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Abstract

Cultural heritage sites face growing threats from environmental factors and human activities, highlighting the need for efficient
techniques to monitor and preserve their structural integrity. While advanced machine learning models, such as Segment Anything
Model (SAM), have shown success in areas such as healthcare, their potential for cultural heritage conservation remains largely
unexplored. In this research, we propose an automatic decay detection and visualization framework by combining advanced seg-
mentation techniques with 3D reconstruction methods. We fine-tune SAM and integrate it with You Only Look Once (YOLO) to
create a fully automatic, real-time segmentation framework that offers strong generalization for identifying unseen decay types. By
incorporating Structure from motion (SfM) and multi-view stereo (MVS), the framework produces 3D models that highlight decay
regions, providing a robust tool for structural assessment and visualization. Through both quantitative and qualitative evaluations,
we show that our approach outperforms several state-of-the-art models, demonstrating its effectiveness in identifying and visualiz-
ing stone decay. Our results contributes to heritage preservation by providing a novel, scalable solution for real-time monitoring of
cultural heritage sites.

1. Introduction

Cultural heritage buildings and sites made of stone and rock
represent invaluable resources that not only foster tourism and
economic development but also preserve historical culture and
customs from ancient to recent times (Timothy, 2014, Fusco Gir-
ard and Vecco, 2021). However, these sites face degradation
due to human activities, natural disasters, climate change, and
microbial deteriorations (De la Fuente et al., 2013, Spennemann
and Graham, 2007, Liu et al., 2020), making their conservation
a crucial and urgent work. Traditional conservation condition
surveys rely on manual assessment, which is often costly and
time-consuming (Agdas et al., 2016). Recently, unmanned aer-
ial vehicles (UAVs) have enhanced the efficiency and safety of
heritage inspection (Tan et al., 2021, Liu et al., 2021, Grosso et
al., 2020), yet they primarily serve image collection rather than
evaluation of the state of building or site preservation. This situ-
ation highlights the need for innovative approaches that enable
effective and automated analysis of UAV-captured images.

A key task in heritage conservation is the identification of decay
regions on stone and rock surfaces. While sensor-based tech-
niques offer time savings over traditional visual inspection, they
require high-cost and complex setups for equipment (Gopinath
and Ramadoss, 2021). In contrast, deep learning-based image
segmentation can utilize UAV-captured images to automatic-
ally generate different masks within digital imagery to repres-
ent areas of specific features such as stone decay areas, which
improves both efficiency and safety (Minaee et al., 2021, Noor-
alishahi et al., 2022). Recent advancements in deep learning,
including models like U-Net and Mask R-CNN, have achieved
notable success in heritage conservation but often require ex-
tensive data for retraining when a new decay type is introduced,
limiting their scalability (Chen et al., 2021, Hatır et al., 2021,
Bruno et al., 2023, Hou et al., 2024). Moreover, the Segment
Anything Model (SAM) demonstrates potential for cultural her-

itage applications due to its zero-shot ability and generalization
capabilities in areas such as healthcare and remote sensing (Ma
et al., 2024, Osco et al., 2023).

Furthermore, 3D reconstruction techniques like Multi-View Ste-
reo (MVS), Neural Radiance Fields (NeRF), and 3D Gaussian
Splatting (3D GS) provide detailed models of heritage struc-
tures, but they lack automated decay assessment features. Most
existing approaches primarily focus on the geometry and tex-
ture of the building or rock heritage, hence further manual eval-
uations for defect regions are required (Ma and Liu, 2018, Wel-
poner, 2019). Integrating segmentation results into these mod-
els could enable comprehensive visualizations of decay on 3D
heritage models, facilitating long-term monitoring.

In this research, we propose a framework for real-time segment-
ation and 3D visualization of decay regions on built and rock
heritage structures using a fine-tuned SAM and YOLOv8 model
combined with 3D reconstruction through SfM and MVS, as
shown in Figure 1. The captured images of a heritage site are
processed to generate decay segmentation masks, which are
then mapped onto a 3D model with decay areas highlighted
in different colors. The main contribution of this study can
be summarized as follows: (1) We introduce a deep learning-
based framework for real-time decay segmentation with better
accuracy and generalization ability, and (2) We develop a 3D re-
construction pipeline that visually highlights and distinguishes
various decay types on the surface of historical buildings and
rock heritage sites, aiding targeted conservation.

