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Abstract 
Algal blooms constitute an emerging threat to global inland water quality. As one of the biggest lake and important water resource in 
the world, Lake Victoria is facing recurrent proliferation of water hyacinth and cyanobacteria. To better manage and improve water 
resources, the spatiotemporal distribution and long-term trends of algal blooms must be understood, as well as the driving factors. In 
this study, we used more than 20 years of Landsat series images to extract and map algal bloom occurrences based on a neural network 
model in the Transform framework and to revel the long-term changes law and trends of cyanobacterial. Results showed that both the 
bloom occurrence frequency (BOF) and the affected areas exhibited an increasing trend with the rates of 2.87%∙yr-1 and 981 km2∙yr-1, 
respectively. Some crucial driving factors were selected to analyze climatic and anthropogenic impact on bloom occurrences. For 
meteorological factors, lake water volume has shown positive correlation with BOF (r equals 0.58), while precipitation is positively 
correlated with BOF variations (r equals 0.57), with 1-year lag. The annual precipitation range that contributes to BOF increase in 
Lake Victoria was estimated to be approximately 98-118 km³∙yr-1. For anthropogenic factors, socio-economic development, expansion 
of built-up areas and croplands, and decrease in ecological land areas, such as wetland and grassland, largely contributed to the BOF 
increase in Lake Victoria. Based on the above results, the degree of influence of the factors was analyzed using grey relational analysis 
(GRA), with lake water volume and socio-economic being the predominant driving factors. This study provides valuable insights into 
the long-term algal bloom occurrence dynamics in Lake Victoria, and could provide important data support for the ecological safety 
and sustainable use of the lake. 
 

1. Introduction 
Water is the fundamental in sustaining life and achieving 
sustainable society, as mentioned in United Nations’ Sustainable 
Development Goals (UN, 2015). Inland lakes, as the key 
component of water resources, play a vital role in ecological 
balance (Lin et al., 2024). However, over 60% of global lakes 
have been facing the eutrophication situation with the algal 
blooms emerging persistently (Wang et al., 2018; Hou et al., 
2022). The persistent occurrence of algal blooms can lead to 
oxygen depletion in the water (Paerl et al., 2016), deteriorating 
water quality (Amorim et al., 2021), and thus negatively affecting 
fisheries and the safety of drinking water for residents (Treuer et 
al., 2021).  
 
Excessive inputs of nitrogen and phosphorus are considered the 
main causes of algal blooms (Lin et al., 2024), with these 
nutrients primarily originating from human activities such as 
agricultural runoff, untreated sewage discharge, and industrial 
wastewater (Khan and Mohammad, 2014). Some studies 
indicated that climate change may also directly or indirectly 
promote the occurrence of algal blooms (Paerl et al., 2016; Ojok 
et al., 2017; Ho et al., 2019). Additionally, changes in 
precipitation patterns and the increasing frequency of extreme 
weather events contribute to the further eutrophication of the lake 
(Amanullah et al., 2020; Ojok et al., 2017). Researches have 
demonstrated that surface runoff caused by precipitation 
contributes to an increased input of nutrients into water bodies, 
providing essential nutrients for algal growth (Michalak et al. 
2013). Additionally, the precipitation induces vertical mixing 
between the upper and lower water layers of lakes, enhancing 
dissolved oxygen levels and thereby promoting algal 
proliferation (Liu et al., 2020). The combined effects of climate 
change and human activities are accelerating the degradation of 
the lake's ecosystem (Akurut et al., 2014; Baltodano et al., 2022), 
leading to more frequent and intense algal blooms. Therefore, 
understanding the impact of climate change and human activities 
on the frequency and intensity of algal blooms is crucial for 
formulating effective environmental protection measures. 

 
Lake Victoria, as the largest freshwater lake in Africa and the 
second-largest freshwater lake in the world, provides various 
ecosystem services to countries like Tanzania, Uganda, and 
Kenya, including drinking water, fisheries resources, agricultural 
irrigation, and transportation (Downing et al., 2014). Due to its 
unique geographical location straddling the equator and its vast 
water surface area, Lake Victoria not only has a significant 
impact on the regional ecological environment but has also 
become a key focus for global water resource conservation and 
research (Tungaraza et al., 2012). Like many other inland lakes, 
Lake Victoria has been affected by eutrophication over a 
prolonged period (Gidudu et al., 2021), facing increasingly 
severe algal blooms (Olokotum et al., 2020). However, the issue 
of algal blooms has been poorly investigated on the African 
continent, so as Lake Victoria (Svirčev et al., 2019). Most of the 
reviewable researches have focused on the bays & gulfs in Kenya 
as a result of the high frequency of blooms in this region 
(Olokotum et al., 2020), while few studies have been conducted 
on lake-wide bloom spatial and temporal distributions and 
patterns. 
 
