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Abstract 
 
Visual odometry is crucial for the navigation and planning of autonomous robots, but low-light conditions, dramatic lighting changes, 
and low-texture scenes pose significant challenges to odometry estimation. This paper proposes PLL-VO, which integrates point-line 
features and deep learning. To overcome the impact of complex lighting conditions, a self-supervised learning method for interest 
point detection and a line detection algorithm that combines line optical flow tracking with cross-constraints is presented. After 
selecting keyframes based on point feature counts and line feature overlap angles, we integrate convolutional neural networks (CNNs) 
and graph neural networks (GNNs) to enhance sparse matching, thereby improving both accuracy and computational efficiency. PLL-
VO system are evaluated in multiple datasets under various lighting conditions, demonstrating a 6.3% reduction in absolute trajectory 
error for pose estimation compared to state-of-the-art (SOTA) algorithms, the average computation time for visual odometry (43ms) 
shows a 29.74% decrease compared to the state-of-the-art (SOTA) algorithms. 
 

１. INTRODUCTION  

In Visual Simultaneous Localization and Mapping (VSLAM) 
systems, the front-end visual odometry (VO) subsystem 
determines the robot's current position and orientation by 
processing camera images and estimating camera motion. 
Traditional corner detection strategies based on optical flow rely 
on the intensity constancy assumption, selecting feature points 
based on image intensity values and performing 2D-2D feature 
matching using epipolar constraints to recover the camera or 
robot's pose. However, in visually challenging environments, 
such as low-light conditions, dramatic lighting changes, and 
weak-texture scenes, traditional intensity-based feature 
extraction methods do not consider the structural and semantic 
information of the image. The challenges in accurately 
recognizing and correlating feature information within the 
current surroundings can precipitate instability in performance 
and, in more intricate and shifting scenarios, potentially lead to 
the loss of tracking. This underscores the necessity for robust 
mechanisms to ensure consistent feature association and tracking 
accuracy across varying environmental conditions. 
 
Deep learning-based methods have shown great potential in 
specific scenarios. Deep learning models can automatically learn 
complex features from large amounts of image data, capturing 
multi-level information from simple edges to complex textures 
and shapes. Automatic feature learning capability significantly 
reduces the dependence on manual feature engineering and 
enhances the generalizability and adaptability of feature 
extraction. Deep learning also enables end-to-end feature 
extraction and matching, directly mapping from raw images to 
matched features. This end-to-end approach simplifies system 
design and improves overall performance through joint 
optimization of all relevant steps. 
However, existing deep learning-based visual odometry methods 
still have certain limitations. Initially, these methods demand a 
substantial dataset for training, along with significant 
computational resources and storage space. This requirement 

often results in suboptimal real-time performance on CPUs. 
Secondly, end-to-end deep learning approaches encounter 
interpretability issues, models are frequently likened to "black 
boxes," characterized by their lack of transparency in decision-
making processes. Lastly, despite their potential, these models 
have not yet reached their full potential in consistently delivering 
accurate and robust performance across diverse scenarios, 
indicating a need for further refinement and optimization. For 
example, SupSLAM (Quach et al., 2021) replaces traditional 
feature point extraction with deep feature points but continues to 
use conventional methods for tracking these features. SuperGlue 
(Sarlin et al., 2020), while effectively outputting the matching 
relationships between feature points and descriptors in images, 
relies heavily on local feature extraction, which may not be 
robust in scenes with low texture or significant viewpoint 
changes. 
A robust and resilient deep learning-based Visual Odometry 
(VO) system is proposed. Initially, introduce a line feature 
extraction algorithm that employs line optical flow tracking and 
cross-constraint strategies to overcome the limitations of point 
feature extraction in visually challenging scenarios. 
Subsequently, incorporate a self-supervised feature point 
detector based on the SuperPoint network (DeTone et al., 2018), 
which integrates point and line features to achieve robust feature 
extraction under adverse conditions such as low-light 
environments, dynamic lighting, weak-textured areas, and 
significant camera jitter. Keyframe selection is performed using 
feature points and descriptors output by the SuperPoint network, 
integrating a point-line feature extraction model with the 
LightGlue (Lindenberger et al., 2023) network model. The 
selected keyframes are then subjected to feature matching using 
a Graph Neural Network (GNN) with an attention mechanism for 
geometric verification, thereby reducing the likelihood of false 
matches. Finally, comparative experiments focusing on feature 
extraction and matching utilizing the EUROC dataset, comparing 
our proposed PLL-VO system with several state-of-the-art 
(SOTA) reference algorithms. The results demonstrate PLL-VO's 
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superior performance in terms of accuracy and time complexity. 
The main contributions of this work are as follows: 
Introduce a novel robust framework for feature extraction in 
visually challenging scenarios. Proposes a line feature extraction 
algorithm that employs line optical flow tracking and cross-
constraint strategies, integrated with a self-supervised feature 
point detector based on the SuperPoint network. 
 