2. Related Works

In this section, we discuss related works in image segmentation
techniques applied to cultural heritage datasets, with an em-
phasis on approaches that improve segmentation accuracy and
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Figure 1. The proposed framework for segmentation and 3D
visualization of decay on heritage sites.

adaptability. We also explore prior studies in 3D reconstruction
methods tailored for heritage sites.

2.1 Image Segmentation for Heritage Conservation

Image segmentation represents a central challenge in computer
vision, which primarily partitions the input image into mean-
ingful regions (masks) for diverse applications including med-
ical imaging, autonomous driving, and video surveillance (Min-
aee et al., 2021). Based on the classifying purpose, it can be
divided into semantic segmentation, which focuses on categor-
izing each pixel in the image into the same classes, and instance
segmentation, which further distinguishes each object within
the class. Various deep learning models have been proposed,
such as U-Net, U-Net++, and Mask R-CNN (Ronneberger et
al., 2015, Zhou et al., 2018, He et al., 2017). These methods
have shown effectiveness in detecting decay types within the
cultural heritage, including cracks, scaling, and biological col-
onization (Chen et al., 2021, Hatır et al., 2021, Bruno et al.,
2023). However, these models significantly depend on diverse
training data for accurate results, presenting challenges when
facing unseen decay types that require additional data for re-
training. To address this limitation, the solutions could involve
compiling a comprehensive dataset or developing methods with
superior generalization and adaptability.

2.2 Segment Anything Model

The Segment Anything Model (SAM) (Kirillov et al., 2023)
overcomes the limitation of previous deep learning segmenta-
tion methods by introducing a prompt-based approach that util-
izes points, bounding boxes, or text to specify segmentation tar-
gets. SAM’s zero-shot capability enables it to segment unseen
objects by transferring knowledge obtained from training on
a massive and diverse dataset, guided by prompts (Larochelle
et al., 2008, Pourpanah et al., 2022). Optimized for real-time
performance (around 50ms in a web browser), SAM ensures
smooth and interactive prompting. Moreover, variants like Fast-
SAM, MobileSAM, and SAM2, as well as domain-specific ver-
sions such as MedSAM for medical imaging and gazeSAM for
eye tracking technologies, enhance accuracy in specialized ap-
plications (Zhao et al., 2023, Zhang et al., 2023, Ravi et al.,
2024, Ma et al., 2024, Wang et al., 2023). These advances
highlight SAM’s potential in heritage preservation, especially
for segmenting stone decays. Additionally, by using object de-
tection models such as YOLOv8 (Jocher et al., 2023) to gen-
erate bounding box prompts for SAM, segmentation can focus
precisely on specific decay regions, which reduces the need for
manual input and enhances accuracy.

2.3 3D Reconstruction for Heritage Sites

Three-dimensional (3D) reconstruction is a core task in com-
puter vision, involving the process of generating 3D models
of objects from data collected by cameras, sensors, or other
equipment (Ma and Liu, 2018). It has been applied in fields
such as bone reconstruction in medical engineering and digital
preservation of historical buildings in civil engineering. Ap-
proaches are broadly categorized as image-based or scanner-
based (Verykokou and Ioannidis, 2023). Among image-based
methods, techniques such as Multi-View Stereo (MVS), Neural
Radiance Fields (NeRF), and 3D Gaussian Splatting (3D GS)
have significantly improved the accuracy and quality of digital
heritage preservation (Furukawa et al., 2015, Mildenhall et al.,
2021, Kerbl et al., 2023). While MVS, NeRF, and 3D GS have
been applied to cultural conservation, existing studies primar-
ily focus on texture quality rather than condition monitoring
(Mazzacca et al., 2023, Murtiyoso et al., 2024, Basso et al.,
2024), suggesting a gap for more comprehensive analysis and
frameworks aimed at long-term monitoring the condition of her-
itage buildings. This gap also motivates further research to ex-
plore how these 3D reconstruction techniques can support the
preservation of cultural heritage sites.