Compared to traditional ground-based water quality monitoring, 
remote sensing has the advantages of wide spatial coverage, high 
temporal resolution, and access to long-term time series data (Lin 
et al., 2024). This allows researchers to conduct large-scale, long-
term monitoring of the lakes, capturing the spatiotemporal 
distribution and trends of algal blooms. To effectively monitor 
and manage the algal blooms in Lake Victoria, remote sensing 
technology, particularly using Landsat-series satellite imagery, 
offers a powerful tool. With a spatial resolution of 30 meters and 
a data record spanning over 40 years, the Landsat series provides 
an ideal data source for studying long-term algal bloom and their 
environmental drivers. 
 
This study aims to extract the spatiotemporal distribution 
changes of algal blooms in Lake Victoria over a 21-year period 
from 2001 to 2021 using long-term Landsat satellite imagery. 
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Furthermore, we analyzed the factors impact on algal blooms by 
integrating meteorological data and human activity data. We tried 
to examine two questions in this study: (1) what is the 
spatiotemporal frequency of the algal blooms occurred in Lake 
Victoria? (2)  What is the extent of the meteorological and 
anthropogenic impact on algal blooms?  
 

2. Study Area and Materials 
2.1 Study Area 
Lake Victoria is located in East Africa (31°39′E–34°53′E, 
0°20′N–3°S), stretching approximately 400 km from north to 
south and about 320 km from east to west, crossing the equator 
(Figure 1). With a total shoreline length of around 3500 km, it is 
the second-largest freshwater lake in the world and the largest 
freshwater lake situated in developing countries and tropical 
regions. The lake is shared by Kenya (6%), Tanzania (51%) and 
Uganda (43%). Lake Victoria not only serves as a crucial water 
body for the survival of several African nations but is also a key 
subject of global water resource monitoring efforts (Nyamweya 
et al., 2023).  
 
The climate of the Lake Victoria basin varies depending on the 
region. In general, the area experiences two distinct rainy seasons, 
the long rains from March to May and the short rains from 
October to December. Precipitation levels vary significantly, 
from 870 to 1,561 mm in Uganda and from 400 to 2,736 mm in 
Tanzania (Kizza et al., 2009). Water temperatures in Lake 
Victoria typically range from 23°C to 29°C throughout the year 
(Muggidde et al., 2005), and are less affected by seasonal 
variations, with the warm waters creating favorable conditions 
for algal growth. The population around Lake Victoria primarily 
engages in agriculture and fishing. The expansion of agricultural 
activities, coupled with rapid urbanization, has increased the load 
of organic pollutants and nutrients entering the lake, contributing 
to its eutrophication (Osoro et al., 2016; Olokotum et al., 2020). 
Overfishing and aquaculture have also disrupted the ecological 
balance of the lake, indirectly affecting the proliferation of algae 
(Egessa et al., 2018; Nyamweya et al., 2023). 
 
In this study, 1 degree buffer zone is extracted for attribution 
analysis of climate change and human activities (Lin et al., 2023). 

 
Figure 1. Lake Victoria and 1 degree buffer zone. 

2.2 Research Data 
Landsat-series satellite images (TM/ETM+/OLI) with a total of 
8657 between the observing period 2001-2021 were used to 
extract algal blooms in Lake Victoria, and is available from the 
US Geological Survey (http://earthexplorer.usgs.gov) and 
through Google Earth Engine (https://earthengine.google.com). 
De-cloud operation was performed using Fmask algorithm (Zhu 
& Woodcock, 2012) after the image surface reflections were 
obtained to remove the cloud interference. 
 

