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Abstract

Objects for topographic maps are often extracted manually by interpreting and segmenting airborne data, such as 2D images and
3D point clouds. Deep learning (DL) with semantic segmentation can automate this process using existing maps as ground labels.
However, current map-based DL methods are limited to either 2D or 3D, focus on urban regions, segment only a few generic
classes, and overlook the effects of abstractions in map-derived labels. To overcome these limitations, we propose a segmentation
method that uses maps as ground truth with (i) joint 2D and 3D networks using multi-scale feature learning to capture fine details
and segment diverse objects and (ii) a Selective Label Fusion module to refine predictions across both modalities, addressing the
effects of map abstractions. Trained and tested in urban, rural, and forested regions, our method segments 11 map-based classes
in 2D and 12 classes in 3D. At the class level, we achieve a mean Intersection over Union (mIoU) of 70% for both 2D and 3D,
with label fusion improving 3D performance by 15% over non-fused results. Regionally, 4 out of 5 areas achieve mIoU above 60%
in both modalities. These results demonstrate the potential of maps and DL to automate the labeling of images and point clouds,
helping to create and update maps while also generating valuable labeled datasets for other computer vision tasks.

1. Introduction

Topographic maps provide detailed information on objects in
the real world, such as buildings, roads, water bodies, and ve-
getation. These data are crucial for planning and decision-making
in public space management, infrastructure development, and
emergency response. In the Netherlands, for example, govern-
ment agencies are required to use Basisregistratie Grootschalige
Topografie (BGT) maps for spatial data in public duties, pro-
moting consistency and coordination among agencies by using
standardized geoinformation (PDOK, 2025).

Despite their importance, creating and updating topographic
maps is predominantly manual, where cartographers and geoin-
formation specialists interpret and identify objects from geospa-
tial data. For BGT maps, multiple agencies independently cre-
ate and manage their domain-specific maps using airborne 2D
images and 3D point clouds. Although effective, these methods
are time-consuming, labor-intensive, and impractical for large-
scale or nationwide mapping (Knudsen and Olsen, 2003).

Recent advances in deep learning (DL) for semantic segment-
ation classify airborne data, providing an automated solution
to manual mapping efforts. However, effective use of these
methods requires extensive labeled data covering diverse map-
based classes in both 2D and 3D. Existing benchmarks, such as
2D-3D ISPRS, Hessigheim-3D, and Vorarlberg-3D, are limited,
either providing labels for only a few generic classes or lacking
labels across both 2D and 3D data (Rottensteiner et al., 2014;
Kölle et al., 2021; Vorarlberg, 2024). Additionally, manual la-
beling for detailed classes is costly and time-intensive.

In principle, detailed maps can serve as ground truth for vari-
ous classes beyond generic categories. Some DL methods have
successfully used map-derived labels for the semantic segment-
ation of airborne data (Kaiser et al., 2017; Yang et al., 2020;
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Widyaningrum et al., 2021). However, these methods are lim-
ited to single modalities (either 2D or 3D), segment only a few
generic classes, focus mainly on urban areas, and do not address
abstraction in map-derived labels.

Fundamentally, maps are abstract and generalized in nature,
which can sometimes lead to inconsistencies between object
representations and visual details captured in airborne data. Par-
ticularly in 2D images, where only top-surface information is
captured, occluding the objects below. For example, the yel-
low box in Figure 1b shows only trees, while the correspond-
ing map in Figure 1a abstracts this area as roads, water, and
shrubs. These limitations can be addressed using multimodal
data, where 3D point clouds effectively capture objects bey-
ond occlusions, providing better scene understanding, as seen
in Figure 1c.

(a) Topographic Map (b) 2D RGB Image (c) 3D Labeled Cloud

Figure 1. Example of map, 2D image, and 3D point cloud. Ob-
jects occluded in the 2D image (yellow box) are captured in the
3D point cloud, aligning with objects on the map.

