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Abstract

Indoor positioning technology is a key area of research in location-based services. Crowdsourced WiFi and mobile communica-
tion signal fingerprinting are critical for achieving large-scale indoor positioning for consumers. However, existing crowdsourced
positioning solutions are not suitable for typical environments like shopping malls due to the need for additional equipment, and
their learning methods often have low computational efficiency and generalization ability in complex environments. This paper
proposes a system that introduces clustering concepts to repair remaining trajectories using representative trajectories. WiFi SSID
and 5G NR SSB data collected along trajectories are used as features for clustering analysis. Reliable starting points are obtained
through GNSS accuracy metrics to correct trajectories, and a Bi-LSTM model is utilized to extract trajectory inflection points.
Unprocessed trajectories of the same category are corrected based on inflection point features, thereby constructing a WiFi-5G
fingerprint database. In addition to providing positioning services, the proposed system iteratively infers the locations of shops,
allowing for the construction of a semantic map. The experimental site is the first floor of a large shopping mall, with a dataset
comprising 185 user-collected trajectories totaling 2 hours in duration. The trajectory clustering accuracy exceeds 80%, with an
average localization error of 5.73 meters for static test points, and an average error of 4.38 meters for the semantic map. Compared
to existing crowdsourced solutions, the proposed method shows significant improvements in feasibility, accuracy, and efficiency.

1. Introduction

Location is a crucial attribute of IoT information, and sensed
data without location is meaningless. With the gradual im-
provement of Global Navigation Satellite Systems (GNSS) and
the continuous innovation of corresponding positioning techno-
logies, acquiring high-precision outdoor location information is
no longer a challenge (Groves, 2015). However, obtaining high-
precision location data in indoor environments, where GNSS
signals cannot reach, has become a significant area of interest.

Currently, commonly used indoor positioning signal sources
include WiFi, geomagnetic signals, acoustic signals and mo-
bile communication signals. (Ruizhi and Liang, 2017) Based
on these signals, researchers propose positioning methods that
are either geometric or fingerprint-based (Jang and Kim, 2018).
Geometric methods can be further divided into ranging and
angle-based approaches (Ruan et al., 2022), which mainly in-
clude Time of Arrival, Time Difference of Arrival and Angle of
Departure. However, due to the complex multipath effects that
occur during signal propagation in intricate environments, geo-
metric positioning methods face significant limitations. Con-
sequently, fingerprint-based positioning methods have gained
more favor among researchers.

Fingerprint positioning, a relatively mature method, typically
involves two phases (Jang and Kim, 2018): the offline phase,
which is the database creation stage, and the online phase,
which is the positioning stage. During the offline phase, wire-
less signal data is collected at various reference points (RPs)
within a designated area. The collected signal data is then asso-
ciated with corresponding geographical locations to create a de-
tailed fingerprint map. In the online phase, user devices collect
real-time wireless signal features as they move. These features
are compared with the fingerprint database to identify the best-
matching reference point, thus determining the user’s current

location. The signal characteristics of different sources vary
during the positioning process. For WiFi (Bellavista-Parent et
al., 2021), the focus is on the differences in signal strength
from multiple Access Points (APs). In the case of 5G NR sig-
nals (Yang et al., 2024), the focus is on the similarity in the
shapes of multi-beam signals. For geomagnetic signals (Sun
et al., 2021), the focus is on changes in signal strength over
continuous time periods. Fingerprint positioning effectively
transforms the localization problem into a classification chal-
lenge, leading to the increasing incorporation of learning al-
gorithms in this field. (Ruan et al., 2023) utilizes unsupervised
deep autoencoder networks to reconstruct 5G Channel State In-
formation (CSI) features. Generally, fingerprint-based methods
demonstrate relatively high accuracy; however, the costs associ-
ated with on-site data collection and periodic updates limit their
broader application.

Interpolation and crowdsourcing technologies are increasingly
employed for the rapid updating of fingerprint databases. In
terms of interpolation techniques, (Lan et al., 2022) proposed a
fingerprint enhancement framework based on super-resolution.
Regarding crowdsourcing, (Wang et al., 2023) achieved crowd-
sourced geomagnetic database construction through a learning-
based trajectory recovery algorithm and keyframe association
technology, resulting in an average localization error of 2.53
meters. Due to significant limitations in data consistency and
applicability (Liu et al., 2023), interpolation methods are gradu-
ally being overshadowed by crowdsourcing as the primary
means of quickly updating fingerprint databases.