Two types of potential impact drivers were selected in this study, 
including meteorological and anthropogenic factors (Table 1). 
For the meteorological factors, the lake surface water 
temperature (LSWT) (Carrea et al., 2024) and precipitation 
(https://daac.gsfc.nasa.gov/) supporting the findings of this study 
are publicly available, and the lake water volume (LWV) data are 
derived from Lin et al.’s (2020) study. Anthropogenic factors 
include land use/cover changes (LUCC) and socio-economic 
indicators which reflects the variation and development of human 
activities. LUCC data can be accessed from Climate Change 
Initiative (CCI, https://climate.esa.int/en/). Socio-economic 
indicators include Gross Domestic Product (GDP) which is 
available from the World Bank (https://www.worldbank.org/), 
and population (POP) which can be acquired from the WorldPop 
(Open Spatial Demographic Data and Research - WorldPop). 

Source Time Temporal 
Resolution Use 

Landsat 
Series 2001-2021 Monthly   

Annually 
Algal bloom 

detection 
LSWT 2001-2021 Monthly Meteorological 

driver analysis precipitation 2001-2019 Annually 
LWV 2001-2019 Annually 
LUCC 2001-2020 Annually Anthropogenic 

driver analysis GDP 2001-2021 Annually 
POP 2001-2021 Annually 

Table 1. Research data list. 
 

3. Methodology 
3.1 Algal Bloom Extraction 

 
Figure 2. Flowchart of this study. 

 
1) Feature space construction: To effectively extract algal 
bloom areas, in addition to the original six multispectral bands, 
three additional features were calculated, including NDVI, FAI, 
and the greenness component of the K-T transformation, 
resulting in a total of nine feature maps to enhance algal bloom. 
 
2) Extraction model construction: We designed an algal bloom 
extraction model based on Vision Transformer, consisting with 
an encoder and decoder. The encoder is used to extract hidden 
features, which converts the input data into a higher dimensional 
feature space. The decoder is used to convert the high-
dimensional features back into the reference data space to predict 
the output data.  
 
The encoder is consisted of a four-layer progressively down-
sampling and pyramid-structured Transformer block. Each block 
contains multi-head self-attention (MSA) and feedforward neural 
network (FFN), where FFN is essentially a two-layer multi-layer 
perceptron (MLP). To better distinguish between water bodies 
and algal blooms, the model inputs the high-response features of 
both algal blooms 𝑥!"  and water bodies 𝑥#"  separately into the 
block. The output is the difference between the two sets of 
features learned by the encoder, which can be expressed as 
following formulas: 
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(%()) (3) 
where, 𝑥!

(%)" and 𝑥#
(%)! represent the ith layer’s feature maps for 

algal blooms and water bodies separately; 𝑜𝑢𝑡(%) represents the 
output feature maps of the ith layer. 
 
The decoder is consisted of several MLP layers, inspired by Xie 
et al. (2021). Firstly, the output from the encoder 𝑜𝑢𝑡(%)  is 
upsampled to a size of +

,
× -

,
 with given feature channel 

dimension 𝐶 and concatenates to 𝐹. Then, 𝐹 is passed through 
two successive linear transformation and upsampling layers to 
gradually restore it to the original image size and the number of 
target classes. The formula are as follows: 

𝐹% = 𝑈𝑆
.+,×

-
, 0
)𝑀𝐿𝑃?𝑜𝑢𝑡(%)@* (4) 

𝐹 = 𝐶𝑜𝑛𝑐𝑎𝑡([𝐹); … ; 𝐹,]) (5) 

𝑜𝑢𝑡 = 𝑈𝑆(+×-) I𝑊) ×𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒.+*×
-
* 0
(𝑊* × 𝐹)P (6) 

where,	 𝑈𝑆(∙) 	represents the upsampling operation; 𝐶𝑜𝑛𝑐𝑎𝑡(∙) 
represents the concatenation operation; 𝑊)  and 𝑊*  are the 
weight matrix of the two linear layers. 
 
3) Bloom occurrence calculation: Monthly bloom occurrences 
are calculated after algal bloom detection and extraction by 
summing the average daily occurrences. To mitigate the 
randomness and uncertainty caused by cloud interference in 
satellite imagery, bloom occurrence frequency (BOF) in each 
year is further calculated as follows: 

𝐵𝑂𝐹 =
1
𝑆
×

1
∑ 𝑁1
23)

×	 W W𝑂',2
5

'3)

1

23)

(7) 

where, 𝑁  is the number of images with no or few clouds, 𝑚 
stands for the month applied (for monthly 𝑝 = 1; for annually 
𝑝 = 12), 𝑂',2 denotes the number of bloom occurrence in one 
month, 𝑆 denotes the total lake pixels. 
 