In this study, we propose a multimodal segmentation method
that uses map-derived labels with a two-fold approach: (i) joint
2D and 3D networks with multi-scale feature learning to cap-
ture detailed features and segment diverse classes and (ii) a
“Selective Label Fusion” (SLF) module that refines multimodal
predictions, addressing the effects of map abstractions. By com-
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Figure 2. Workflow of proposed method - synchronized inputs from dataloader are processed by 2D hybrid Transformer and 3D KP-
FCNN, each including an encoder, decoder, and prediction head to generate 2D and 3D predictions, which are then refined with SLF.

bining multimodal segmentation with SLF, our approach lever-
ages the strengths of each modality to improve segmentation
accuracy without adding computational complexity and simul-
taneously addressing the effects of map abstractions. Unlike ex-
isting map-based methods, we use data from urban, rural, and
forested regions to demonstrate robustness and adaptability.

For 2D segmentation, we use a Swin Transformer-based archi-
tecture (Liu et al., 2021) to capture contextual features to ef-
fectively distinguish visually similar but contextually different
classes. For 3D, we use the Kernel Point Fully Convolutional
Neural Network (KP-FCNN) to learn geometric features from
point clouds (Thomas et al., 2019). Further, we use additional
features for 3D, such as height above ground to differentiate
ground from non-ground classes and reflectance to distinguish
roads from other ground-based classes.

The SLF module refines multimodal predictions by selectively
transferring class predictions between modalities, allowing 2D
predictions to correct 3D predictions as needed and vice versa.
Unlike standard output fusion, SLF uses class-specific label
transfer, preventing unnecessary refinements and minimizing
noise. Classes for label transfer are manually chosen based on
a semantic understanding of occlusions and the premise that
some classes are better captured in 2D through color and con-
text while others are in 3D through geometry.

2. Related Works

Semantic segmentation involves partitioning images or point
clouds into meaningful regions by assigning each pixel or point
a semantic label. This section reviews recent developments in
2D, 3D, and multimodal segmentation approaches.

2.1 2D Image Segmentation

Convolutional Neural Networks (CNNs) have been widely used
for dense segmentation tasks, including strategies such as skip
connections in UNet (Ronneberger et al., 2015) and dilated con-
volutions in DeepLab (Chen et al., 2017) to improve feature ex-
traction (Long et al., 2015). However, these methods primarily
capture local features and do not model the global context.

Transformers address this limitation through attention mech-
anisms to capture long-range dependencies, with models like
Vision Transformer (Dosovitskiy et al., 2021) and Swin Trans-
former (Liu et al., 2021) demonstrating improved performance
(Vaswani et al., 2017). More recently, hybrid models integrat-
ing Transformers with CNNs have been proposed to integrate
global contexts and local features, leading to improved seg-
mentation results (Wang et al., 2022; Ding et al., 2022).

2.2 3D Point Cloud Segmentation

Extending DL methods to 3D data presents challenges due to
their irregular and unordered nature (Bello et al., 2020). Early
methods converted clouds into grids or voxels, often leading to
information loss (Tchapmi et al., 2017; Graham et al., 2017).
Later, point-wise methods like PointNet (Charles et al., 2017)
and PointNet++ (Qi et al., 2017) directly processed clouds us-
ing Multi-Layer Perceptrons (MLPs). However, they required a
large number of parameters to capture complex patterns.

Subsequent methods introduced geometric convolutions, such
as KP-FCNN (Thomas et al., 2019) and SPNET (Li et al., 2021),
which adapt to local geometry and address some limitations of
MLP-based models. More recently, attention-based methods
have been developed to capture long-range dependencies, like
the Point Transformer (Zhao et al., 2021) and Swin3D (Yang et
al., 2023). However, these methods continue to rely on MLPs
and do not fully exploit geometric relationships, inheriting lim-
itations from earlier approaches (Thomas et al., 2024).