We propose a feature matching framework that integrates a point-
line feature extraction model with the LightGlue network model. 
By processing descriptors of feature points and lines, and 
selecting keyframes, LightGlue computes a matching matrix 
from two sets of local feature points using a neural network, 
thereby facilitating local feature matching. Experiments utilizing 
multiple datasets to validate the efficacy of point-line feature 
extraction and the effectiveness of feature matching.  
 

2. RELATED WORK 

2.1 Feature Extraction 

The extraction of visual image features using traditional methods 
are widely implemented in various applications such as Scale-
Invariant Feature Transform (SIFT) (Lowe, 2004), Histogram of 
Oriented Gradients (HOG) (Dalal & Triggs, 2005), Speeded-Up 
Robust Features (SURF) (Bay et al., 2008), and Oriented FAST 
and Rotated BRIEF (ORB) (Rublee et al., 2011). SIFT is highly 
regarded for its robustness to scale, orientation, and noise, albeit 
with a relatively high computational complexity. SURF based on 
the Hessian matrix, employs box filtering and image integration 
to rapidly compute gradients, thereby enhancing detection speed. 
ORB achieves rotation invariance by incorporating orientation 
information based on FAST detection and constructs scale 
invariance through the creation of image pyramids, utilizing 
binary BRIEF descriptors to represent features, which has found 
broad application in the field of computer vision. Furthermore, 
there are improved methods based on SIFT and SURF that aim 
to reduce computational load and enhance affine robustness. 
 
2.2 Point-Line Feature Extraction 

Due to the additional regularity constraints on scene structure 
provided by lines within the environment, the utilization of line 
features to enhance the performance of feature extraction has 
garnered attention. The Line Segment Detector (LSD) (Von Gioi 
et al., 2008) is a classic algorithm for extracting line features. 
However, LSD is designed for scene structure representation 
without parameter adjustment and is not specifically tailored for 
pose estimation problems, where numerous lines can be 
considered outliers. The Line Band Descriptor (LBD) (Zhang & 
Koch, 2013) introduces a line matching algorithm that capitalizes 
on the local appearance and geometric properties of line 
segments to enhance the efficiency and robustness of matching. 
Gomez-Ojeda et al. (Gomez-Ojeda & Gonzalez-Jimenez, 2018) 
propose a purely geometry-based method for robust line segment 
matching in high dynamic range (HDR) environments or in 
stereo sequences with severe lighting variations. The EDLines 
(Akinlar & Topal, 2011) algorithm utilizes the Edge Drawing 
approach to generate a series of clean, continuous edge pixel 
chains, which intuitively reflect the object boundaries, and 
extracts line segments from the generated pixel chains using the 
least squares straight line fitting method.  
 
