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Abstract

Portable laser scanners, handheld and mobile, have gained popularity for their ability to rapidly and economically document scenes.
However, the acquired data are characterized by hight levels of noise and by low resolution, both affecting their consequent analysis
and 3D modeling. It is customary to enhance their quality by denoising the data by means of point position updates where current
approaches independently predict the displacement per point. Such strategies neglect local structural consistency and often yield
a non-smooth outcome. To address these shortcomings this paper formulates denoising by local contextual relationships and point
assignment to the underlying surface in an end-to-end framework. To extract contextual information it introduces densely packed
graph convolution layers and a global attention mechanism. Realizing also that utilization of the conventional L2-norm-driven
approaches tends to oversmooth the surface, it introduces a novel bilateral loss that not only mitigates the noise but also preserves
sharp geometric features. As a result, our newly developed network learns a shape context representation that measures neighbor
similarity and contributes to more accurate surface normals. Performance analysis demonstrates that over 93% of points deviate by
≤ 1 cm – double the percentage achieved by state-of-the-art denoising networks.

1. Introduction

Laser scans acquired by terrestrial platforms provide detailed
characterization of 3D object space. Therefore, they are fa-
vorable in a plethora of applications, e.g., built environment
capture, road map production, city modeling, and forest in-
ventory (Ye et al., 2020; Yu and Lafarge, 2022; Hakula et al.,
2023). Though stationary scanners produce the highest quality
outcome, the acquisition time they require prohibits the cap-
ture of broad scenes. In contrast, portable laser scanners, hand-
held and mobile (PLS & MLS, respectively) offer broad scene
coverage, flexibility, efficiency, and reduced manpower in the
acquisition. Nonetheless, due to device instability, inaccurate
scanner poses determination, and ranging system limitation, the
outcome yields a noisy and sparse scene representation with an
excessive rate of outliers that in turn affect downstream applic-
ations (Xia et al., 2020; Ren et al., 2022; Li et al., 2024; Conti
et al., 2024; Antova, 2024).

Hand-crafted 3D noise attenuation approaches have focused on
minimizing the distance towards the actual surface, specifically
along its normal direction (Taubin, 1995; Desbrun et al., 2000;
Peng et al., 2001). Noise attenuation was in the form of L1-
median, graph Laplacian framework, reweighting by distance to
the surface, or robust bi-variate polynomial fitting (e.g., Fleish-
man et al., 2005; Huang et al., 2013; Sun et al., 2015; Mattei and
Castrodad, 2017; Dinesh et al., 2020). While successful under
some setups, they necessitated heavy manual parameter tuning,
yet failed to preserve local geometric details when the noise
levels were high and the density low. Current deep learning
(DL) point cloud denoising networks aim to predict the point
displacement to the surface, either in a Euclidean multi-scale
manner, using feature concatenation, or by learning global fea-
tures (Pistilli et al., 2020; Rakotosaona et al., 2020; Luo and
Hu, 2021; Edirimuni et al., 2023b). More recent research has
realized the benefit of displacement along the normal direction.
Accordingly, normals were introduced as auxiliary information
(e.g., via principal component analysis, PCA) for the network

Figure 1. Denoising the RueMadame dataset. Compared to high
residual in other approaches, ours recovers clean structures.

to learn both point and normal corrections (Edirimuni et al.,
2023a; Liu et al., 2023). Though aiming to become adaptive to
different levels of noise (e.g., Pistilli et al., 2020), the learned
surface description still struggled to handle high noise levels
and outliers, and to preserve sharp shape transitions. Their
reliance on L2-norm measures led them to fail when the 3D
data density was uneven (e.g., Liu et al., 2023). That is so des-
pite a careful local neighbor selection, advanced feature mod-
eling, and surface normal supervision. Also, their applications
were restricted to watertight models and dense scans, leaving
the challenging, sparse, and noisy ones unattended.

To address these challenges, this paper proposes a new neural
denoising framework that exhibits robustness to the presence
of outliers and preserves underlying surface features. Its con-
tributions are: i) an introduction of a new local shape con-
text embedding that captures both local and global surface fea-
tures; ii) a joint treatment of noise and outliers under varying
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noise levels; iii) the introduction of a novel loss function, which
jointly handles point position and surface content; iv) a shape-
aware surface representation, which leads to a robust surface
attribute estimation from denoised points; and v) faster training
and efficient inference. Analysis shows that our denoising and
normal estimation results on benchmarks and real-world scans
set state-of-the-art.