2.3 Multimodal Segmentation with 2D-3D Fusion

Multimodal methods apply three main types of fusion: data fu-
sion at the input level, feature fusion to combine extracted fea-
tures, and output fusion to merge results (Ramachandram and
Taylor, 2017). Early approaches focused on data fusion by con-
verting point clouds into depth maps or Digital Surface Models
(DSMs) for 2D segmentation (Wang et al., 2021; Diakogiannis
et al., 2020; Cui et al., 2022). For 3D segmentation, the color in-
formation was projected through pixel-to-point mapping. How-
ever, the effectiveness of color information was proven limited
compared to relying solely on geometry (Zhu et al., 2024).

Limited methods have explored the output fusion, primarily due
to the limited availability of multimodal data and to avoid error
propagation (Zhang et al., 2018). Recently, more methods have
focused on feature fusion, where the features of each modal-
ity are encoded separately before merging to improve learning.
However, most existing methods, such as MVPNet (Jaritz et al.,
2019) and TransFusion (Maiti et al., 2023), address 2D or 3D
segmentation individually rather than jointly processing them.

Only a few methods exist for joint segmentation, where 2D and
3D data are processed simultaneously by feature fusion, such
as SplatNet (Su et al., 2018) and BPNET (Hu et al., 2021).
However, these methods mainly use terrestrial and multiview
datasets (de Gélis et al., 2021). In addition, data and feature
fusion methods are computationally demanding due to larger
input sizes and the complexity of processing multimodal fea-
tures. In contrast, output fusion utilizes multimodal data ef-
ficiently, improving results through the strengths of separate
learning without added computational cost.
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(a) RGB image (b) Point cloud (c) BGT map (d) 2D labels (e) 3D labels

Figure 3. Example of RGB image, point cloud, BGT map, and derived 2D and 3D labels. The dataset contains labels for 22 semantic
classes listed in the legend. The colors in the BGT map here are illustrative (for its legend, see Figure 1).

3. Dataset

As shown in Figures 3a-3c, we use airborne data, including 2D
images and 3D point clouds with BGT maps as ground truth.

3.1 BGT Maps

These detailed topographic maps have scales ranging from 1:500
to 1:5000 and provide information for more than 30 physical
objects (Geonovum, 2025). Each category is subdivided based
on physical appearance or function, such as roads sub-categorized
into motorways, provincial roads, bike paths, and railroads. The
maps are available in vector formats and can be downloaded
through the Web Feature Service (WFS) provided by the Pub-
lieke Dienstverlening Op de Kaart (PDOK). In addition, older
versions of the maps can be generated retrospectively.

3.2 Airborne Data

The dataset includes georeferenced true orthoimages and point
clouds across five regions, as summarized in Table 1. The or-
thoimages, generated by ESRI from data collected by Beeld-
materiaal during the leafless season, contain RGB bands. The
point clouds, sourced from Actueel Hoogtebestand Nederland
(AHN) (Rijkswaterstaat, 2024), include attributes such as re-
flectance and class labels for ground, buildings, water, and civil
structures. The dataset consists of 1200 tiles, with 2D images at
4000×4000 pixels and a 7.5 cm ground resolution. The 3D point
cloud tiles cover 300m×300m, with an approximate density of
10 points per m2. Additionally, height above ground was com-
puted for the point clouds using PDAL (Contributors, 2024).

Region Type Coverage (%)
Deventer, Enschede Urban, Suburban 70
Giethoorn, Wijhe Rural, Forested 20

Sallandse Heuvelrug Forested 10

Table 1. Overview of dataset coverage across study regions.

Using BGT information, airborne data are labeled for 22 se-
mantic classes, as indicated in the legend of Figure 3. For 2D
labels, maps are rasterized in a specific order, while rule-based
PDAL pipelines are used for 3D to update the initial AHN la-
bels. This process is consistently applied across all classes, ex-
cept for trees, which are not labeled in 2D but are included in
3D. Since 3D labels combine AHN and map labels, they differ
slightly for a few classes in 2D (see the bridging part class in
Figures 3d and 3e).