Meanwhile, there are more methods of combining line-point 
features for SLAM that have been published in recent years. 
Pautrat et al. introduced DeepLSD, improving line segment 
detection using deep image gradients (Pautrat, 2023). Zhao et al. 

combined line segments with structural regularities for more 
reliable localization (Zhao, 2023). Jeong and Lee, as well as 
Yuan et al., highlighted the effectiveness of combining line and 
corner features (Jeong, 2022; Yuan, 2021). Zhou et al. proposed 
StructSLAM, leveraging building structure lines for urban 
environments (Zhou, 2020). Zuo et al. and Xu et al. further 
explored robust SLAM with point and line features, with Xu et 
al. addressing illumination variations (Zuo, 2019; Xu, 2023). 
Chamorro et al. demonstrated real-time event-based line SLAM 
(Chamorro, 2024). These works collectively emphasize the 
importance of diverse feature integration in visual SLAM. 
 
2.3 Deep Learning-Based Feature Extraction 

Traditional feature extraction methods, which are incapable of 
perceiving geometric and structural information in scenes, still 
encounter challenges when processing environments with weak 
or flickering lighting and significant camera shake. 
Consequently, researchers are exploring the integration of deep 
learning techniques with traditional feature extraction methods. 
 
LIFT (Yi et al., 2016) is a recently introduced convolutional 
alternative to SIFT, encompasses interest point detection, 
orientation estimation, and descriptor computation, but it still 
requires supervision from classical Structure from Motion (SfM) 
systems. QuadNetworks (Savinov et al., 2017) address the 
interest point detection problem from an unsupervised 
standpoint; however, their system is patch-based (inputting small 
image patches) and employs a relatively shallow 2-layer network. 
The TILDE (Verdié et al., 2015) interest point detection system 
employs a principle similar to homography adaptation; 
nevertheless, their method does not leverage the capabilities of 
large fully convolutional neural networks. SuperPoint introduces 
a self-supervised solution that eschews human supervision to 
define interest points in real images. It begins by training a fully 
convolutional neural network on millions of images, creating a 
synthetic dataset named "synthetic Shapes," and developing a 
multi-scale, multi-transform technique—homography 
adaptation. 
 
2.4 Traditional Visual Odometry 

Traditional visual odometry (VO) methods estimate the camera's 
motion trajectory using consecutive images captured by a 
camera, making them a key technology in fields such as 
autonomous driving and robot navigation. Traditional VO 
methods can be broadly categorized into two main approaches: 
feature-based methods and direct methods (Taketomi et al., 
2017). Feature-based methods typically rely on feature point 
extraction and matching. Commonly used feature extraction 
algorithms include ORB (Mur-Artal & Tardós, 2017), SIFT, and 
SURF. These methods track feature points between consecutive 
frames and estimate camera motion using triangulation or PnP 
algorithms. One prominent algorithm in this category is VINS-
Mono employs advanced feature tracking algorithms for feature 
point extraction and uses the Lucas-Kanade method for feature 
point tracking (Qin et al., 2018). However, these methods are 
sensitive to environmental factors such as lighting and texture 
changes. Direct methods estimate motion by directly minimizing 
the pixel intensity differences between images. Examples of 
direct methods include Direct Sparse Odometry (DSO) (Engel et 
al., 2018). Direct methods have less reliance on feature points and 
are suitable for scenes with rich brightness gradients. However, 
they require high computational precision and are susceptible to 
camera noise and occlusions. Overall, traditional visual odometry 
methods have made significant progress in balancing localization 
accuracy, robustness, and computational efficiency. However, 
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further improvements are needed to enhance their adaptability to 
dynamic scenes with the demands of several applications.  
 