2. Related Work

Early point denoising research has focused on weighted av-
eraging over a local neighborhood, using surface subdivision
methods for efficient low-pass filtering. Averaging was per-
formed iteratively, gradually smoothing the intersection of
planes or high-curvature regions, and therefore required ad-
dressing shape shrinkage (Taubin, 1995; Desbrun et al., 2000;
Peng et al., 2001). To reflect the underlying surface, moving-
polynomial (jet-) fitting facilitated denoising by local projec-
tion (Fleishman et al., 2005; Cazals and Pouget, 2005; Guen-
nebaud and Gross, 2007). As local fitting exerted smoothness,
Lipman et al. (2007), and Huang et al. (2013) proposed to redis-
tribute points to the local L1-median and introduced repulsion
forces to secure coverage of the underlying surface. Nonethe-
less, their application has led to detail loss. To treat positional
updates globally, graph Laplacian-based approaches optimized
point positions by reducing the mean curvature (Zeng et al.,
2019). Nonetheless, failing at surface intersections, they led to
a loss of sharp features (c.f. Sec. 4). In addressing that, bi-
lateral filter-based approaches first estimated surface normals
and then denoised the data based on Euclidean proximity and
normal differences (Fleishman et al., 2003; Digne and De Fran-
chis, 2017). Though effective at low noise levels, their sensit-
ivity to higher ones and the existence of outliers turned them
unreliable in sparse observations. Alternative, robust estima-
tion driven methods aimed to refine the normal direction by
minimizing the discrepancy in a local neighborhood and then
iteratively updating the points position (Avron et al., 2010; Sun
et al., 2015; Mattei and Castrodad, 2017). As they sequen-
tially performed a least-squares adjustment, results were subop-
timal and were prone to failure in the presence of large outlier
rates, even when incorporating sophisticated graph Laplacian
regularization-related terms (Dinesh et al., 2020).

Shifting towards DL approaches, Pistilli et al. (2020) used a dy-
namic graph convolution (DGCNN) to predict the point’s posi-
tion on a clean surface while applying an L2 loss minimization.
This approach resulted in blurring geometric details. A Point-
Net architecture was applied to detect outliers by Rakotosaona
et al. (2020). The noisy points offset predictions were iterat-
ive, and an L2-norm loss was used. Later, Luo and Hu (2021)
modeled the noise distribution and defined the noise-free sur-
face as the region of the highest density. The network learned
the gradient of the distribution during training and iteratively
performed a marching process toward dense regions by apply-
ing the gradient directions during testing. Due to inexact vector
predictions, this iterative process converged very slowly, lead-
ing to a lengthy inference time. To secure fast convergence,
in Edirimuni et al. (2023b) a progressive data denoising was
performed by four replications of their denoising module (the
weights per module were learned independently). A DGCNN
architecture was used, with L2 norm minimization, and super-
vision of each intermediate result carried out until becoming
noise-free. Edirimuni et al. (2023a) estimated normals and de-
noised points jointly using a patch-based, PointNet, architec-
ture. Their aim was to learn a common feature under different

noise levels for all central points. Then, an MLP predicted the
per point denoised coordinates and normal. Here again, an L2
loss was applied. As points were independently processed, the
training phase was slow. Liu et al. (2023) also used a patch-
based network but added to the input PCA normals, they pre-
computed, under the premise they may help preserve sharp fea-
tures and identify relevant neighbors. The network learned to
correct the normals along with point offsets. However, this ap-
proach was sensitive to the quality of the input normals and was
memory-intensive.

By predicting offsets independently, paying less attention to the
local context, and using L2-driven cost functions, current ap-
proaches tend to yield non-smooth results with a loss of geo-
metric details. The common neglect of outliers’ presence also
deforms the results further. When surface normals are intro-
duced, their treatment is not adequately reflected in the loss
design to ensure consistent predictions. Also, the data on which
these architectures were tested are dense and watertight, sug-
gesting that limited attention has been directed toward improv-
ing the quality of challenging MLS and PLS data. To address
these limitations, we propose a formulation that models local
to global shape context, and jointly handles outliers and noise.
We introduce a new feature-preserving loss form, that enables
the identification of points belonging to geometrically similar
features and attenuating the effects of dissimilar points, under
varying noise levels.