4. Method

Figure 2 illustrates the workflow of our proposed joint 2D-3D
semantic segmentation method. Synchronized 2D and 3D air-

borne data are processed in parallel through their respective seg-
mentation networks for multimodal predictions. The 2D and
3D predictions obtained are then refined using the SLF module
described in the upcoming Section 4.5.

4.1 Semantic Classes

Out of the 22 semantic categories in the dataset, several contex-
tually similar classes were merged for this study. As a result, the
final segmentation includes 11 classes for 2D and 12 for 3D, ex-
cluding the “No Data” class containing unlabeled objects. The
classes Bare Ground, Bike Path, Parking Space, Railroad,
Building, and Bridge Part remain the same.

The merged classes include Water (Water + Water Support),
Road (Bus Lane + Level Crossing + Roadway + Regional Road
+ Local Road + Entrance), Footpath (Footpath + Stair Foot-
path), Supporting Road Section (Sup Road Sec - Green +
Non-Green), and No Data (No Data + Artwork). As described
in Section 3.2, the 2D data was acquired during the leafless
season. Therefore, the tree and vegetation classes are merged
into Vegetation in 2D, whereas in 3D, the Tree and Vegetation
classes remain separate.

4.2 Data Preparation

The dataset is randomly divided into training, validation, and
testing with a 60:20:20 ratio, and the data samples are chosen
for each set. During training, a potential-based class sampling
method is used to address class imbalances, as proposed by
Thomas et al. (2019). Minor classes, like bridges and support-
ing road sections, are oversampled, while major classes, such as
vegetation and buildings, are undersampled. For validation and
testing, we use systematic grid sampling for evenly distributed
samples to ensure complete tile coverage.

Fine-grained details are not essential for this task, so the images
are downsampled by a factor of 2. For 3D, along with the XYZ
geometry, reflectance and height above ground are used as ad-
ditional attributes, which are clipped to a maximum of 95th% of
regional global values and normalized to the range [0, 1].

4.3 Joint Dataloader

This custom module handles the loading, augmentation, and
batch creation of airborne data for 2D and 3D networks. First,
for each sampled data point, a window is defined around its
center to crop the corresponding image and point cloud. Then,
augmentation techniques, such as flipping, scaling, and rota-
tion, are applied to the cropped data to enhance the variability
of the training data. Finally, the augmented data are organized
into batches suitable for the corresponding network. The 3D
network uses variable batch sizes to process points efficiently,
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which is handled in the batch creation stage. For testing, tile
and pixel indices are tracked to combine individual patch-wise
predictions for tile-wise results.

4.4 Segmentation Networks

Both 2D and 3D networks follow the same architectural design,
consisting of four encoder layers, four decoder layers, and a
prediction head. In each network, the encoder and decoder are
connected through skip connections in intermediate stages.

2D Network: We use a hybrid Transformer network with a pre-
trained Swin Transformer as the encoder and a custom CNN-
based decoder. In Stage 1 of the encoder, the input image is
divided into non-overlapping patches, which are then token-
ized and processed with linear embedding for feature extrac-
tion. In the subsequent three stages, the patch merging block
downsamples the feature maps, and a series of Swin blocks in-
creases the channel dimensions by a scale factor of 2 for hier-
archical representations. Furthermore, multi-head self-attention
modules within shifted windows enable the model to effectively
capture local and global features (Liu et al., 2021).

Each decoder stage includes a weighted fusion block that com-
bines skip connections with decoder features, followed by a de-
coder block that refines features through convolutions. The first
decoder stage consists of only the decoder block. In the final
stage, dynamically weighted spatial and channel attention is
applied using a Feature Refinement Head, adapted from UN-
etFormer (Wang et al., 2022). A convolutional head produces
dense patch-wise predictions for the image.