Slope trend analysis was employed to evaluate long-term trends 
of bloom occurrence, which is a linear regression model based on 
the least squares technique. The formula can be expressed as: 

𝑠𝑙𝑜𝑝𝑒 = 	
𝑇 ∑ 𝑡 ∙ 𝑂67

63) −∑ 𝑡 ∑ 𝑂67
63)

7
63)

𝑇∑ 𝑡*7
63) − (∑ 𝑡7

63) )*
(8) 

where, 𝑇 denotes the study period (equals 21), 𝑂6 is the annual 
algal bloom occurrences in the t-th year. 

3.2 Driver Analysis 

3.2.1 Meteorological Factors 
1) Precipitation: Monthly average precipitation rate was 
acquired from TRMM 3B43 data (unit in mm∙hr-1), which records 
global precipitation from 1998 to 2019. The monthly average 
precipitation rate of Lake Victoria was calculated by average the 
pixel value within the region. The annual precipitation was then 
obtained by summing the monthly precipitation, and can be 
expressed as follows: 

𝑃 =W �̅� × 1089 × �̅� × 24 × 𝑑𝑎𝑦𝑠%
)*

%3)
(9) 

where, 𝑃  is the annual precipitation of Lake Victoria (unit in 
km3∙yr-1), �̅�  is the monthly average precipitation rate of Lake 
Victoria (unit in mm∙hr-1), �̅� is the average area of Lake Victoria 
in 20 years (�̅�=66228.74 km2) and 𝑑𝑎𝑦𝑠% is the number of days 
in each month. 

2) Lake Surface Water Temperature (LSWT): LSWT is 
derived from ESA CCI dataset, which contains daily lake 
hydrological information. In this study, monthly average LSWT 
of Lake Victoria was calculated by average the water temperature 
in each year. 
3) Lake Water Volume (LWV): LWV was derived from a 
“water level – water area – water volume” model proposed by 
Lin et al. (2020), where the relative water volume of Lake 
Victoria was estimated by modelling the effective relationship 
between water level, water area and water volume variations. 
 
3.2.2 Anthropogenic Factors 
1) Land Use/Cover Changes (LUCC): The LUCC data was 
acquired from ESA CCI landcover products, which is an annual 
global landcover dataset and has been updated to 2020. 
Considered the similarity of some landcover types, we 
aggregated the original 38 types and reclassified to 7 main types 
within the 1° buffer zone of Lake Victoria, including cropland, 
forest, grassland, wetland, built-up, water body and other 
dominated by unused land and sparse vegetation.  
 
2) POP and GDP: POP and GDP are collected to reflect the level 
of socio-economic development, which are clipped using the 1° 
buffer shape file. To estimate the GDP value in the buffer zone, 
spatialization was performed by applying the nighttime light 
(NTL) product which is proved to be consistent with GDP (Lin 
et al., 2022). The spatialization process is carried out using the 
following formula (Lin et al., 2022): 

𝐺𝐷𝑃% =
𝐷𝑁%

∑ 𝑁𝑇𝐿%:;<'6=>
× 𝐺𝐷𝑃:;<'6=> (10) 

where, 𝐺𝐷𝑃% represents the estimated GDP value for the ith pixel, 
𝑁𝑇𝐿% represents the DN value for the ith pixel in the NTL data, 
and 𝐺𝐷𝑃:;<'6=>  represents the statistical GDP value for each 
country. 
 
3.2.3 Grey Relational Analysis 
Impact factors often exhibit complexity and non-linear 
constraints, characterized by a wide range of uncertainty or 
"greyness" (Allen et al., 1998). In this study, Grey Relational 
Analysis (GRA) is employed to quantitatively describe the 
impact of various factors on BOF. GRA measures the correlation 
between two sequences, 𝑋 and 𝑌, to describe the degree of their 
relationship. The calculation formula is shown as follows: 

∆%= |𝑌%∗ − 𝑋%∗| (11) 

𝑅(𝑋, 𝑌) =
1
𝑁W

∆2%' + 𝜌∆2!@
∆% + 𝜌∆2!@

5

%3)

(12) 

where, 𝑋∗  and 𝑌∗ are the normalized 𝑋 and 𝑌, ∆% represents the 
absolute difference between 𝑋%∗  and 𝑌%∗, ∆2%' and ∆2!@ are the 
minimum and maximum differences across the series, 𝜌 is the 
distinguishing coefficient (usually equals 0.5), and 𝑁  is the 
number of observations.  
 