2.5 Deep Learning-Based Visual Odometry 

Machine learning leverages well-trained networks to learn key 
points (Detone et al., 2018; Tang et al., 2019). Local point and 
line features can be used as inputs to neural correspondence 
networks to remove outliers, improving the accuracy of pose 
estimation (Delmerico & Scaramuzza, 2018; Rosten & 
Drummond, 2006). Deep learning-based visual odometry 
frameworks can be categorized into two groups: end-to-end 
frameworks and hybrid SLAM frameworks. UnDeepVO (Li et 
al., 2018) utilizes stereo images for training and recovers absolute 
scale by leveraging spatial and temporal geometric constraints. 
However, it still struggles with complex scenes. DPVO (Rosten 
& Drummond, 2006) employs patch representations based on 
features to encode local scene information. While end-to-end 
algorithms offer versatility across various application scenarios, 
they typically require extensive datasets and significant 
computational resources for training. 
 
Hybrid SLAM frameworks maintain the modular structure of 
traditional SLAM systems while integrating deep learning 
modules to enhance overall system performance. Lift-SLAM 
(Bruno & Colombini, 2021) uses the Learned Invariant Feature 
Transform (LIFT) network to extract features in the backend of 
the traditional ORB-SLAM system. Similarly, DX-SLAM (Li et 
al., 2020) adapts the ORB features in ORB-SLAM2 to 
SuperPoint features (Detone et al., 2018). However, these 
methods still rely on traditional techniques for feature extraction 
and matching during tracking, which can lead to suboptimal 
performance in challenging environments. 
 

3. METHOD 

The algorithm framework of PLL-VO is illustrated in Figure 1. 
To achieve rapid, robust, and reliable extraction and matching of 
visual features under varying lighting conditions, we integrate a 
point-line feature extraction strategy with deep learning models 
into the system, thereby designing the visual odometry. An 
efficient line feature detection and tracking model is proposed. 
Improved EDLines algorithm employs line optical flow tracking 
and cross-constraint methods to increase the accuracy and 
efficiency of line feature detection. Moreover, each image is fed 
into the SuperPoint network, where the Interest Point Decoder 
outputs the probability of each pixel being a keypoint 
corresponding to that pixel in the input, and the Descriptor 
Decoder outputs feature descriptors. Finally, keyframes are 
selected based on the number of point features, time interval, and 
overlap angle constraints of line features. The 2D points and line 
features extracted from the keyframes are then input into the 
LightGlue network model. Associations between the two types 
of features are established using the matching results of the 
associated points. 

 
Figure 1. The algorithm framework of PLL-VO 

3.1 Line Feature Extraction 

Point-based visual odometry often performs poorly in scenarios 
with weak textures and motion blur. Many researchers have 
recognized the superior characteristics of line features in space 
and have attempted to develop line-based visual odometry 
systems. However, the presence of erroneous line detections has 
limited the performance improvement of these systems. To 
address these issues, we improve traditional line detection 
models by incorporating line optical flow tracking and cross-
constraint methods, which significantly improve the accuracy of 
line feature extraction. 
 
The extraction of line features is based on an improved version 
of the EDLines algorithm. However, it focuses primarily on 
detecting anchor points and may not effectively handle situations 
where line segments intersect or overlap. And the initial line 
segments generated by the EDLines algorithm may include 
unnecessary intermediate points, which need to be removed 
through fitting and filtering processes. We first optimize the 
abnormal line segments using line optical flow tracking and then 
further remove cluttered line features in complex scenes through 
cross-constraints. 
 
We begin by selecting effective line features using line optical 
flow tracking based on the gray-level invariance criterion. 
Although long line segments in space are inconsistent from one 
viewpoint to another, the length of lines observed in consecutive 
frames does not change abruptly. The gray-level value of a pixel 
can be defined as follows: 

I(u + du, v + dv, t + dt) = I(u, v, t)           (1) 
Expanding the left-hand side using Taylor series： 
I(u + du, v + dv, t + dt) ≈ I(u, v, t) + ∂I