3D Network: We adopt KP-FCNN architecture using Kernel
Point Convolutions (KPConv) to process point clouds directly
(Thomas et al., 2019). Each encoder layer consists of two con-
volutional blocks, each containing a KPConv layer, followed
by batch normalization and leaky ReLU activation. We used
standard KPConv blocks instead of deformable ones to main-
tain simplicity, as outdoor point clouds do not exhibit complex
geometries typically found in indoor settings.

In the decoder, the point-wise features are extracted using the
nearest-upsampling method. These features are concatenated
with intermediate encoder features via skip connections and re-
fined with unary convolution. The segmentation head then ap-
plies unary convolution to predict per-point labels.

Loss Function: Compound loss functions have proven effect-
ive and robust for class-imbalanced segmentation (Ma et al.,
2021). Therefore, we adopt an equally weighted combination of
cross-entropy (Lce) and dice (Ldice) losses for both 2D and 3D
segmentation, to ensure a balance between pixel-wise or point-
wise accuracy while addressing class imbalance. The total loss
is formulated as follows:

L = 0.5 · Lce + 0.5 · Ldice (1)

4.5 Selective Label Fusion (SLF)

Unlike conventional output fusion, which merges predictions
indiscriminately, we use a semantic-driven approach to select-
ively transfer labels based on the strengths of each modality
(2D or 3D). Classes are chosen based on the assumption that
some are better represented in 2D due to color and contextual
cues, while others are more effectively captured in 3D through

Fusion Semantic Classes
2D-to-3D Road, Bike path, Footpath, Parking space,

Supporting road section
3D-to-2D Buildings
Both Water, Bridging parts

Table 2. Selected classes for SLF categorized by fusion direction.

geometric properties. Table 2 lists the selected classes and their
label transfer directions.

In this process, water and bridge classes benefit from bidirec-
tional fusion: 2D-to-3D transfer enhances bridge segmentation
using contextual learning, while 3D-to-2D transfer improves
the spatial extent of water bodies. Additionally, 3D-to-2D trans-
fer helps resolve occlusion issues where tree cover obstructs
ground objects in 2D (Figure 1). Although trees are well-defined
in 3D, they are not transferred to 2D for two main reasons. First,
since the 2D data is acquired during the leafless season, de-
lineating trees in 2D is ambiguous. Second, orthorectification
introduces distortions, complicating their representation in 2D.
Therefore, trees are retained exclusively in 3D.

We follow the workflow illustrated in Figure 4 for SLF. For
each selected class, we generate georeferenced and topologic-
ally valid polygons that outline the boundaries of class seg-
ments in 2D and 3D predictions. Although 2D and 3D data are
typically acquired around the same time, temporal discrepan-
cies may still exist. To address this, geoprocessing operations,
such as intersection and overlap, are applied to validate the gen-
erated polygons before transferring predictions.

Refined 3D 
Labels

Refined 2D 
Labels

3D 
Predictions

2D 
Predictions

Polygons 
of 3D

Polygons 
of 2D

Validate 
& 

Transfer 
LabelsExtract 

Class-wise 
Boundary

Extract 
Class-wise 
Boundary

Classes of Interest Only

Figure 4. Workflow for Selective Label Fusion (SLF).

(a) Initial predictions (b) Bridge polygons (c) Refined labels

Figure 5. SLF for bridges in 2D (top) and 3D (bottom). The
2D and 3D polygons from (b) are intersected. Here, in 2D-to-3D
transfer, overlapping polygons are used for label transfer (green
box), while in 3D-to-2D transfer, segments appearing only in 2D
without a 3D counterpart are removed (red box).