4. Results and Discussion 
4.1 Algal Bloom Occurrence 
4.1.1 Accuracy Validation 
The error matrix and accuracy results are listed in Table. 2. The 
user accuracy and producer accuracy of algal bloom extraction 
are 93.52% and 98.63%, respectively. The overall accuracy is 
97.49% and Kappa equals 0.9271, indicating the capability of the 
proposed model on algal bloom extraction. 

User Accuracy Producer Accuracy 
Bloom Non-bloom Bloom Non-bloom 
93.52% 98.63% 95.12% 98.16% 
Kappa 0.9271 Overall Accuracy 97.49% 

Table 2. Error matrix. 
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Several segmentation models were further compared with the 
proposed model to examine the performance on bloom extraction 
task. Most models performed well visually except for Segmenter 
model (Figure. 3). Deeplab v3 and FCN prone to misdetections 
and omissions in details. Segformer and ours have the best results, 
but Segformer was prone to misdetection on some small area 
cyanobacteria extraction. Three evaluation metrics, mIOU, 
aACC, and mACC, were calculated for the results of different 
models (Table. 3). In general agreement with the visual results, 
Segformer and our proposed model have the highest accuracy 
among all models tested, while our model was basically 1%-2% 
higher than Segformer. 

Model mIOU aAcc mACC 
FCN 79.63 90.09 88.28 

Deeplab v3 81.51 91.53 88.3 
Deeplab v3 plus 84.06 92.83 89.72 

SegFormer 87.1 94.13 92.76 
Segmenter 78.74 89.71 88.08 

Ours 88.33 94.63 94.32 
Table 3. Metrics comparison. 

 
Figure 3. Visual comparison of different models: (a) False color 
image (composited with NIR, Red, Green); (b) Ground truth by 
visual interpretation; (c) DeepLab v3; (d) DeepLab v3 plus; (e) 

FCN; (f)SegFormer; (g) Segmenter; (h) Ours. 
 
4.1.2 Long Trend Analysis 
The algal blooms existed persistently in Lake Victoria (Figure 4), 
especially in bays and gulfs, which agrees with previous studies 
(Mbonde et al., 2015). Four areas with severe bloom occurrences 
are zoomed in as shown in Figure 5, including Bukakata, Buluube, 
Speke Gulf, and Mwanza Gulf. The spatial distribution of the 
bloom occurrence in Lake Victoria also showed a tendency to 
develop from the outside inward with increasing years, 
predominantly on the southeastern side of the lake.  

The total bloom-affected area of Lake Victoria expanded by 
17,489 km2 with a growth rate of 1.53 times between 2001 and 
2021, which corresponds to an expansion of about 900 km2 per 
year (Figure 5). The growth rate of the BOF in Lake Victoria was 
45.45% (+2.78% yr-1) during the observation period. Spatially, 
the area with a significant trend of increasing frequency 
(slope>0.1) was 36.49% larger than the area with the decreasing 
trend. The long-term trend analysis suggests that the fluctuations 
between bloom-affected areas and BOF in Lake Victoria were 
generally consistent over the period 2001 to 2021. The affected 
areas and the BOF in three countries have all shown an increasing 
trend. In Uganda (Figure 5b), the affected areas increased by 
6669.20 km² with 1.25 times growth, and the BOF increased by 
47.09%. Spatially, the BOF showed an increasing trend on the 
eastern side, while the northern side exhibited a decline. In Kenya 
(Figure 5c), Lake Victoria, mainly comprising bays and gulfs, 
experienced the largest increase in bloom-affected areas among 
the three countries, expanding by 1101.55 km², with 8.93 times 
growth. The BOF rose by 37.25%. The overall spatial distribution 
in Kenya showed a trend of increasing BOF. In Tanzania (Figure 
5d), the bloom-affected area grew by 9719.01 km², with 2.02 
times growth and a 40.84% rise in BOF. Spatially, except for the 
southeastern bays where BOF decreased, all other areas exhibited 
an increasing trend. 