3. Methodology

Our method consists of two stages: first, decay regions are
segmented by the fine-tuned SAM using YOLOv8-generated
prompts to guide segmentation specifically toward decay re-
gions. Second, MVS is employed to construct a dense 3D model
of the heritage site, where segmented decay areas are high-
lighted.

3.1 Fine-tuned SAM with YOLO Prompts

We fine-tune the recent SAM (Kirillov et al., 2023) model with
ViT-B as its backbone on a specific stone decay dataset. Due
to the limited size of our dataset, which is insufficient for a
full re-training of SAM since deep learning models typically
require large datasets (the original SAM was trained on 11 mil-
lion images), fine-tuning serves as an effective transfer learn-
ing technique. To streamline resources, we freeze the image
and prompt encoders and iteratively fine-tune only the mask de-
coder, as shown in Figure 2. This strategy enhances the model’s
ability to accurately identify different types of stone decay.

We initially used grid-point prompts to automate the segment-
ation process by pre-defining points across a grid. However,
this approach may misidentify small decay areas or building
structures as decay regions, leading to inefficiencies and inac-
curacies. To address the problem, we propose a two-step ap-
proach that integrates the object detection method. First, we
train a YOLOv8 model to automatically detect stone decay areas.
The bounding boxes generated by YOLOv8 are utilized as spe-
cific prompts for the fine-tuned SAM model using box prompts,
enhancing its focus and precision.

This combined approach improves automation and accuracy over
manual prompting. Figure 2 illustrates the workflow of this
method: the YOLO model detects potential decay regions in an
image and outlines them with multiple bounding boxes, as high-
lighted in red color. Subsequently, the fine-tuned SAM model
uses these bounding boxes as prompts to generate more precise
segmentation masks. Hence, this strategy not only automates
the segmentation process but also improves accuracy by con-
centrating SAM’s focus on YOLO-identified areas of interest.
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Figure 2. Overview of the proposed segmentation model integrated with YOLO.

3.2 3D Reconstruction Using MVS

For 3D model construction, we employ traditional MVS tech-
niques, which infer depth and surface details from disparities
across multiple viewpoints, making them effective for detailed
reconstructions from images. Furthermore, they are more ef-
ficient in terms of computational speed and simplicity com-
pared with deep learning approaches such as NeRF and 3D
GS since they do not require a training process. Specifically,
we use COLMAP (Schonberger and Frahm, 2016), a state-of-
the-art photogrammetry software that automates the essential
processes including camera calibration, image alignment, and
dense point cloud generation.

Our pipeline for decay visualization, as shown in Figure 3, in-
tegrates the outputs of our segmentation model with COLMAP’s
3D reconstruction steps. The process begins with applying the
segmentation model to identify and segment decay regions across
the visualization dataset. These segmented images are then pro-
cessed in SfM, starting with feature extraction in the decay-
marked regions. SfM subsequently performs feature matching
across the dataset, establishing correspondences between im-
ages, which are crucial for constructing the 3D structure through
triangulation. While an ideal approach would involve recon-
structing the site using unmasked images and then projecting
the segmented decay regions onto the 3D model based on cam-
era parameters, we simplify this by transferring the segment-
ation masks directly to the 3D model. We replace the RGB
values of the relevant pixels in the original image with the mask
colors streamlining the process but potentially reducing the pre-
cision, which could be addressed in future work by leveraging
camera parameters.

After feature matching, SfM generates a sparse reconstruction
to establish camera positions and an initial scene geometry. This
sparse model captures the basic structure and serves as the found-
ation for detailed reconstruction. Subsequently, MVS performs
an image undistortion step to ensure accurate geometry. It then
computes depth and normal maps for each image based on the
sparse model. Depth maps represent the distance of each pixel

from the camera, while normal maps describe the orientation of
surfaces within the image. Both maps are essential for crafting a
more detailed geometric portrayal of each scene. Finally, using
the undistorted images, along with the depth and normal maps,
MVS synthesizes a dense 3D point cloud with high accuracy
and detailed surface textures.