3. Methodology

Our network is a graph-convolution based, with a point-
representation-encoder for shape context extraction followed by
a score-estimation-decoder for handling outlier and displace-
ment prediction. Its input is an observed set of N points, P ′,
composed of noisy and outlying returns:

P ′ = {pi + di}pi∈P ∪O, (1)

where pi ∈ P , is the perfect scanned surface sample set, di ∈ D
is the ranging noise offsets from the surface; andO is the outly-
ing point set. Their exclusion, P̂ = P ′ \ O, yields an outlier-
free set. P̂ is refined by the set of predicted displacements, D,
to align the individual points with the true surface.

3.1 Point Representation Encoder

A naive dynamic graph edge convolution does not guarantee a
robust description of the local surface structure under varying
noise levels and density changes. Also, stacking of dynamic
graph convolution layers for multiple levels of local context
embedding leads to a vanishing gradient and an overfit to local
connections (Pistilli et al., 2020; Liu et al., 2023). Hence, our
network introduces densely connected graph-constitutional lay-
ers with skip connections. The neighbor proximity in the first
layer is set by Euclidean distance while in the following ones,
it is set by the closeness of the learned features (in the sense of
intrinsic properties). Given a feature vector for the i-th point,
fi, and its neighbors vectors, fj ∈ Ni, the dense block convo-
lutions is computed by:

eijm = Relu
(
θm · (fj − fi) + φm · fi

)
, (2)

where Ni is neighborhood, m is the layer index, and θm and
φm are MLPs. We further refine each grouped feature, eijm,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-1037-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1038



Figure 2. Overview of our denoising network.

Figure 3. Our consistency driven denoising prediction for shared
neighbors, ensuring robustness due to single displacement

constraint.

via a chain of densely connected MLPs and the final activation
xim of pi at layer m:

xim = max
j∈Ni

MLP
(

MLP(eijm)||eijm
)
, (3)

We introduce dense connections both within and between the
dense blocks (Fig. 2). Within blocks, the output of each MLP
is passed to all subsequent ones. Between blocks, the point
features that each block produces are introduced in the form of
skip-connections, as an input to the subsequent blocks. This act
ensures gradient flow, and contribute to a reduced model size
(Fig. 2).

To avoid over-fitting to local cues and secure global context, a
self-attention unit (Li et al., 2019) is added. It processes the
output of the densely connected blocks, and includes a query,
key, and values components, G,H, and K, respectively, where:

G = F̂WG H = F̂WH K = F̂WK , (4)

F̂ , is the densely connected blocks output, and WG, WH and
WK are MLPs, where the dimensions of G and H remain un-
changed. We derive the N × N weight matrix, W , from the
alignment of G and H after the application of a softmax func-
tion, providing weights by which K is multiplied to yield the
learned per point shape context feature, Fi.

3.2 Decoder, Consistency-driven Score-based Denoising

Prior work denoised point clouds by predicting a per-point off-
set to the underlying surface using sets of MLPs (Rakotosaona

et al., 2020; Edirimuni et al., 2023b). However, they often led
to high residuals due to the inability to differentiate outliers.
The independent, per-point, prediction also disregarded local
neighbor consistency, resulting in a non-smooth output. This is
addressed here by using the learned shape context, Fi, which
classified each point as an inlier or an outlier by:

Oi = MLP
(
Fi
)
, (5)

where Oi is an indicator. We concurrently use Fi to estim-
ate offsets, but instead of predicting offsets per the remaining
points, we create dense, overlapping, k-neighbor patches on
the point cloud surface and evaluate offsets for its neighbors
based on the center point shape context (Fig. 3). To do so,
our score estimation module parameterizes traditional point-to-
surface distance queries in a high-dimensional space (Fig. 4).
It takes, as input, a learnable relative positional encoding of a
neighbor pj ∈ Ni

PosEncoding(pj) = MLP
(
pj − pi

)
, (6)

and the shape context, Fi, of pi. It outputs a predicted displace-
ment D(pj) for pj ,

D(pj) = Score
(
PosEncoding(pj), Fi

)
, (7)

where Score(·) is an MLP. As pj and pi are mutual neighbors,
this setting creates overlaps, and accordingly multiple predicted
corrections per point, in reference to all the neighborhoods it is
part of (Fig. 3). Consequently, we encourage consistent predic-
tions by minimizing discrepancies between ones from differ-
ent neighborhood sets. Though the central point and its neigh-
bors may lie on different surface elements, our loss function
(Sec. 3.3) rules out such an interaction in a straightforward man-
ner. Thereby, we encourage the shape context feature to be sur-
face aware.