 
Figure 5. Trends of algal blooms between 2001 and 2021. (a) 

Spatial patterns of the trends in bloom frequency, and 
interannual variability and trends in average bloom occurrence 

and bloom-affected area within (b) Uganda (c) Kenya (d) 
Tanzania and (c) whole Lake Victoria.

 
Figure 4. Interannual evolution of bloom occurrence in Lake Victoria with four areas zoomed in. 

 (a) Bukakata. (b) Buluube. (c) Speke Gulf. (d) Mwanza Gulf. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-1061-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1064



 

4.1.3 Seasonal Trend Analysis 
Monthly bloom occurrences in Lake Victoria were extracted for 
a total of 21 years from 2001-2021, and heat maps and monthly 
and annual statistics of bloom occurrences were plotted (Figure 
6). Large-scale algal bloom outbreak occurred between 2008 and 
2010. From the monthly variation, it was found that May, June, 
and October are more prone to algal bloom occurrence, whereas 
July and August exhibited a counterintuitive opposite trend. This 
may be due to extremely high temperatures inhibiting algal 
growth. In terms of annual variation, the evolution of the spatial 
distribution of bloom occurrence showed an increasing trend, 
which suggests the water quality of Lake Victoria is gradually 
deteriorating. 

 
Figure 6. Seasonal analysis of 21-year algal bloom occurrence. 

(a) Heatmap. (b) Monthly variation. (c) Annually variation. 
4.2 Meteorological Impact Analysis 
Previous studies have shown that moderate precipitation can 
promote algal growth, leading to an increase in BOF, while 
extreme precipitation may negatively affect algal aggregation, 
thereby impacting bloom formation (Lin, 2017). We first 
analyzed the relationship between precipitation and BOF. Figure. 
7(a) presents the relationship between precipitation and BOF 
from 2001 to 2019. To more clearly illustrate the impact of 
precipitation on bloom frequency, the annual bloom frequency 
was detrended by removing the long-term growth trend (see 
Figure. 5e). It can be observed that in several years with higher 
precipitation, there was a corresponding decrease in bloom 
frequency. 
 
Further analysis was conducted to explore the range of 
precipitation that influences BOF increase. First, we identified 
the precipitation values during years when BOF variation was 
positive. Then, outliers were excluded using 1.5 times the 
interquartile range (IQR) method. The resulting maximum and 
minimum precipitation values, approximately 98-118 km³/yr, are 
highlighted in light purple in Figure 7(b). Additionally, the time-
lag effect of precipitation on BOF was analyzed. To accurately 
measure the relationship between BOF and its drivers using the 
Pearson correlation coefficient (PCC), a linear relationship was 
assumed (Kibena et al., 2014). The PCC between the 
precipitation and BOF with 1-year lag equals 0.57 (p<0.05). 
 
The relationship between water volume and bloom occurrence 
was also examined. The relative water volume was found to have 
a positive impact on the bloom occurrence with the PCC equals 
0.58 (p<0.01) (Figure 7c).  The average surface temperature of 
Lake Victoria has remained between 24°C and 27°C over the past 
20 years, showing a gradual decline (Figure 7d). It appears 
counterintuitive to the observed continuous increase in bloom 
occurrence (PCC equals -0.26), as many researches have 
indicated that temperature is positively correlated with algal 
growth (Ho & Michalak, 2020). Considering Lake Victoria’s 
geographical location, even with the gradual decrease in water 
surface temperature, it still remains within the optimal 

temperature range for algal growth, which may explain the 
absence of a significant decline in bloom occurrence. 

 
Figure 7. Meteorological factors analysis. 

(a) Precipitation and BOF. (b) Precipitation and BOF variation. 
(c) Relative lake water volume and BOF. (d) Lake water surface 

temperature and BOF. 
 