∂u
du + ∂I

∂v
dv + ∂I

∂t
dt  (2) 

where ∂𝐈𝐈
∂𝑢𝑢

 and ∂𝐈𝐈
∂𝑣𝑣

, denoted as Iu  and Iv , represent the gray 

gradients of the image in the 𝑢𝑢  and 𝑣𝑣  directions at the given 

point. The temporal derivative ∂𝐈𝐈
∂𝑡𝑡

, denoted as It, indicates the rate 

of change of the image value with respect to time. The matrix 

form of these derivatives can then be expressed as: 

[Iu Iv] �
du
dt
dv
dt

� = −It                              (3) 

The equation (3) is valid at any pixel point within the image, 
implying that it inherently holds for line segments as well. 
However, points lying on the line segments must additionally 
satisfy the collinearity constraint. 
We define the set of points on the line: 

𝒍𝒍 = {(u1, v1), (u2, v2), … , (un, vn), … , (um, vm)}       (4) 

where (𝑢𝑢1, 𝑣𝑣1) and (𝑢𝑢𝑚𝑚,𝑣𝑣𝑚𝑚) represent the starting and ending 
points of the line, respectively. 𝑙𝑙n  represents the Euclidean 
distance between (𝑢𝑢1, 𝑣𝑣1) and (𝑢𝑢𝑛𝑛, 𝑣𝑣𝑛𝑛). 
𝑙𝑙′ denotes the next frame position of 𝑙𝑙. The relationship between 
the corresponding points of the line between two consecutive 
frames is: 

�
un′ = un + g1 + ln′ cos (α + g3) − ln′ cos α
vn′ = vn + g2 + ln′ sin (α + g3) − ln′ sin α         (5) 
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where 𝑔𝑔1 and 𝑔𝑔2  represent the translational changes in the 
position of the starting point (𝑢𝑢1, 𝑣𝑣1), while 𝑔𝑔3  denotes the 
rotational change around this point. Between two 
consecutive frames, 𝑔𝑔3  is assumed to be a small variation, 
and 𝑙𝑙n ≈ 𝑙𝑙n′ . 
Secondly, since the coordinates of every point 
(𝒖𝒖𝟏𝟏,𝒗𝒗𝟏𝟏), (𝒖𝒖𝟐𝟐,𝒗𝒗𝟐𝟐), … , (𝒖𝒖𝒏𝒏,𝒗𝒗𝒏𝒏), … , (𝒖𝒖𝒎𝒎,𝒗𝒗𝒎𝒎)on the line feature 
are known, and 

�un
′ = un + g1 − g3(vn − v1)

vn′ = vn + g2 + g3(un − u1)                     (6) 

We aim to avoid a cluttered state where line features in a 
keyframe are overlapping and intersecting randomly. However, 
regular intersections of line features are acceptable and 
reasonable. Therefore, we consider both the overlap degree of 
line feature coordinates and the intersection angles. If a line 
feature overlaps with more than two other line features and the 
overlap angle Δ𝜃𝜃 is below a certain threshold, it is deemed to be 
in an undetected state. Consequently, we apply cross-constraints 
to remove such line features. 

Δθ=θ1-θ2                                           (7) 

Figure 2. The measurement model of Line Feature Extraction. 
(a) line optical flow tracking. (b) larger overlap angles in cross 

constraints. (c) lower overlap angles in cross constraints. 

Figure 3. Lines detected by PLL-VO and LSD 
 

3.2 Point Feature Extraction 

The feature point extraction process utilizes the SuperPoint 
framework. This framework employs an adaptive threshold 
mechanism to adjust the feature point score threshold for both 
normal and challenging scenarios. The adaptive threshold 
mechanism takes into account two factors: intra-feature 
relationships and inter-frame feature relationships. 

 
Figure 4. The work flow of SuperPoint: Self-Supervised Interest 

Point Detector and Descriptor 

Specifically, the threshold for extracting feature points is 
adjusted based on the distribution and matching of feature points 
in the current frame. This approach enables the training of a self-
supervised feature point detector and descriptor, which adapts to 
varying conditions by dynamically adjusting the threshold 
parameters. 
 