3.3 Edge-aware Representation Learning

To enable the filtered point cloud to approximate the surface, a
common solution is to apply an L2-norm distance for the loss
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Figure 4. Score prediction module taking the local point shape
context and query the offsets to the underlying surface. This

query is parameterized by MLPs and shared for all neighbors.

(Rakotosaona et al., 2020; Edirimuni et al., 2023a). However,
the L2 loss optimizes displacements towards the closet surface
point and leads to the blur of sharp features. Our approach is
different. We propose a formulation that reflects the local sur-
face shape and encourages the denoised outcome to minimize
a bilateral loss. We define p̂i = pi + D(pi) to be the denoised
point and p̄j ∈ Ni a ground-truth point within p̂i neighborhood,
and denote the normal of the ground-truth point closest to p̂i, by
n̄i, and by n̄j that of p̄j . Then, the loss, Lbilateral, is given by:

Lbilateral =

∑
p̄j∈Ni

|(p̂i − p̄j) · n̄j | · φ(‖p̂i − p̄j‖) · θ(n̄i, n̄j)∑
p̄j∈Pi

φ(‖p̂i − p̄j‖) · θ(n̄i, n̄j)
(8)

where φ(‖p̂i − p̄j‖) is a monotonically decreasing weighting

function, and θ(n̄i, n̄j) = exp
(
−
(

1−n̄i·n̄j

1−cos(γ)

)2 )
decreases

with the deviation between n̄i and n̄j , where γ a bandwidth
constant. This loss enforces minimization of difference along
the normal and therefore is surface-aware. The term θ(n̄i, n̄j)
differentiates neighbors from other surfaces and rules out inter-
actions. Hence it ensures edge-awareness. The surface-aware
property in p̂i is reflected in the shape context Fi through back-
propagation.

For consistent performance, we add at the training stage random
Gaussian, Laplace, and non-uniform noise to sampled points
from the ground truth clean surface.

3.4 Feature-affinity-based Attribute Estimation

Current methods estimate surface features, e.g., normal and
curvature values, from noisy scans by applying n-Jet fitting and
using the network to assign weights to local neighbors, thereby
mitigating noise effect during surface fitting (Ben-Shabat and
Gould, 2020). They typically require extensive PCA compu-
tations during training, making them computationally intens-
ive and memory-demanding (Liu et al., 2023). Solving lin-
ear systems for normal estimation during training iterations
further adds to the complexity. Our key contribution here is
a shape context feature that inherently captures the similarity
of surrounding points and allows robust surface fitting from
the denoised points. As Fig. (5) shows, our framework learns
edge-aware features that naturally differentiate similar points,
e.g., at intersections of planes or singular regions of cubic sur-
faces. To compute robust attributes from this feature repres-
entation, we use the denoised point, p̂i, its local shape con-
text, Fi, and its local neighbors to fit an n-Jet “height func-
tion” to any point not in the local tangent space z(x, y) =∑n
k=0

∑k
j=0 φk−j,jx

k−jyj , where φ is the jet coefficients vec-
tor that consists of Nn = (n+1)(n+2)

2
terms. In matrix form

MNp×Nnφ = b, where M is the the Vandermonde matrix, Np

Figure 5. Visualization of the shape context feature similarity to
its neighbors for selected PU models. Our learned representation

is shape-aware, where the starred point is the query and
neighbors’ coloring is by cosine similarity of the learned

features.

is the number of points, and b =
(
z1, z2, · · · , zNp

)T . To min-
imize the influence of dissimilar points, we assign weights by
the normalized dot product between Fi and Fj ∈ Ni (cosine
similarities) followed by an application of a softmax function.
Setting W = diag(w1, w2, . . . , wNp), the least-squares solution
is given by φ = (MTW M)−1MTWb. The first two n-jet coef-
ficients yield the estimated normal vector, ni = (−φ1,−φ2,1)

‖(−φ1,−φ2,1)‖ .
The remaining ones represent second-order terms and higher.