The 3D-to-2D transfer is carefully regulated to preserve the
spatial boundaries of the initial 2D predictions. For buildings,
only segments entirely missing in 2D predictions are transferred
from 3D. For bridges, we intersect the generated 2D and 3D
polygons, transferring only the missing 3D segments to 2D and
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Data SLF Semantic Classes (IoU %) mIoU mPrec mRec
Water Veg Tree Bare

Grnd
Road Bike

Path
Foot
Path

Park
ing

Rail
road

Sup
Road

Build
ing

Brid
ge

(%) (%) (%)

2D
✗ 79.4 90.3 - 69.0 75.1 62.4 56.1 50.4 93.5 47.8 85.1 62.4 70.1 83.9 79.5
✓ 80.2 90.4 - 68.9 75.1 62.7 56.1 50.4 93.5 47.8 84.9 67.2 70.7 84.1 80.1

3D
✗ 52.2 85.0 98.4 49.9 67.5 34.1 36.9 40.5 68.3 6.5 95.7 26.3 55.1 60.5 83.6
✓ 67.5 87.3 98.4 51.5 72.4 62.6 58.0 45.9 92.0 48.9 96.2 60.1 70.1 79.2 84.2

Table 3. Class-level evaluation metrics across 2D and 3D domains with and without Selective Label Fusion (SLF) module, presenting
IoU across all classes with mean IoU, precision, and recall for entire test data.

removing any non-overlapping 2D bridges as false positives
(see Figure 5). For water bodies, overlap and intersection meth-
ods are inefficient due to possible occlusion by trees. Therefore,
we directly transfer 3D water polygons to 2D but use a 100 m2

area threshold to minimize noise and false positives.

For 2D-to-3D transfer, since most selected classes are ground-
based (except bridges), filtering is applied to ensure that labels
are transferred only to identified ground points. For bridges,
validated polygons from the 3D-to-2D transfer workflow are
used to refine labels accurately. PDAL pipelines are used to
filter ground points and transfer labels from validated polygons.

5. Experiments and Results

We present joint segmentation results for 11 classes in both 2D
and 3D, along with an additional tree class in 3D only. To eval-
uate the impact of label fusion, we compare results across two
experiments: with and without the SLF module.

5.1 Implementation Details

For the 2D network, we adopt the standard window size, em-
bedding dimension, depths, and attention heads across four stages
of the Swin Transformer encoder, as proposed by Liu et al.
(2021). The input patch size was set to 512x512, with three in-
put channels (RGB) for both experiments. For the 3D network,
grid subsampling with a grid size of 0.4m and input radius of
20m is applied to handle varying point cloud densities. Addi-
tionally, we use square sub-cloud tiles rather than spherical ones
to achieve better alignment with 2D data.

Both networks were trained jointly on a dual GPU setup using
NVIDIA A10, with the AdamW optimizer and the CosineAn-
nealingWarmRestarts learning rate scheduler (Loshchilov and
Hutter, 2017, 2019). The 2D network was trained with a learn-
ing rate (Lr) of 5e−4, a weight decay of 2.5e−4, and a dropout
rate of 0.2. For the 3D network, we used a Lr of 1e−3 and
a weight decay of 1e−3, with gradient clipping. Both networks
were trained for 400 epochs, using a step size of 400 and a batch
size of 4. For the 2D network, gradient accumulation with a step
size of 2 was implemented to simulate a batch size of 8 and Lr
was adjusted every alternate epoch.

5.2 Evaluation Metrics

Intersection over Union (IoU) is used as the primary metric to
measure the overlap between predictions and ground truth at
both class and regional levels. Class-level IoUs evaluate per-
class performance across the entire dataset, aggregating labels
from all regions. In contrast, regional-level IoUs are computed
separately for each region to assess the model’s consistency
across different geographical settings.

Given the abstract nature of the map-based test labels, preci-
sion and recall are also used for class-level evaluation. Preci-
sion quantifies the model’s ability to minimize false positives,
reducing misclassification errors. In contrast, recall measures
the model’s effectiveness in detecting all relevant features, even
when the labels are abstract or simplified. The “No Data” class
is excluded from all computed metrics.