It includes an encoder 𝐼𝐼 ∈ 𝑅𝑅𝑊𝑊×𝐻𝐻 to a tensor 𝑇𝑇 ∈ 𝑅𝑅𝑊𝑊𝑐𝑐×𝐻𝐻𝑐𝑐×65 with 
smaller width 𝑊𝑊𝑐𝑐  and height 𝐻𝐻𝑐𝑐 . The tensor is then fed to a 
decoder to detect feature points 𝑋𝑋. The decoder uses convolution 
layers to extract the response 𝑃𝑃 ∈ 𝑅𝑅𝑊𝑊𝑐𝑐×𝐻𝐻𝑐𝑐×65 for feature points 
which also includes a "no feature point" dustbin channel. Other 
64 channels represent non-overlapping 8 × 8 regions of the input 
image 𝐼𝐼. The channel-wise softmax is then used to remove the 
dustbin dimension and the reshape function is applied to convert 
𝑃𝑃 to the input dimension 𝑊𝑊 × 𝐻𝐻. 
 
The loss function 𝐿𝐿  for the feature point detector is a 
convolutional cross-entropy loss computed over the elements 
𝑥𝑥 ∈ 𝑋𝑋 . Let 𝑦𝑦 ∈ 𝑌𝑌  be the ground-truth feature point, the loss 
function is computed as: 

L(X, Y) = 1
WcHc

∑  Wc,Hc
w=1 l�xw,h, yw,h�               (8) 

3.3 keyframe selection 

In traditional visual odometry, keyframe selection is typically 
based on strategies involving tracking quality and temporal 
intervals. Our approach not only considers the number of point 
and line features and the temporal interval but also incorporates 
the overlap angle constraint of line features. 
(1) Quality-Based Strategy: When the number of tracked points 

falls below a certain threshold or tracking quality degrades 
significantly, it indicates a significant change in the camera's 
field of view. In such cases, a new keyframe is inserted to 
maintain system stability during rapid motion or 
environmental changes.  

(2) Temporal Interval-Based Strategy: If the number of frames 
exceeds a predefined maximum limit time, or if at least the 
minimum number of frames has passed and the mapping 
thread is idle, a new keyframe is chosen. 

(3) Overlap Angle Constraint-Based Strategy: This strategy 
considers the camera's movement and changes in scene 
structure. We record the overlap angle values 𝜃𝜃  of line 
features in the last keyframe and compute the overlap angle 
values 𝜃𝜃′ in the current image pair. These states can be 
represented as 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇′respectively. Mathematically, the 
states can be expressed as 

T = {θ1, θ2, … , θn, … , θm}T′ = {θ1′ , θ2′ , … ,θn′ , … , θm′ } (9) 
If the angle Δ𝑇𝑇=𝑇𝑇-𝑇𝑇′ between two-line features exceeds a certain 
threshold, it indicates a significant change in the surrounding 
scene structure, and the system will select a new keyframe. 
Keyframes are selected using a strategy based on the number of 
point features, temporal intervals, and the overlap angle 
constraint of line features, to improve the accuracy of keyframe 
selection. 
 
3.4 Feature Matching with Point-Line Features and the 
LightGlue Network Model 

LightGlue predicts partial matches between local feature sets 
extracted from images A and B. The network consists of L 
identical layers that collectively process the two feature sets. 
Each layer comprises self-attention and cross-attention units to 
update the representation of each point. Subsequently, a classifier 
at each layer decides whether to stop the inference process, 
thereby avoiding unnecessary computations.  
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Finally, a lightweight head computes the partial matches from 
these representations. 

 

Figure 5. The work flow of LightGlue Network Model 
The task of feature matching is to predict the correspondence 
matrix ℳ = {(𝑖𝑖, 𝑗𝑗)} ⊂ 𝒜𝒜 × ℬ ，, which corresponds to finding 
a soft partial assignment matrix P ∈ [0,1]𝑀𝑀×𝑁𝑁 。LightGlue is a 
flexible image matching library that computes optimal image 
blending strategies based on feature point information provided 
by SuperPoint. This ensures smooth transitions and eliminates 
discontinuities in overlapping regions. 