In the field of consumer-grade wide-area indoor positioning,
areas with dense coverage of WiFi and mobile communica-
tion signals (Hu et al., 2022) predominantly favor the con-
struction of WiFi and 5G signal maps based on crowdsourced
data. (Junoh and Pyun, 2023) employed Bluetooth Low Energy
beacons for trajectory calibration and introduced a generative
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adversarial network-based approach to enhance the fingerprint
database. (Zhao et al., 2020) integrated crowdsourced data
into a graph-based representation and applied multidimensional
scaling algorithms to calculate users’ walking points. However,
these methods still face challenges in demanding application
scenarios: 1) They often require additional infrastructure, such
as Bluetooth Low Energy beacons, leading to increased costs as
the area expands and resulting in lower availability; 2) In com-
plex environments like large shopping malls, the computational
efficiency of learning methods is low, and their generalizability
is limited.

To achieve consumer-grade wide-area indoor positioning, fur-
ther exploration of relevant technologies is necessary. This pa-
per presents a new crowdsourcing-based solution for construct-
ing WiFi and 5G signal maps and positioning. Compared to
existing solutions, the main contributions of this paper are sum-
marized as follows.

1) When handling crowdsourced data to obtain an accurate
fingerprint database, we introduce the concept of cluster-
ing, which uses high-quality trajectories within a cluster
for overall trajectory correction, compared with the tra-
ditional independent analysis of a single path. In terms
of clustering, based on the spatial openness of shopping
malls and the abundance of WiFi devices, we use WiFi
SSID count features instead of trajectory shape features
for path clustering. Additionally, we refine the clustering
results with the help of 5G NR signals.

2) Compared with the traditional method of trajectory cor-
rection based on known access point (AP) locations, we
iteratively derive more reliable information about interest
point locations and construct semantic maps using correc-
ted trajectory data in conjunction with the free propagation
model.

The remainder of the article is structured as follows. The sys-
tem flow of the crowdsource data processing method proposed
in this paper is described in Section 2. Section 3 presents the ex-
perimental setup, experimental results and related discussions.
Finally, Section 4 summarizes the article.

2. Methodology of Fingerprinting Based on
Crowdsourced Data

2.1 System Overview

Figure 1. System overview

Fig. 1 summarizes the specific processing flow of the system
proposed in this paper. The system processes crowdsourced
data with landmark location information to construct a WiFi
+ 5G fingerprint database in scenarios where map informa-
tion is unavailable and inertial navigation data is uncalibrated.
First, a trained posture classification model is used to determ-
ine the mobile carrying mode, facilitating trajectory estima-
tion for users who consistently hold their phones. Next, for
users switching layers on the same escalator, clustering ana-
lysis is performed using the WiFi SSID data collected prior to
the switch as features, with further corrections made using 5G
data. A Bi-LSTM model is employed to extract trajectory in-
flection points, while GNSS accuracy indicators provide reli-
able starting points for trajectory correction. Unprocessed tra-
jectories of the same category are corrected based on inflection
point features. Subsequently, corresponding WiFi data is ob-
tained using the timestamps of the calibrated trajectories, and
store location information is iteratively inferred based on a free-
space propagation model to construct a semantic map. Finally,
the location information of all calibrated trajectories is matched
with positioning signal data to build the fingerprint database,
enabling high-precision and highly usable indoor positioning.

2.2 Trajectory Inference by Pedestrian Dead Reckoning

In this study, we utilized a self-sampled dataset for model train-
ing, focusing on classifying mobile phone carrying modes. We
performed trajectory estimation for users who maintained a
handheld mode throughout their walking phase. As shown in
Fig. 2, we categorized mobile phone carrying modes into hand-
held mode, left-hand calling mode, right-hand calling mode,
left-hand swinging mode, and right-hand swinging mode. The
acceleration data exhibits different patterns across the axes un-
der these various modes.