4. Results

4.1 Implementation and Dataset

For our quantitative analysis, we utilize two well-established
benchmark datasets: PU-Net (PU, 20 models, Yu et al., 2018)
and PointCleanNet (PC, 10 models, Rakotosaona et al., 2020).
The model is trained using the PU-Net training set, which in-
cludes 20 shapes, with point clouds generated from the original
meshes through Poisson disk sampling at varying resolutions
between 10K and 50K points, in line with the setup in Yu et
al. (2018). Adhering to common conventions (e.g., Liu et al.,
2023), the point clouds are segmented into local patches of 1K
points prior to being processed by the model. To emulate real-
istic measurement noise during training, Gaussian noise with
0.5% to 2% standard deviation, of the shape’s bounding box
diameter was added. During testing, to evaluate the model’s ro-
bustness on previously unseen noise levels, Gaussian noise with
std. ranging from 1% to 3% is introduced.

For evaluation on actual MLS scans, we adopt the MLS data-
set collected from Paris (Serna et al., 2014), which features
complex urban facades along with noise, reflective outliers, and
mobile platform motion (Fig. 1). As no ground truth is avail-
able, therefore only qualitative analysis is reported, following
established protocols (c.f. Luo and Hu, 2021; Liu et al., 2023;
Edirimuni et al., 2023b). Additionally, we test our model on
point clouds of elaborate architectural structures captured by a
GeoSLAM ZEB-REVO handheld LiDAR. These scans exhibit
significant noise levels, non-uniform and low-density sampling,
and a substantial presence of outliers.

Baselines. We benchmark our method against leading denois-
ing techniques, including classical robust methods such as Jet-
denoising (Cazals and Pouget, 2005), bilateral filtering (Bi-
lateral, Digne and De Franchis, 2017), moving robust PCA
(MRPCA, Mattei and Castrodad, 2017), and graph Laplacian
regularization (GLR, Dinesh et al., 2020). In addition, com-
parisons are made with recent learning-based methods such
as Score-Denoise (Luo and Hu, 2021) and the state-of-the-art
PCDNF (Liu et al., 2023). For normal estimation, we compare
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Dataset Metric Bilateral Jet-denoising MRPCA GLR Score-denoise PCDNF Ours

PU CD (×104) 6.304 5.788 5.775 3.839 3.089 4.257 2.481
P2M (×104) 4.73 4.267 4.081 2.707 2.026 3.108 1.525

PC CD (×104) 6.077 5.787 5.57 4.488 3.556 5.126 3.002
P2M (×104) 2.189 2.144 1.976 1.439 1.546 1.879 1.352

Table 1. Performance comparison with state-of-the-art approaches, where both CD and P2M metrics are scaled by a factor of 104.

Figure 6. Denoising results for the PU and PC datasets with 3%
noise level. Shape dimensions are normalized and coloring is

based on the relative normalized distance to the ground truth for
uniformity.

against DeepFit’s Jet fitting (Jet, Ben-Shabat and Gould, 2020)
and PCDNF.

Metrics. To quantitatively assess denoising performance, we
employ two widely used metrics: Chamfer Distance (CD) and
Point-to-Mesh distance (P2M). Since the point clouds differ in
scale and resolution, all denoised outputs are first normalized
to fit within a unit sphere prior to evaluation. For quantitative
estimation of the derived normals, we measure the per-point
angle between the predicted and ground truth normals, and then
compute the root-mean-square-error (RMSE) as our metric. We
analyze the percentage of points per shape with angular errors
lower than 5◦and 10◦ (pgp5 & pgp10, respectively).

Implementation Details. The training was on an NVIDIA
GeForce RTX 2080 GPU (single GPU) using PyTorch 1.9.0
with CUDA 11.1. We train the network for 1M iterations with
a learning rate of 1× 10−4. For a fair comparison of test times,
all learning-based methods were tested on an NVIDIA GeForce
RTX 2080 GPU.

4.2 Model Analysis

Noise level. Our denoising approach consistently outper-
forms both deep learning-based and traditional state-of-the-
art methods across a range of noise levels from 1% to
3%—despite being trained only on noise levels between 0.5%
and 2%—demonstrating strong generalization to unseen noise
conditions, particularly at 3% (Fig. 6 & Table 1). On the PU
dataset, our method achieves CD/P2M scores of 2.481/1.525,
corresponding to improvements of 19.7%/24.7% over Score-
denoise (3.089/2.026) and 41.7%/50.9% over PCDNF
(4.257/3.108). Comparable performance gains are observed on
the PC dataset as shown in (Fig. 6).