Therefore, this integration not only bridges 2D image analysis
with 3D spatial visualization but also provides a robust frame-
work for monitoring and preserving rock and stone-based cul-
tural heritage sites. By merging the precision of segmentation
techniques with the depth and detail offered by 3D reconstruc-
tion, this framework allows for a more comprehensive under-
standing of decay patterns and their spatial relationships in his-
torical structures.

3.3 Evaluation Method

To assess the performance of our segmentation approach, we
compare the predicted masks against the ground-truth masks
using the following three metrics:

Intersection over Union (IoU) quantifies the overlap between
the predicted masks and the ground-truth masks.

IoU =
Intersect Area

Union Area
(1)

Dice Similarity Coefficient (DSC) complements the IoU by also
measuring the similarity between the predicted and actual masks
but more sensitive to the size of the objects being segmented.

DSC =
2×Overlap Area

Total Elements
=

2× |X ∩ Y |
|X|+ |Y | (2)

where X = the predicted set of pixels
Y = the ground truth set of pixels

The average inference time per image provides a measure of
the model’s efficiency, thus reflecting its suitability for real-time
applications.
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Figure 3. Overview of the proposed decay visualization pipeline.

For 3D model assessment, since no ground-truth is available,
we use alternative metrics from COLMAP:

Mean Errorreprojection =
1

N

N∑
i=1

||xi − x̂i|| (3)

where N = total number of 2D points
xi = the observed 2D point in the original image
x̂i = corresponding 2D point from the 3D model
||xi − x̂i|| = the Euclidean distance between points

Additionally, we utilize qualitative method such as visual in-
spection to further evaluate the result for both segmented masks
and the reconstructed model.

4. Experiments and Results

To evaluate the efficiency of our proposed framework, we first
fine-tuned the SAM model and trained the YOLOv8 model on
our captured dataset. We then applied our segmentation method
to a heritage site dataset to evaluate the 3D visualization of de-
cay. The training for SAM and YOLO models was conducted
on Google Colab, with NVIDIA L4 GPU. On the other hand,
the MVS reconstruction was executed on a personal computer
equipped with an NVIDIA RTX 3060Ti GPU, an AMD Ryzen
5 5600X CPU (4.60 GHz), and 64 GB of RAM.

4.1 Datasets

4.1.1 Stone Decay Dataset The Stone Decay Dataset is a
2D image dataset containing high-resolution images of stone
from various historical buildings in Melbourne. It includes 348
raw images, representing four common types of stone decay:
flaking, black crust, cracking, and contour scaling. Flaking
refers to the peeling of the stone’s surface scaling in a thin
flat; the black crust is frequently dark and composed mainly of
particles from the atmosphere due to environmental pollution;
cracking represents visible fissures or splits of one part from
another in the material; and contour scaling is the separation
and spalling of the stone surface along its contours, which often
leads to the loss of surface material (Cartwright et al., 2008).

Each image is annotated for different purposes. As demon-
strated in Figure 4, for segmentation, ground-truth masks are
provided to ensure accurate model training. For object detec-
tion, bounding boxes label each decay type distinctly.

Figure 4. Example images with ground truth annotations. Each
set includes the original image, segmentation annotations, and

object detection annotations.

4.1.2 Rock Decay Dataset The Stone Decay Dataset is lim-
ited for 3D reconstruction tasks due to insufficient overlap between
images, which would affect the accuracy of depth estimation
when constructing the model. To overcome this limitation and
facilitate the visualization of decay types segmented by our fine-
tuned SAM model, we created a new dataset, the Rock Decay
Dataset, specifically designed for 3D reconstruction.

This new dataset consists of 216 high-resolution images which
are manually captured at a rock heritage site with various types
of rock decay on the surface in Western Victoria. Unlike the
previous dataset, which primarily focused on decay regions, this
dataset ensures significant overlap between consecutive images,
supporting accurate depth and spatial estimation essential for
3D reconstruction (see Figure 5 (a)). It allows the reconstruc-
tion algorithm to better estimate the depth and spatial relation-
ships between different regions of the rock, resulting in a more
precise 3D model of the heritage site.