Figure 2. Estimation on carrying modes of mobile phone

Building on this, we selected the three-axis accelerometer val-
ues and their differences as features, combining them with our
self-sampled dataset to train an SVM classifier using K-fold
cross-validation. Subsequently, the trained classifier was em-
ployed to categorize user data, particularly focusing on those
who remained in a handheld state throughout. We then estim-
ated pedestrian trajectories based on the classified data. Using
the step length formula and position estimation equations, we
calculated the pedestrian trajectory as follows:

SL = 0.7 + 0.371(H − 1.75) + 0.227
(SF − 1.79)H

1.75
(1)

NK+1 = NK + SLK × cos(αK) (2)
EK+1 = EK + SLK × sin(αK) (3)

where SF is the step frequency, H is the height, SL is the step
length, αK is the heading angle, (EK , NK) are the current pos-
ition coordinates, and (EK+1, NK+1) are the coordinates of the
next position.
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2.3 Trajectory Clustering Based on 5G and WiFi

This paper combines the characteristics of numerous shops in
the mall and rich WiFi information, utilizing the phenomenon
of distance attenuation of WiFi signals. We employ the count of
high-strength WiFi SSIDs as features for path clustering (Fig.
3).

Figure 3. The occurrence frequency of received WiFi signals
varies across trajectories from different directions

When multiple WiFi devices are installed in the same shop,
variations in SSIDs can be achieved through capitalization or
by adding suffixes. Thus, merging heterogeneous SSIDs of the
same shop becomes a prerequisite for path clustering. After per-
forming operations such as lowercasing and tokenization, we
utilize the TF-IDF (Grootendorst, 2022) algorithm to convert
SSIDs into vectors for clustering. The principle of the TF-IDF
algorithm is as follows:

TF-IDF(w) = TF(d,w)× IDF(w) (4)

IDF(w) = log

(
N

N(w)

)
(5)

where TF(d,w) represents the term frequency of word w in
document d, and IDF(w) denotes the inverse document fre-
quency of word w, calculated as the logarithm of the ratio of
total documents N to the number of documents containing word
w (N(w)).

After vectorizing the text using TF-IDF, we apply the K-means
clustering algorithm alongside the silhouette score for evalu-
ation, selecting the best class for clustering. This allows for the
merging of heterogeneous SSIDs from the same shop. Sub-
sequently, we perform clustering analysis on the WiFi SSID
counts using the same clustering and scoring algorithms to
achieve path clustering for users transitioning between layers
at the same landmark.

2.4 Trajectory Correction Based on Feature Extraction

After the aforementioned processing steps, we obtained traject-
ory clusters that converge at the same escalator point but ori-
ginate from different directions. Since the multi-source data
consists of transitions from outdoor to indoor environments,
we used high-precision GNSS positioning results as the initial
points for trajectory correction. The trajectories served as ref-
erences for correcting trajectories within the same cluster. We
employed a matching method based on feature point locations

to achieve trajectory correction.

vi =
dist(Pi, Pi−1)

ti − ti−1
(6)

ai =
vi − vi−1

ti − ti−1
(7)

αi =

∣∣∣∣tan−1 yi+1 − yi
xi+1 − xi

− tan−1 yi − yi−1

xi − xi − 1

∣∣∣∣ (8)

ωi =
αi

ti − ti−1
(9)

si =
dist(Pi−1, Pi) + dist(Pi, Pi+1)

dist(Pi−1, Pi+1)
(10)

We denote the trajectory point Pi by (ti, xi, yi), where ti is
the trajectory point timestamp information and (xi, yi) is the
coordinate information. For each feature point, we choose a
motion feature vector consisting of velocity vi, acceleration ai,
steering angle αi, steering angular velocity ωi and curvature si
for representation.

Figure 4. Bi-LSTM model

We design a Bi-LSTM model and use the time series data con-
sisting of the feature vectors of this trajectory point and the
trajectory points before and after it as inputs, and use the Bi-
LSTM model to automatically extract the features of the sample
data for classification training. Using the trained model, we ex-
tract the inflection points of the trajectory, combining the dis-
tance information between the inflection points and the land-
mark points, and initially screen the combinations of inflection
points with high distance similarity. Then we extract the WiFi
information at the inflection points, calculate the similarity of
WiFi information between the inflection points, and obtain the
most similar inflection point combinations between different
trajectories. Finally, trajectory aggregation is achieved by in-
flection point aggregation.