4.3 Anthropogenic Impact Analysis 
4.3.1 LUCC Impact on Bloom Occurrence 
Within the buffer zone, croplands are widespread distributed 
throughout the buffer zone surrounding Lake Victoria (Figure 8). 
The forest areas cluster in the southwestern part of the lake, and 
also present in the northern and northeastern regions. Built-up 
areas around Lake Victoria are predominantly concentrated in the 
Kampala region to the north of the lake, and have significantly 
expanded over the past 20 years. The eastern part of the lake has 
seen a reduction in forest, much of which has been converted into 
cropland, alongside an increase in built-up land patches. The 20-
year LUCC pattern suggests that the growing demands for urban 
living and agricultural irrigation are likely to alter the nutrient 
status of Lake Victoria, thereby affecting the bloom occurrence. 
Additionally, other ecological land types along the western and 
eastern shores of the lake, such as grasslands and wetlands, have 
undergone slight spatial changes, though they continue to shrink 
in area. 

 
Figure 8. LULC types and spatial distribution within the buffer 
zone of Lake Victoria in (a)2001, (b)2010 and (c)2020 , and (d) 
changing rate of 7 LULC types between 2001 and 2020 with 5 

types zoomed in. 
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Figure 8(d) shows the changing rate of area for each land 
use/cover type over 20 years. Built-up areas have experienced the 
most dramatic changes, with an increase of 184% from 2001 to 
2020. Except for built-up areas and other types, the area change 
rates for the remaining land use/cover types are all within 3%.  
The Mann-Kendall trend analysis indicates that forest, grassland, 
wetland, and other land types have significantly decreased in area 
(Table. 4), while built-up areas and water bodies have shown a 
growth trend, although the rate of water body change is low and 
spatially insignificant. As urbanization progresses and 
agricultural production expands, the per capita demand for land 
continues to increase, leading to the conversion of more land into 
productive use. This includes the reclamation of some wetlands, 
which has contributed to increased soil erosion. 

 s p-value trend 
cropland 0.1158 0.4957 — 

forest -0.3895* 0.0179 ↓ 
grassland -0.7421*** 0.0000 ↓ 
wetland -0.6211*** 0.0001 ↓ 
built-up 1.0000*** 0.0000 ↑ 

water body 0.6053*** 0.0002 ↑ 
other -0.7632*** 0.0000 ↓ 

(*: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001) 
Table 4. MK-test for 7 LULC types. 

 
Table 5 presents the correlation analysis between changes in 
LULC types and the bloom occurrence. Grassland and wetland 
exhibit negative correlations (p<0.5 both) with bloom occurrence, 
while built-up area (p<0.001) and water body (p<0.5) show 
positive correlations, which suggests that the expansion of built-
up areas and the reduction of vegetation will significantly 
increase the frequency of bloom occurrence. This may increase 
the extent of impervious surfaces, which affects water quality and 
surface processes, and thus in turn, reduces the lake’s purification 
capacity (Lin et al., 2024), leading to an increase in bloom 
occurrence within the lake. Also, the decrease of grassland and 
wetland areas weakens nitrogen/phosphorus fixation by 
vegetation and enhanced nutrient transport, thus reducing the 
self-purification capacity of lake (Dar et al., 2021). Although the 
increase of surrounding water body has positive correlation with 
bloom occurrence, the changing rate of water body is under 0.5%, 
where we thought it should be less causal connection. 

 r p-value (2-side) N 
Cropland 0.3066 0.3591 20 

Forest -0.5470 0.0816 20 
Grassland  -0.7232* 0.0119 20 
Wetland -0.6705* 0.0240 20 
Built-up 0.8653*** 0.0006 20 

Water body 0.6055* 0.0484 20 
Other -0.4880 0.1278 20 

(*: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001) 
Table 5. Pearson correlation between LUCC and bloom 

occurrence. 
 
4.3.2 Socio-economic Impact on Bloom Occurrence 
Figure. 10(a) and 10(b) illustrate the spatial distribution of 
population (POP) and gross domestic product (GDP) respectively 
within the buffer zone in 2020, with pixel-level GDP 
spatialization calculating by Eq. (10). The distributions of POP 
and GDP are commonly consistent, with high values 
concentrated in areas with dense populations and built-up regions 
(see Figure 8). Over the past 20 years, the population around 
Lake Victoria has nearly doubled, rising from 25 million to 
approximately 46 million, making it the most populous basin 
among the world’s five largest lakes (Dobiesz et al., 2010). This 