4. EXPERIMENTS AND ANALYSIS 

4.1 Datasets and Experimental Settings 

To validate the effectiveness of our experiments, we conducted 
extensive simulations using the EuRoC dataset, which includes 
machine warehouses and rooms. The EuRoC dataset is provided 
by the Autonomous Systems Lab (ASL) at ETH Zurich. It was 
collected using an AscTec Firefly hexacopter and includes stereo 
images along with precise ground truth information about motion 
and structure. The dataset contains 11 sequences, categorized into 
easy, medium, and difficult levels based on the drone's speed, 
lighting conditions, and scene texture. We designed extensive 
experiments for all three difficulty levels. To ensure a fair 
evaluation of the algorithm's accuracy and efficiency, all 
experiments were conducted using the same computational 
resources and dependency libraries. Our experiments are 
implemented with Python-3.8.5 and PyTorch-1.8.1. The 
environment consists of an i7-10700K CPU with 32 GB and a 
NVIDIA GTX-2060 graphical processing unit (GPU) with 6 GB. 
 
4.2 Accuracy of Point and Line Feature Extraction 

We compare PLLVO with state-of-the-art point-line VO and 
visual SLAM systems PL-SLAM (Gomez-Ojeda et al., 2019). 
ORB-SLAM3 and VINS-FUSION to the baseline. Figure X 
shows PLLVO 、 PL-SLAM 、 ORB-SLAM3 and VINS-
FUSION comparison of Extracted Point and Line Features，(a) 
shows the point and line features extracted by the PLL-VO 
algorithm, (b) shows those extracted by the PL-SLAM algorithm, 
(c) represents VINS-Fusion, and (d) represents ORB-SLAM3. it 
is evident that while PLL-VO extracts fewer line features 
compared to PL-SLAM, the accuracy of the line features is 
significantly higher. Line features generated by the line segment 
detector in PL-SLAM often result in multiple cluttered line 
features on white walls, with no geometric regularity. In contrast, 
although PLL-VO extracts fewer line features, they are all usable 
and accurately represent the environment. Regarding the number 
of feature points, VINS-Fusion extracts more feature points than 
the ORB feature extraction strategy. ORB-SLAM3 can 
sometimes extract fewer than 30 feature points in certain 
keyframes, which can reduce the reliability of feature matching. 
Both PLL-VO and PL-SLAM provide a larger number of feature 
points with a more uniform distribution, make sure the overall 
robustness of the feature matching process. 

 
Figure 6. Comparison of feature extraction by PLL-VO, PL-
SLAM, VINS-Fusion, ORB-SLAM3 in six different scenes 

 

4.3 Time Analysis of Point and Line Feature Extraction 

We validated the processing time for point and line feature 
extraction and compared PLL-VO with state-of-the-art feature 
extraction and visual SLAM systems, including PL-SLAM 
(Sarlin et al., 2020), ORB-SLAM3, VINS-Fusion, and 
SuperPoint. Since ORB-SLAM3, VINS-Fusion, and SuperPoint 
only extract feature points, their processing times are shorter. 
Despite the additional line feature extraction, PLL-VO's 
processing time is only marginally longer, adding less than 15 ms 
compared to the other methods, and it is twice as fast as PL-
SLAM. The extraction speed of 66 ms per frame fully meets the 
real-time requirements of the system. Table 1 provides a detailed 
comparison of the runtime for each module of PL-SLAM and 
PLL-VO, demonstrating that PLL-VO significantly more 
efficient than that PL-SLAM. 