2.5 Fingerprint Database Construction

Based on the corrected trajectories of the massive users, the
database can be built by collecting the information on WiFi sig-
nal strength (e.g., RSSI), SSID, MAC addresses, and 5G base
station information (e.g., base station ID and signal strength).
In this step, the area of the interest is classified into grids with
the area of 5 meter by 5 meter. Different trajectories within
the same grid are associated as one control point (CP) and the
measurements collected in one CP are merged in the database.
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Figure 5. Generation of fingerprint database based on corrected
trajectories

2.6 Estimation on the Location of POI

In order to build sematic map and assist positioning during
the online estimation of the mobile users, we carry out the es-
timation on the POI. Based on the principle of the free-space
propagation of the wireless signals, the distance between the
user and the AP can be calculated according to the path loss
model, i.e.,

L = 20lg(d) + 20lg(f) + K (11)

where K is the environmental parameter. As is known, K
is largely based on the specific surroundings, which is hardly
known beforehand. Therefore, L can not be directly calculated.
However, in most cases, for two locations in close distance, it
is reasonable to assume that, the propagation environments are
similar and the environmental parameter is equal. Thus, the
difference in received signal strength ∆Li,j is logarithmically
related to the ratio of distances di/dj and the k can be elimin-
ated.

∆Li,j = Li − Lj = 20 lg
dj
di

. (12)

We assume that (xi, yi) and (xj , yj) are the positions of the
users and (x, y) are the location of the AP. By further mathem-
atical operation, we can get

(x− p2 × xj − xi

p2 − 1
)
2

+ (y − p2 × yj − yi
p2 − 1

)
2

=
p

p2 − 1

2
× l2

(13)

where p = 10
RSSj−RSSi

20 and l =

√
(xi − xj)

2 + (yi − yj)
2.

The (13) is valid when RSSj − RSSi ̸= 0, while in the case
that RSSj −RSSi = 0, we can get

(xj − xi)x− (yi − yj)y +
y2
i − y2

j

2
+

x2
i − x2

j

2
= 0 (14)

Figure 6. WiFi AP position estimation based on iteration

Based on the above, the location of the POI can be derived. By
averaging, we can get the final position of POIs. The scheme is
described in Fig. 6

2.7 Online Positioning with Fingerprint Database

We carry out two steps for on-line positioning. In the first step,
POI-based coarse localization is applied. By comparing the re-
ceived WiFi signals from a specific AP with POIs in the data-
base, the location of the mobile can be coarsely estimated near
the POI. On the basis of coarse localization, a random forest al-
gorithm is applied for precise localization, by utilizing the WiFi
and 5G fingerprint databases. The real-time collected WiFi and
5G signal features serve as input to a random forest model,
which is pre-trained by labels and the signals of WiFi and 5G
in the fingerprint databases. The two-step matching method not
only allows for rapid estimation of the device’s location by re-
ducing the search space, but also improves the efficiency of pre-
cise localization.

Figure 7. POI-based coarse localization and fusion fine
localization

3. Experiments and Discussion

3.1 Experimental Settings

The experiment was conducted on the first floor of Wuhan
Intime Shopping Mall, covering an area of approximately 67
× 138 m², as shown in Fig. 8. There are 5 escalators on
this floor, and we designated the escalator locations as land-
mark points. The experimental data were collected by the mall
staff using their personal Android smartphones, and the exper-
imental routes followed paths from outdoor areas to each land-
mark point. The types of data collected include inertial navig-
ation data, WiFi data, and 5G NR data. The inertial navigation
data was recorded at a frequency of 100 Hz, while the 5G NR
and WiFi data were collected at a frequency of 0.2 Hz. A total
of 185 sets of data were collected.

Figure 8. Experimental area
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3.2 Results of Crowdsourced Data Processing

We use mobile phones to collect three-axis acceleration data
samples under five walking states: hand-held, left-handed
phone call, right-handed phone call, left-handed arm swing, and
right-handed arm swing, with a sample size of 231. The val-
ues and differences of the acceleration are extracted as features,
and the SVM classification model is trained using the K (K=10)
folded cross-validation method to divide the training set and the
test set.

Walking pattern is performed on the user data using the trained
model and some of the results are shown in Fig. 9, where
1 is handheld, 2 is left-handed phone call, 3 is right-handed
phone call, 4 is left-handed arm swing and 5 is right-handed
arm swing. The result of the third figure indicates that the user’s
mobile phone stays in handheld posture throughout the walking,
i.e., the user data is valid.

(a) (b)

(c) (d)

Figure 9. Mobile posture determination: during walking, there
are posture changes in (a), (b), and (d), while (c) maintains a

handheld posture throughout.

Based on the content of Section 2.2, we can obtain the traject-
ory of users who held their devices continuously, as shown in
Fig. 10(a). After obtaining the trajectories, based on the con-
tent of Section 2.3, we got the results of clustering of the users
with different incoming directions from the same landmarks.
The accuracy of clustering algorithm at different landmarks is
93.33%, 84.62%, 84.62%, 83.33%, and 100% respectively. The
clustering accuracy is high and the clustering algorithm is able
to perform the dataset clustering classification well in most of
the cases.