growth rate significantly exceeds that of other regions in Africa 
(UNEP, 2006). Meanwhile, the GDP of the region has increased 
from 14 billion USD to 54 billion USD. As the population grows, 
economic conditions are expected to develop accordingly, so thus 
neither individual metric is suitable for analyzing their impact on 
bloom occurrence. In this study, GDP per capita is calculated for 
the impact analysis. Figure 10(d) presents the correlation plot 
between per capita GDP and bloom occurrence frequency (BOF). 
Over the past 20 years, per capita GDP within the buffer zone has 
shown a steadily increasing trend, with a linear fit result of 
$37.42/yr. Pearson correlation analysis shows a strong positive 
correlation between per capita GDP and BOF, with a correlation 
coefficient of 0.86 (p<0.001).  The growth in socioeconomic 
indicators reflects the ongoing urban development and expansion 
of economic activities around Lake Victoria. Economic activities 
in this region are predominantly focused on agriculture and 
fisheries, both of which are major contributors to water quality 
deterioration (Defersha and Melesse, 2012; Nyamweya et al., 
2022). 

 
Figure 10. Socio-economic indicators. (a) POP in 2020. (b) 

Spatialized GDP in 2020. (c) Scatter plot of GDP and POP from 
2001 to 2020 with darker marker representing later year. (d) 

GDP per capita and BOF from 2001 to 2020. 
 
4.4 Grey Relational Analysis of Meteorological and 

Anthropogenic Impact 
The Grey Relational Analysis (GRA) results indicate the degree 
of influence of the selected 11 factors on algal blooms in the Lake 
Victoria region, as shown in Table.6 arranged in descending 
order. Among these factors, lake water volume, GDP per capita, 
and built-up area exert the greatest influence, highlighting the 
dominant factors in climate change and human activities. In terms 
 

Factor Grey Relation Coefficient 
LWV 0.6904 

GDP per capita 0.6778 
Built-up 0.6634 

Precipitation 0.6608 
Cropland 0.6506 

Water body 0.6353 
Wetland 0.5981 

Grassland 0.5753 
Other 0.5657 
LSWT 0.5569 
Forest 0.5358 
Table 6. GRA results of 11 factors. 

(c) (d)

2001 2020
year

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-1061-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1066



 

of hydrological and meteorological conditions, lake water 
volume and precipitation have a significant impact on bloom 
occurrence frequency. Larger lake volumes likely provide a more 
favorable environment for algal growth. Additionally, variations 
in precipitation can affect water quality, with increased rainfall 
potentially flushing nutrients into the lake, thereby promoting 
algal growth. Anthropogenic influence is primarily driven by 
socioeconomic development and the expansion of built-up and 
agricultural land. Furthermore, changes in water bodies, wetlands, 
and grasslands, may facilitate the transfer of nutrients from land 
to the lake, increasing the degree of water body eutrophication. 
 

5. Conclusion 
A continuous increase is revealed in the frequency and affected 
area of algal blooms in Lake Victoria from 2001 to 2021. The 
BOF and affected areas are growing at a trend of 2.875% per year 
and 981km2 per year, respectively. Additionally, the influence of 
climate change and human activities on BOF are quantitatively 
analyzed. The key findings are as follows: (i) Based on GRA, the 
dominant meteorological factors affecting BOF are lake water 
volume and precipitation, while socioeconomic development and 
agricultural expansion play a significant role among human 
factors. (ii) Among meteorological factors, lake water volume is 
positively correlated with BOF, and proper precipitation is linked 
to an increase in BOF between 98 and 118 km3/yr approximately. 
The precipitation has a positive correlation with BOF variation, 
with an annual time lag of about one year. The surface water 
temperature of Lake Victoria remained between 24°C and 27°C, 
showing a weaker influence on BOF. (iii) Regarding human 
activities, economic development, the expansion of built-up areas 
and croplands, and the reduction of certain ecological land types 
(e.g., wetlands and grasslands) contribute to the growth in BOF. 
 
Our study provides a comprehensive framework for analyzing 
bloom occurrence trends and influencing factors, offering 
valuable insights for lake water resource management decisions. 
However, due to the limitations of satellite remote sensing in 
capturing in-lake hydrological conditions, this study lacks 
hydrological impact analysis. Additionally, the observational 
cycle of satellite imagery may introduce systematic errors in 
bloom frequency calculations. In future work, integrating multi-
source satellite data with higher temporal resolution could 
improve the accuracy of the analysis. 
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