Table 1. Time analysis of point and line feature extraction in 
PLL-VO, PL-SLAM, VINS-Fusion, ORB-SLAM3 

 

4.4 Accuracy of Visual Odometry 

We compare PLLVO with state-of-the-art visual Odometry 
systems SuperGlue ORB-VO and VINS to the baseline in 
accuracy of visual odometry.  Figure 4 evaluates the pose 
estimation accuracy on different EuRoc datasets using flight 
trajectories, XYZ axis errors, roll-pitch-yaw errors, and absolute 
trajectory errors. Table 2 assesses the accuracy on the 
V1_03_Difficult EuRoc dataset using Root Mean Square Error 
(RMSE), Sum of Squares Due to Error (SSE), and Standard 
Deviation (STD). 

Algorithm Processing 
Time(ms) 

ORB-SLAM3 in Feature Extraction 61 
53 
57 

147 
85 
66 
18 

VINS-FUSION in Feature Extraction 
Superpoint in Feature Extraction 
PL-SLAM in Feature Extraction 

PL-SLAM in Line Feature Extraction 
PLL-VO in Feature Extraction 

PLL-VO in Line Feature Extraction 
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Figure 7. Flight trajectory, XYZ view error, RPY view error and 

ATE by PLL-VO, PL-SLAM, VINS-Fusion, ORB-SLAM3 
Four methods perform well on the V1_01_Easy dataset, showing 
low trajectory errors with XYZ axis errors below 2 meters. On 
the V1_02_Medium dataset, ORB-based odometry methods 
exhibit significant trajectory drift when the drone performs large 
turning angles, and the trajectory error of VINS increases over 
time. While SuperGlue provides higher odometry accuracy 
compared to the other two algorithms, its stability is not as good 
as PLL-VO. On the V1_03_Difficult dataset, ORB-VO fails to 
match during flight, leading to pose divergence. Although VINS 
and SuperGlue do not fail, their trajectory errors are larger 
compared to PLL-VO. PLL-VO demonstrates superior 
performance in terms of flight trajectory, XYZ axis errors, roll-
pitch-yaw errors, and absolute trajectory errors. 

Table 2. RMSE,SSE and STD in PLL-VO, 
SuperGlue, VINS, ORB-VO 

 
4.5 Time Analysis of Visual Odometry 

We compare PLL-VO with ORB-SLAM3, VINS-Fusion, and 
SuperGlue. The table below shows the execution time for feature 
matching of PLL-VO and other state-of-the-art (SOTA) methods 
on different Euroc datasets. 

Table 3. Time analysis of visual odometry in PLL-VO, 
SuperGlue, VINS, ORB-VO  

 
From Table 3, it is evident that PLL-VO maintains stable feature 
matching times across different datasets, primarily due to the 
lightweight matching algorithm. Despite using deep learning, 

PLL-VO has similar system execution times compared to 
traditional geometry-based methods. However, PLL-VO 
demonstrates significantly better robustness in complex lighting 
conditions and higher accuracy in odometry estimation compared 
to geometry-based visual odometry methods. 
 

5. CONCLUSION AND FUTURE WORK 

In this work, we propose a light-robust point-line fusion feature 
detection and matching method PLL-VO for visual odometry 
estimation. Initially, we optimize abnormal line segments using 
line optical flow tracking and further remove cluttered line 
features in complex scenes through cross constraints. 
Subsequently, we train a self-supervised feature point detector 
and descriptor using SuperPoint. By integrating point and line 
features, we employ a keyframe selection strategy based on the 
number of point features, temporal intervals, and the overlap 
angle constraint of line features. Ultimately, we use LightGlue 
for feature matching and pose estimation. 
To evaluate the performance of PLL-VO, we conducted 
extensive experiments and compared it with real and synthetic 
datasets. The experiments demonstrate that our method achieves 
excellent performance in dynamic lighting conditions, validating 
the effectiveness of our proposed UAV system. In future work, 
we plan to extend PLL-VO to a SLAM system by adding loop 
closure detection and relocalization. 
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