4.1.3 REB-3D Dataset The REB-3D Dataset (Khoshelham,
2018) includes 220 overlapping images of the Royal Exhibition
Building in Melbourne, captured by a UAV, as shown in Fig-
ure 5 (b). Although the building is primarily made of brick
and concrete, it contains several areas of cracking, making it
suitable for evaluating the reconstruction effectiveness of our
framework. It complements the previously Rock Decay Data-
set by offering another scenario, which is a larger site. Hence,
this allows for a broader evaluation of our decay visualization
framework in diverse heritage conservation contexts.
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Figure 5. Overlapped images from (a) Rock Decay and (b) REB.

4.2 Segmentation Module

We adopted the SAM architecture proposed by (Kirillov et al.,
2023) for decay segmentation and fine-tuned it on our Stone
Decay Dataset. The training process employed the ADAM op-
timizer with a learning rate of 1×10−4, running for 150 epochs.
To enhance generalization and prevent overfitting, we applied
an early stopping mechanism that breaks the training if no per-
formance improvement was observed over 10 consecutive epochs.
Furthermore, we monitored model performance using two met-
rics: loss and IoU, with Dice-Focal loss selected as the loss
function to combine the benefits of dice loss and focal loss.

The overall learning curves for training and validation datasets
are illustrated in Figure 6. The model exhibited rapid learn-
ing in the early epochs, indicated by a dramatic decrease in
both training and validation loss and a corresponding rise in
IoU. As training continued, the metrics showed incremental
improvement, with fluctuations between epochs 20 and 100,
and convergence around the 120th epoch. At this stage, the
model achieved near-optimal performance, with an IoU near
0.75, demonstrating effective learning.

Figure 6. Learning curves of the fine-tuned SAM model.

Moreover, a comparative analysis evaluates the segmentation
effectiveness of our proposed fine-tuned SAM model against
several SOTA models, including U-Net, U-Net++, YOLOv8-
seg, and SAM variants (FastSAM, MobileSAM, SAM2), as
shown in Table 1. The models are categorized into interact-
ive methods requiring manual prompts and fully automated ap-
proaches. Based on the results, it can be seen that while Fast-
SAM offers the highest speed, its precision is significantly lower.
In contrast, our two-step method, though slower than FastSAM,
outperforms all other models in both IoU and DSC metrics,
achieving the highest accuracy. Notably, the integration in our
method allows for a fully automated process, demonstrating its
effectiveness and practicality for segmenting decay on heritage
buildings and rock heritage sites.

In addition, we assesses the generalization ability of our fine-
tuned SAM model on unseen decay types by comparing it against
traditional models like U-Net and U-Net++. We collected im-
ages with either entirely new decay types or variations in tex-
ture, sourced from prior studies (Hou et al., 2024, Bruno et
al., 2023, Liu et al., 2020, Cartwright et al., 2008). Figure 7
shows how each model performed on these images. Traditional
CNN-based models like U-Net struggled significantly, captur-
ing only small portions of decay regions or failing to segment
them altogether in some cases. In contrast, our fine-tuned SAM
model, once given the appropriate prompts, successfully seg-
mented these new decay regions, demonstrating robust general-
ization.

Figure 7. Performance of methods on unseen decay types. (a)
golden foil shedding, (b) biological colonization, (c) epilithic

biofilms of algae, (d) salt efflorescence, (e) biological
colonization. Blue color represents segmentation masks.

4.3 3D Reconstruction Module

In this section, we evaluate the effectiveness of our visualiza-
tion pipeline on the Rock Decay and REB datasets. Our frame-
work first applies the fine-tuned SAM with YOLOv8 to pre-
cisely identify the decay regions and generate corresponding
segmentation masks using distinct colors for each decay type.
These segmented masks are then overlaid onto the original im-
ages, with a 40% transparency, which highlights the decay re-
gions while preserving key image details necessary for the 3D
reconstruction. Finally, the annotated images are processed in
MVS to generate a detailed 3D model.