5.3 Class-level Results

Table 3 presents class-level metrics for both experiments, with
qualitative results shown in Figure 6. Without fusion, both 2D
and 3D models perform well on distinct classes like buildings
and vegetation, achieving IoU scores above 85%. In contrast,
classes such as parking spaces and supporting road sections per-
form poorly, with around 45% IoU in 2D and even worse in
3D. In addition, the 2D network effectively differentiates visu-
ally similar classes like roads and bike paths, achieving an IoU
greater than 60%. However, there is a 15% difference in per-
formance between 2D and 3D without label fusion.

With the SLF module, the overall 3D performance improves
substantially, with the fused mIoU exceeding 70%. In partic-
ular, supporting road sections and bridges show an approxim-
ately 40% increase in IoU. At the same time, bike paths and
footpaths see improvements of around 20% and 30%, respect-
ively, which can be noticed in Figure 6j. For 2D, the overall
mIoU improves slightly, with a 5% increase in IoU for bridges;
however, there is a minor 0.2% decrease in IoU for buildings.

Furthermore, recall rates remain high in both 2D and 3D, even
without fusion, though 3D precision is nearly 20% lower than
in 2D without fusion. However, with the SLF module, the high
precision of 2D is effectively transferred to 3D, significantly
improving 3D precision to 79% and reducing false positives.

Region Count
No SLF SLF

mIoU (%) mIoU (%)
2D 3D 2D 3D

Deventer 104 72.0 56.5 72.7 71.3
Enschede 62 63.5 54.8 63.5 64.1
Giethoorn 38 60.5 43.9 60.1 60.5
Wijhe 12 69.1 56.4 69.2 67.5
S Heuvelrug 24 46.9 36.1 47.0 47.4

Table 4. Region-level 2D and 3D mIoU without and with SLF.

5.4 Region-level Results

Table 4 presents region-level IoU metrics with the number of
tiles used for testing per region. As listed in Table 1, Deventer
and Enschede represent urban and suburban regions, Giethoorn
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(a) RGB image (b) BGT Map (c) Map-derived GT (d) 2D Labels (e) 2D Labels - SLF

(f) Point Cloud (g) BGT Map (h) Map-derived GT (i) 3D Labels (j) 3D Labels - SLF

Figure 6. Qualitative results of 2D (a-e) and 3D (f-j) semantic segmentation with and without Selective Label Fusion (SLF) module.
The BGT maps from which ground truth is derived are also compared.

and Wijhe are rural and marginally forested areas, and S Heuvel-
rug is predominantly forested.

Without fusion, the 2D model performs well in urban regions,
achieving mIoU above 63%. Although 3D performance in these
regions is lower than 2D, it remains the highest compared to
other regions. Performance varies in rural and forested regions,
with Heuvelrug achieving the lowest IoU in both 2D and 3D.
With the SLF module, the 2D gains are minimal, with a slight
increase in Deventer and Wijhe, but the 3D IoU improves by
almost 10% in all regions, consistent with class-level results.

6. Discussion

The results in Table 3 show that the proposed method effect-
ively identifies detailed map objects, achieving nearly 70% mIoU
for 2D and 3D data. The proposed SLF module improves over-
all performance, especially in 3D, with a 15% improvement us-
ing 2D results. Label fusion for 3D is particularly beneficial
for geometrically similar classes like bike paths and footpaths
along with context-based classes such as supporting road sec-
tions and bridges. The higher recall rates in 2D and 3D indicate
each model’s effectiveness in capturing relevant objects within
its modality, regardless of fusion. However, 3D precision is
lower without fusion, likely due to the sparse nature of point
clouds and the similarity among ground-based classes.

