrammetric 
point clouds for change analysis, which builds corresponding 
feature points from captured RGB images (Lucks et al., 2024). 
Similarly, by taking both geometric and radiometric information 
into account for the instance segmentation, more geometric 
primitives and individual rigid patches can be extracted and fed 
into the parameter- or local registration-based methods. 
 
5.4 Change Analysis of Point Cloud Time Series 
 
High-temporal resolution data acquisition, like using permanent 
terrestrial laser scanning (PLS) system, can generate dense point 
cloud time series, enabling more detailed capture and analysis of 
continuous surface change processes. When dealing with 
thousands of epochs, each containing millions of points, 
subsequent processing requires high computational efficiency 
and consideration of temporal correlation, especially in real-time 
monitoring applications (Winiwarter et al., 2023). Furthermore, 
rapidly recognizing change events and their patterns in massive 
point cloud time series also remains challenging and is expected 
to be a key area of future research (Anders et al., 2020).  
 

6. Conclusions 
 
This paper provides a systematic overview of the methodologies 
to analyze geometric changes in laser scanning point clouds. 
Starting with the definition of real-world surface change types, 
we propose three kinds of output changes from PCCA: surface 
differences, displacement vectors, and parametric changes. From 
a perspective of correspondence definitions between laser scans 
of different epochs, we introduce a new categorization of existing 
PCCA methods, including nearest neighbor-based, feature-based, 
parameter-based, defined direction-based, and local registration-
based methods. This categorization provides a comprehensive 
and logical framework for summarizing the principles of current 

Figure 8. A workflow of method selection for point cloud-based change analysis. 
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techniques. Following this framework, we outline a general 
workflow and offer concrete suggestions for selecting the most 
suitable methods. The opinions and insights presented herein are 
based on a literature review as well as our practical experience in 
laser scanning-based geodetic monitoring across a variety of 
applications. Finally, we summarize current challenges in PCCA 
and provide potential solutions as the outlook for future work. 
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