Figure 8 illustrates the result of this process on the rock site.
The image on the left side represents the original 3D model of
the site, while the image on the right demonstrates the segmen-
ted 3D model generated by our framework. In the segmented
model, various decay types are highlighted with different col-
ors, for example, red for the regions exhibiting black crusts (car-
bonization/sulfation) and pink for the regions exhibiting con-
tour scaling. Visual inspection of the model reveals that (1)
the segmented 3D model maintains a similar visual quality to
the original, demonstrating that the overlay does not affect re-
construction fidelity, and (2) the decay regions are effectively
highlighted, allowing for comprehensive spatial analysis of the
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Method Prompt IoU(%)↑ DSC(%)↑ Time(ms)↓

In
te

ra
ct

i v
e SAM(baseline) box 45.49 54.47 388.5

FastSAM box 35.30 43.30 13.0
MobileSAM box 44.92 53.95 109.5

SAM2 box 46.72 55.61 368.3

A
ut

om
at

ic U-Net / 33.73 50.45 126.6
U-Net++ / 37.06 54.08 255.6

YOLOv8-seg / 31.23 40.75 56.2
Fine-tuned SAM(ours) YOLOv8 53.44 63.37 383.4

Table 1. Comparative performance of different segmentation models.

extent and distribution of decay. This visualization provides
valuable information for conservation planning, enabling tar-
geted preservation efforts based on decay distribution.

Figure 8. Result of decay visualization (red and pink regions) for
Rock Decay Dataset.

Figure 9 demonstrates the resulting 3D models of the REB build-
ing, with the original model on the left and the segmented model
on the right. In the segmented model, the red areas highlight re-
gions affected by what appear to be black crusts. Visual inspec-
tion reveals both strengths and limitations in the reconstruc-
tion. A key advantage is that the visual quality of the model
remains consistent with the original, with decay regions high-
lighted without compromising structural detail. However, the
decay regions are less apparent than in the rock site case and
less certain as to their origin as they could be caused by biolo-
gical matter. This difference is likely due to the UAV capturing
images from a greater distance on a larger structure, resulting
in decay areas occupying a smaller portion of each image. For
example, decay may cover nearly 50% of an image in the Rock
Decay dataset, while in this case, it might only represent about
5%, which impacts the segmentation model’s effectiveness in
identifying small decay areas and confirming their origin. Ad-
ditionally, the REB building exhibits fewer decayed areas over-
all, so fewer decay regions appear in the final visualization.

Figure 9. Result of decay visualization for REB-3D Dataset.

Furthermore, the mean re-projection errors for the original and
decay-annotated models in the Rock Decay and REB cases are
1.3512 and 1.3076, and 0.7869 and 0.7358, respectively. These
consistently low values suggest accurate alignment of 3D points
with the original images. The slightly lower error in the decay-
annotated model also indicates that incorporating decay seg-
mentation and overlay does not negatively impact the overall
quality of the 3D model.

Moreover, to enhance the clarity of decay regions, especially
when they resemble the original stone surface, we utilize a heat
map-style overlay for more intuitive visualization.

In Figure 10, the same section of the rock site is presented with
a new heat map-style overlay covering the entire site. The new
colors now indicate decay probability (as shown by the color
bar), ranging from red for high probability of decay (close to 1)
to dark blue for non-decayed or background areas (probability
= 0). This approach enhances visual visual contrast between
decayed and non-decayed areas by highlighting decay with vi-
brant colors and leaving the background shaded in dark blue. In
addition, the heat map provides a probabilistic estimate of de-
cay distribution, which allows for a more specific understand-
ing and could be refined in future work to incorporate decay
severity that offers a more detailed and actionable assessment
for conservation planning.

Figure 10. Heat map visualization for rock site.

5. Discussion

The experimental results demonstrate that our proposed frame-
work effectively segments and visualizes decay on stone and
rock heritage sites, marking a notable advancement over con-
ventional deep learning methods in this field. Unlike previous
segmentation models, which often require extensive re-training
or manual input, our framework automatically identifies decay
areas with capability for incorporating new decay types. Also,
the generated 3D model provides an efficient solution for monit-
oring the condition of heritage buildings and rock heritage sites
compared to traditional in-person inspections.
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Our results show that the combination of YOLOv8 for prompt
generation with fine-tuned SAM boosts segmentation accuracy
and enhances automation, demonstrating superior performance
over other SAM variants and providing robust adaptability for
identifying unseen decay types. Thus, our technique fills the
critical gap in cultural heritage applications, establishing SAM
as an effective and practical method.