In general, both 2D and 3D networks struggle with classes that
share overlapping spectral and geometric features, such as bike
paths, footpaths, and roads, or vegetation and supporting road
sections. Misclassifications often occur interchangeably among

these classes. For example, the missing segments of the bike
paths in Figures 6d and 6i are misclassified as footpaths or roads
due to their overlapping features. Adopting a multi-label pre-
diction approach could offer improved insight into these over-
lapping classes, unlike the current fixed single-label method.

Furthermore, while bridges possess distinct 3D geometries and
are well represented in training data, their performance remains
low in 3D. Most bridges in the dataset are medium-sized over
narrow canals, but larger bridges that extend over larger water
bodies are rare and often misclassified by the 3D model (see
Figure 7). In our case, the 2D model accurately identifies lar-
ger bridges using contextual information, which is then used to
refine 3D predictions via the SLF module. Future work could
explore integrating similar contextual cues directly for the 3D
network to improve performance for context-based cases.

(a) Misclassified Bridge (b) Correctly Classified Bridge

Figure 7. Example of point cloud and 3D predictions where (a)
large bridge is misclassified as building and (b) small bridges are
correctly identified.

Qualitative results further show that generalized map-derived
test labels also contribute to reduced performance. For example,
map-derived ground truth boundaries for buildings or water bod-
ies are abstracted in Figures 6c and 6h. Although the 2D and
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3D networks identify these objects, their prediction boundaries
may not align exactly with the test labels. Such cases affect
overlap-dependent IoU and precision metrics, potentially un-
derestimating the true performance of 2D and 3D models.

In addition, the regional analysis in Section 5.4 shows that both
models perform well in urban areas, moderately in rural areas,
and poorly in forested regions. Urban areas, which make up
70% of the total dataset, would naturally have the highest vis-
ibility during training, allowing models to capture their features
effectively. This suggests that a more strategic training ap-
proach could improve overall performance. For example, initial
training on urban data and then fine-tuning on less-represented
rural and forested regions may achieve better results than train-
ing on all regions simultaneously.

Despite the effectiveness of the SLF module for 3D, its contri-
bution to 2D remains limited. In addition, the current fusion
method is complex and rule-based, with multiple steps that re-
quire careful tuning. If not managed properly, this can lead to
error propagation and the addition of false positives or negat-
ives, as seen in the slight reduction in IoU for buildings in 2D.

Exploring alternative fusion methods, such as data and feature
fusion, may be beneficial. However, data fusion is unlikely
to improve segmentation in our case due to similar inter-class
spectral and height features. In contrast, feature fusion using
high-level features from both modalities can potentially improve
the model’s ability to differentiate between similar classes, lead-
ing to more accurate predictions.

7. Conclusion

This study demonstrates the efficacy of BGT maps in automat-
ing multimodal segmentation for detailed map-based classes,
performing well for 2D and 3D. The SLF module’s selective la-
bel transfer between 2D and 3D proves resourceful in address-
ing challenges like abstraction and occlusion in map-based la-
bels, significantly improving 3D performance with minimal er-
ror propagation. Trained and tested on urban, rural, and forested
regions, our method performs well in 4 out of 5 areas in both
modalities, proving its robustness and adaptability.

Despite SLF’s benefits, the proposed fusion method remains
complex, with limited impact on 2D segmentation and prone to
error propagation. Future work could explore more integrated
fusion techniques, such as using the insights of the SLF module
for a custom feature fusion method and incorporating contex-
tual modeling in 3D for better feature learning. Additionally,
multi-label predictions may better handle overlapping classes
than the strict single-label method. Our findings indicate that
generalized map-derived labels can limit precision, highlight-
ing the need for refined evaluation methods like soft metrics.

These findings highlight the potential of existing maps with DL
to automate 2D-3D labeling across different geographic set-
tings, offering a foundation to automate map creation and up-
dating tasks that can be adapted for other systems like Open-
StreetMap. In addition, this method can also be valuable for
generating labeled datasets for other computer vision tasks in-
volving airborne data beyond topographic mapping.
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