After the classification is completed, in order to correct the tra-
jectories, we analyse the GNSS data received at the entry point.
We find trajectories with more reliable GNSS accuracy at the
entry point among 59 trajectories and correct the trajectories
by the position of the entry point as the reference trajectories
for the subsequent corrections. After obtaining the reference
trajectory, we perform trajectory correction based on inflection
point features for the remaining uncorrected trajectories of the
same class as the reference trajectory.

We choose Bi-LSTM model to implement the inflection point
extraction. For this purpose, we collected a total of 2138 traject-
ory points as a dataset, and performed feature extraction and la-
belling on the original dataset. Then, we divided the training set
and test set in a ratio of 7:3, divided the training set into batches,
and performed iterative training and optimised the model para-
meters in batches. The accuracy of the model on the test set is
93.1%, and finally, we use the trained Bi-LSTM model to judge
the inflection point of the obtained trajectory data. Then the
similarity between the inflection points on the uncorrected tra-
jectory and the reference trajectory is calculated separately by
combining the two metrics of distance and WiFi similarity, and
the trajectory aggregation correction is achieved based on the
inflection point with the highest similarity.

Ultimately, we obtained all available trajectories (Fig. 10(b))
and constructed a positioning fingerprint database (Fig. 10(c)).
From the results, the obtained corrective paths cover most of the
ground floor of the mall, and the constructed fingerprint data-
base can support the navigation and localisation of pedestrians.
However, there are still cases of missing fingerprint database in
some areas.

3.3 Online Positioning

3.3.1 Static Data Testing: In order to verify the validity of
the acquired trajectories and the constructed fingerprint data-
base, we selected 10 test points within the experimental area,
distributed as shown in Fig. 11. A Huawei P40 mobile phone
was used to collect WiFi and 5G NR data at the corresponding
stationary locations, with an acquisition duration of 5 minutes
and a sampling frequency of 1Hz.

Figure 11. The Distribution of test points

When WiFi data is involved in localization, we add a fingerprint
point screening process before each test data is localized. The
MAC addresses of the five APs with the highest signal strength
in the test data are used as a reference. Only the fingerprint
points where the MAC addresses of the top five APs overlap
with this reference are retained for the localization process. For
comparison, in terms of localization sources, we consider WiFi
and the combination of WiFi and 5G NR. The results are shown
in Fig. 12.
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(a) (b) (c)

Figure 10. Fingerprint database construction. (a) uncorrected trajectories; (b) corrected trajectories; (c) WiFi and 5G NR fingerprint
database.

Figure 12. Positioning errors in static testing

When the signal source is WiFi, the mean positioning error us-
ing the random forest algorithm is 6.95 meters, with a stand-
ard deviation of 4.26 meters. Overall, the WiFi-based position-
ing performs well and meets the accuracy requirements for user
navigation in shopping malls. However, in some cases, the posi-
tioning error exceeds 10 meters, indicating insufficient stability.
This instability is attributed to a two-month gap between the test
and fingerprint data, during which significant changes occurred
around two test points, affecting nearby shop information and
leading to higher errors. When both WiFi and 5G NR are used
as signal sources, the wide-area accuracy of WiFi and the local
precision of 5G NR complement each other for enhanced local-
ization. The mean positioning error is reduced to 5.75 meters,
with a standard deviation of 2.99 meters. This represents a 17%
improvement in accuracy compared to WiFi localization alone.
In conclusion, the crowdsourcing-based solution for WiFi and
5G signal map construction and localization proposed in this
paper can achieve high-precision, high-reliability positioning in
consumer-grade scenarios while maintaining a low-cost indoor
localization system.

3.3.2 Dynamic Data Testing: To validate the accuracy of
the acquired trajectories and the constructed fingerprint data-
base, we selected both static test points and three dynamic
routes within the experimental area. The lengths of the routes
were 187.40 meters, 148.25 meters, and 260.84 meters, respect-
ively. Signal data was collected at a frequency of 0.2 Hz, while
inertial navigation data was recorded at 100 Hz using a Hua-
wei P40 smartphone. Simultaneously, high-precision inertial
navigation equipment (MTi-680G) was used for synchronized
data collection. With the aid of landmark points, trajectory re-
production was achieved, providing the reference trajectory for

experimental comparison.