In addition, the visualization pipeline that incorporates segmen-
ted decay regions into a 3D reconstruction model, provides a
scalable and efficient solution for assessing the condition of her-
itage sites. Our framework also simplifies the 3D visualization
process by using 2D datasets for segmentation, which are then
integrated into a 3D reconstruction. This approach eliminates
the need for constructing complex 3D datasets when directly
segmenting decay within 3D models, enabling broader imple-
mentation across various heritage sites without the requirement
for specialized equipment.

Future work could focus on improving segmentation accuracy.
For instance, the current fine-tuned model is based on the ori-
ginal SAM structure, but its performance can be enhanced by
adopting modifications used in SAM variants such as SAM2,
which has demonstrated improvements in segmentation accur-
acy and efficiency. Moreover, currently, a precise ground-truth
based 3D model of a selected heritage site needs to be obtained
through close calibration and corroboration by rock and stone
conservation experts. Without this process (which needs peri-
odic checking) it is challenging to directly compare the accur-
acy of our reconstructed 3D model against the real heritage site.
Hence, obtaining a ground-truth model in the future would not
only allow a more detailed evaluation of our method that util-
ities SfM and MVS, but also facilitate a comparison of vari-
ous advanced 3D reconstruction techniques, such as MVSNet,
NeRF, and 3D GS.

In addition, our current 3D models indicate decay presence but
lack other information such as decay severity, which suggests
another direction on extending the model to assess the severity
of decay by categorizing decay into levels. For example, mild
decay could be represented by values below 0.3, moderate by
0.3-0.6, and severe by values above 0.6. A heat map-style visu-
alization based on these severity degrees would help distinguish
more urgent decay areas, with brighter colors indicating more
critical decay. This approach is not only useful to quantify the
decay and evaluate the risk posed to the heritage site being sur-
veyed but also supports long-term monitoring and assessment.

6. Conclusion

In this paper, we have presented a novel approach for real-
time segmentation of decay regions on stone and rock herit-
age sites by fine-tuning the SAM model and integrating it with
YOLOv8. We evaluated our model against several SOTA meth-
ods, and the results indicate that it significantly outperforms
these approaches in precision while maintaining acceptable pro-
cessing speeds for real-time applications for cultural heritage.
Our model also demonstrates superior generalization ability in
identifying various unseen decay types after receiving the prompts
compared with traditional data-driven models, such as U-Net
and U-Net++. Additionally, leveraging the strengths of our seg-
mentation model, we proposed a pipeline to transform a series
of images into a 3D model with visually highlighted decay re-
gions. We applied this pipeline to a case study, and the res-
ults demonstrate its effectiveness in successfully detecting and

visualizing decay regions, while also showing potential for as-
sessing decay severity and identifying decay in other substrates
such as brick and concrete.
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cities: Design, construction, operation and future impact, 173–
194.

Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B., 2024.
Segment anything in medical images. Nature Communications,
15(1), 654.

Ma, Z., Liu, S., 2018. A review of 3D reconstruction techniques
in civil engineering and their applications. Advanced Engineer-
ing Informatics, 37, 163–174.

Mazzacca, G., Karami, A., Rigon, S., Farella, E., Trybala, P.,
Remondino, F., 2023. NERF FOR HERITAGE 3D RECON-
STRUCTION. The International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, 48,
1051–1058.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., Ng, R., 2021. Nerf: Representing scenes as
neural radiance fields for view synthesis. Communications of
the ACM, 65(1), 99–106.

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N.,
Terzopoulos, D., 2021. Image segmentation using deep learn-
ing: A survey. IEEE transactions on pattern analysis and ma-
chine intelligence, 44(7), 3523–3542.

Murtiyoso, A., Karwel, A., Grussenmeyer, P., 2024. Compar-
ison of state-of-the-art Multi-view stereo solutions for close
range heritage documentation. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, 48, 317–323.

Nooralishahi, P., Ramos, G., Pozzer, S., Ibarra-Castanedo,
C., Lopez, F., Maldague, X. P., 2022. Texture analysis to
enhance drone-based multi-modal inspection of structures.
Drones, 6(12), 407.

Osco, L. P., Wu, Q., de Lemos, E. L., Gonçalves, W. N., Ramos,
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