A visual assessment of challenging curved surfaces and struc-
tural shapes—such as the fandisk and icosahedron—reveals that
heavy noise severely obscures the original geometry. GLR,
Score-denoise, and PCDNF struggle to uncover the true shape,
leaving behind considerable residual noise (Fig. 6). We hypo-
thesize that GLR and Score-denoise tend to misinterpret certain
noise patterns as genuine surface details, resulting in visibly
non-smooth surfaces, particularly in models like the horse and
fandisk. Meanwhile, PCDNF’s reliance on external normal es-
timation makes it vulnerable to noise corruption, diminishing its
shape reconstruction accuracy under high-noise scenarios. By
contrast, our approach is explicitly designed to robustly extract
geometric context features across a range of noise intensities,
enabling it to better preserve structural details and achieve res-
ults that remain faithful to the underlying ground truth.

Runtime. Evaluating our network performance from a
runtime perspective, our training time per iteration is
only 0.25 sec. compared to 2.38 sec. for the state-of-the-art
PCDNF—a lightweight model, an order of magnitude improve-
ment in training efficiency and another merit of our model.
Also, as we do not require extensive PCA computations before
inference, our denoising (including normal estimation) runtime
for 100K points was 20.6 sec. compared to 303.5 sec. of the
PCDNF, making our inference 15 times faster.

Normal Estimation. To evaluate the quality of our computed
surface normals, we use the PC dataset, where the ground truth
normals per shape are available. The point cloud used for evalu-
ation is of low resolution (the number of sampled points is 10×
sparser than the ground truth mesh), also featuring noise levels
of up to 3%. We compare our normal estimation performance
and statistics against the Jet and PCDNF. Results demonstrate
how ours outperforms both baseline methods (Fig. 7). As the
Jet fitting is a robust polynomial surface fitting designed for
low-noise levels, its performance quickly drops compared to
ours. As noted, the reliance of the PCDNF on initial normal
estimates leads to its failure at high noise levels where the de-
graded normal quality translates to poor position and normal
corrections. Ours, in contrast, demonstrate robustness, bene-
fiting from reliable weighting derived from our shape content
features and the denoised points (Fig. 5) . Our results show sig-
nificant improvement in the estimation accuracy, with a notably
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Model RMSE pgp10 (%) pgp5 (%)
PCDNF Jet Ours PCDNF Jet Ours PCDNF Jet Ours

boxunion 60.3 46.5 40.8 7.2 45.1 60.1 5.9 25.2 54.0
box push 47.1 15.1 9.2 14.6 67.6 89.0 12.4 33.8 70.9
galera 53.7 27.4 21.6 4.5 24.9 39.8 3.5 3.6 7.5
column head 61.5 44.9 36.6 4.9 23.9 35.6 4.3 12.6 24.6
cylinder 48.2 10.3 7.2 6.6 88.5 96.5 5.0 55.4 90.2
icosahedron 46.4 8.7 6.7 4.4 81.6 89.6 3.0 44.3 75.7
netsuke 51.5 26.1 17.0 3.7 26.9 33.7 2.7 8.9 12.4
star smooth 49.9 19.4 11.2 2.6 45.7 75.7 1.9 13.9 34.2
Average 52.3 24.8 18.8 6.1 50.5 65.0 4.8 24.2 46.2

Table 2. Comparison of normal estimation across different models, including RMSE, pgp10, and pgp5 values for PCDNF, Jet, and the
updated data. RMSE values are lower-better, while pgp10 and pgp5 values are higher-better.

Figure 7. Ours and baseline normals for models with 3% noise
level. Color coding is by mapping the per point normal vector to

RGB channels.

lower average RMSE (18.8) compared to PCDNF (52.3) and
Jet fitting (24.8), indicating improved accuracy in normal es-
timation (Table 2). Additionally, the percentage of good normal
predictions (pgp10 and pgp5) is substantially higher than both
methods. The average pgp10 reaches 65.0%, outperforming Jet
fitting (50.5%) and PCDNF (6.1%). Similarly, the pgp5 value
is 46.2%, surpassing Jet fitting (24.2%) and PCDNF (4.8%).