(a) (b)

(c)

Figure 13. Dynamic positioning results and errors. (a)
positioning results for trajectory 1; (b) positioning results for

trajectory 2; (c) dynamic positioning errors.

From the static test results, we know that the average position-
ing accuracy of the fingerprint database is 5.75 meters. This ac-
curacy is sufficient for mall-level navigation, meaning it can ef-
fectively guide users along the path. However, achieving highly
accurate dynamic positioning using only the WiFi + 5G NR
database constructed in this study remains challenging. There-
fore, in dynamic testing, we evaluate the usability of the fin-
gerprint database by assessing the extent to which fingerprint
localization results correct the PDR results.

From the perspective of positioning accuracy, fusion localiza-
tion demonstrates a significant improvement compared to PDR
alone. The average positioning error is reduced by approxim-
ately 30%, and the 2-σ positioning error is improved by more
than 22%. The integration of fingerprint localization effectively
suppresses the error drift of PDR, further validating the effect-
iveness of the crowdsourcing-based solution for WiFi and 5G
signal map construction and positioning proposed in this paper.
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shop name HUAWEI SUNION Chow tai fook Goldstyle innisfree intime365 laoFengXiang

error/m 1.34 2.96 0.03 9.49 1.44 4.42 9.61

shop name maancoffee mac sephora stacatto urshop voyah juduo

error/m 2.27 4.24 2.77 8.31 8.13 3.17 3.16

Table 1. Errors in shop location positioning

3.4 Semantic Map Acquisition

Previously we obtained some WiFi AP locations on the ground
floor of the Yintai shopping mall through some known track
points. We can combine the WiFi AP locations with the ssid
information to obtain the approximate locations of the mer-
chants on the ground floor of the mall. Therefore, we use all
the acquired trajectory data to project the shop locations on the
ground floor of the mall to construct a semantic map.

(a) (b)

Figure 14. Semantic map construction: (a) correct semantic
map; (b) computed semantic map.

We compare the projected location with the real value, and the
error of each location is shown in Table 1. The mean value
of the positioning error is 4.38 m, and the standard deviation
is 3.18 m. Combining these two indicators, we can conclude
that the results of the shop position projection are highly ac-
curate. However, because we ignore the existence of height
difference in the calculation process, the projected position er-
ror is larger for some devices with higher hanging height, such
as stacatto. There is also a special case where the brand urban
revivo has shops on both the first and first floors of the mall,
and it is impossible to tell where the APs in our data originate
from, which is also not analysed in this paper. In the future,
we will analyse in the direction of AP signal strength and AP
signal strength change to determine the AP source. Overall,
we can obtain a high quality semantic map without using the
map. When the user walks into the shopping mall, combining
the positioning and semantic map, the phone can automatically
recommend services related to the nearby shops, which realises
the combination of positioning and life services.

4. Conclusion

To address the challenges of constructing a fingerprint database
in the absence of indoor maps and uncalibrated magnetometers,
this paper proposes a novel method for fingerprint database ac-
quisition based on sparse features. This method encompasses
three components: trajectory reproduction under multiple pos-
tures, feature-based trajectory aggregation correction, and point
of interest (POI) location acquisition. In trajectory correction,
we introduce the concept of clustering, using a reference tra-
jectory that has been corrected via a specific method to correct
all trajectories within the same cluster. For trajectory clustering,

we utilize the WiFi SSID count instead of trajectory shape as a
feature, which resolves the issue of varying trajectory shapes in
open environments. Additionally, we propose a method for POI
location acquisition to facilitate the construction of semantic
maps alongside localization services.

We selected the first floor of a large shopping mall as the experi-
mental site to validate the proposed method’s performance. The
experimental dataset consists of 185 user-collected trajectories.
The accuracy of trajectory clustering exceeds 80%, with an av-
erage positioning error of 5.73 meters for stationary test points
and an average error of 4.38 meters for POI location estima-
tions. These results validate the feasibility and effectiveness of
the proposed methods, as well as the stability of the trajectory
clustering approach and the accuracy of the corner point detec-
tion algorithm.

It is important to note that the proposed method relies on sparse
features to obtain trajectory endpoint information. Therefore,
further research is needed on how to acquire trajectory endpoint
information, including the partitioning of multi-floor behaviors
under unstable barometric conditions, the determination of user
groups arriving at the same landmark, and the precise acquisi-
tion of initial heading direction.
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