As Figs. (7 & 8) demonstrate, our estimated normals are edge-
preserving, illustrated by the sharp edges on the box push, cyl-
inder, and icosahedron models, where the denoised output ac-
curately reveals the correct structure. These results demon-
strate how our learned representation effectively differentiates
between surfaces for normal estimation, resulting in low nor-
mal errors at singular points (Fig. 8). Our model shows substan-
tial improvement not only on structured objects where state-of-
the-art methods collapsed, but also excels on complex, high-
curvature models such as netsuke, particularly in transition
areas and singular points.

4.3 Quantitative denoising analysis of mobile and hand-
held LS data

For real-world-data testing, we first apply it to the MLS bench-
mark. Of focus are two representative scenes and their zoom-in

Figure 8. Visualization of ours and baseline normal errors for
models with 3% noise level. Color coding is by the angular error.

view, with many outlying points due to the reflective metal sur-
face and erroneous returns (Fig. 1). Results show how our pro-
posed approach generates outlier-free, clean surface structures
near the window frame and the metal traffic signs, while denois-
ing by the baseline methods exhibits high residual error and dis-
tort the surface structure. These results demonstrate our outlier
detection capabilities, compared to others who are attempting
to denoise these points yielding further distortions. We further
evaluated the proposed model on a PLS dataset, which is char-
acterized by low density, high level of noise, and excessive rate
of outliers (Fig. 9). On subset #I, the GLR distorted shapes due
to its over-smoothing tendencies, and the Score-denoise neg-
lected outliers, distorted sharp features, and yielded high resid-
ual noise on the surface (Fig. 10). In contrast, ours effectively
preserved sharp features at the intersections of two planes. This
preservation of features is due to the shape context feature we
have learned with the support of the bilateral loss. It is further
illustrated by the normal-coded color visualization. On sub-
set #II, the groin vault, which is a combination of the complex
curved surface and their intersections, our proposed method re-
moved noise and preserved the curved structure, compared to
the baseline methods, which either over-smoothed the data or
created artifacts and voids (Fig. 11). Turning to subset #III
(Fig. 12) that features a supporting column base, our model pro-
duced clean, surface-adherent, results on complex architectural

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-1037-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1042



Figure 9. Handheld LS data with normals coloring of the study
subsets.

Figure 10. Our denoising result on PLS model #I preserves
sharp features while others fail.

Figure 11. Denoising of a groin vault PLS data (model #II),
points are rendered by normals. Ours is smooth and preserves
sharp features. The GLR and Score-denoise yields artifacts.

Figure 12. Denoising of a supporting column PLS data (model
#III). Our results are cleanest also handling high outliers rate.

features where other methods struggled with noise and outliers.
Our model is designed to preserve features and promote piece-
wise smoothness, hence excelling in all cases. With the availab-
ility of TLS data for this subset (Fig. 12.left), we can also eval-
uate performance quantitatively. Using the CD to the ground
truth, our proposed model achieves the lowest residual statist-
ics Fig. (12). It yields a compact residual distribution, with over
93% of points ≤ 1 cm, double the percentage achieved by the
GLR and Score-denoise.

5. Conclusions

Neural approaches to point cloud denoising offer promising
solutions for mitigating noise in cost-effective scanners. Here,
a learning-based denoising architecture that effectively removes
outliers, adjusts points for noise reduction, and preserves sharp
features, was presented. Through densely connected dynamic
graph convolution layers, our network has learned to capture
the underlying shape context of each point. This shape context
is further refined using global attention, enabling the network to
leverage both local and global information. Our outlier filtering
allows predicting precise offsets for the remaining point set and
ensures they are noise-free. By integrating a consistency-based
prediction framework and a bilateral form, we achieved accur-
ate displacement predictions and edge-aware denoising output.
Our learned shape context encapsulates rich geometric inform-
ation, facilitating robust weighting of similar points, which also
enhances normal estimation. Extensive experiments demon-
strate the effectiveness of our approach in both denoising and
normal estimation on standard benchmarks. The results show
significant improvements in the quality of mobile and portable
laser scans, effectively removing outliers and preserving fine
features. The outputs produced by our method closely align
with those obtained from high-precision terrestrial scanners,
with over 93% of points deviating by ≤ 1 cm—double the per-
centage achieved by state-of-the-art methods.
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