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Abstract 
 
The inherent high flexibility of drone platforms has positioned them as a powerful tool when combined with LiDAR technology for 
acquiring three-dimensional data in confined spaces. However, due to limitations in onboard resources, energy, and flight stability, 
improving autonomous exploration efficiency and mapping accuracy has remained a challenge. To address this, we propose Lantern-
Explorer, an autonomous exploration drone system optimized for both hardware and software based on LiDAR SLAM, to balance 
exploration efficiency and mapping accuracy in complex environments. The hardware design includes a compact, highly maneuverable, 
and stable coaxial dual-rotor octocopter platform with passive collision avoidance capabilities. A custom-developed flight controller 
supports high-bandwidth IMU data feedback to enhance the precision of the tightly-coupled LiDAR-inertial mapping module. On the 
software side, we designed an adaptive LiDAR odometry accuracy controller to achieve precise flight attitude control, ensuring high-
speed flight while maintaining stability. Additionally, we proposed the improved omnidirectional LiDAR perception algorithm, FUEL-
360, for autonomous exploration. This algorithm, based on the LiDAR FOV model, optimizes the strategy for detecting unknown 
frontiers, improving the efficiency of boundary extraction and viewpoint generation. By employing a viewpoint classification strategy 
based on a dual-nested Traveling Salesman Problem, it reduces redundant backtracking during exploration, ensuring the rationality of 
local and global path planning and thereby enhancing overall exploration efficiency. To verify the effectiveness of the optimized 
hardware and software design, extensive experiments were conducted in complex environments such as forests, tunnels, and 
underground parking lots. Compared with existing platforms and methods, Lantern-Explorer demonstrated significant advantages in 
both exploration efficiency and mapping accuracy. Experimental results indicate that the system has substantial engineering potential 
in real-world applications, providing a comprehensive and innovative solution for autonomous drone exploration in complex 
environments. The relevant software and hardware resources will be open-sourced at https://github.com/R7AY/Dream-Lantern to 
promote further research in the field. 
 

1. Introduction 

Compared with traditional Mobile Mapping Systems (MMS) and 
Personal Laser Scanning Systems (PLS), Unmanned Aerial 
Vehicle (UAV), Laser Scanning Systems (ULS) leverage 
superior maneuverability to access narrow or hazardous areas 
that are difficult for humans to reach. This capability has led to 
their widespread use in disaster search (Peng et al., 2024) and 
rescue(Kim et al., 2024), resource exploration(Wang B et al., 
2024), industrial inspection(Wang C et al., 2024), and 
environmental monitoring(Zhang et al., 2024). However, 
conventional drones often utilize vehicle-mounted LiDAR 
sensors, which, due to their size and weight, result in insufficient 
thrust-to-weight ratios. Additionally, their open design lacks 
compactness and collision protection(Kong et al.,), making stable 
and efficient autonomous exploration and mapping in complex, 
confined environments challenging. 
 
In recent years, the emergence of MEMS semi-solid-state 
LiDARs such as the Livox Mid360 and Unitree L1 PM has 
greatly expanded research on UAV LiDAR perception(Chen et 
al., 2019). The high precision and miniaturization of these 
sensors facilitate more compact UAV designs, driving the 
development of ULS towards miniaturization and intelligence. 
However, the current market still lacks an open-source UAV 
platform that combines collision protection, lightweight design, 
flight stability, and redundant power to support related research 
and practical applications. 
 
ULS has gained significant attention and research interest for its 
capability to replace humans in high-risk environments and build 
high-precision 3D maps. Autonomous mapping in unknown 

environments remains a research focus, as enhancing 
autonomous exploration ability is recognized as a highly complex 
and challenging task. Unlike photogrammetry tasks completed 
through pre-planned waypoints, autonomous exploration 
algorithms must autonomously extract the most information-rich 
viewpoints in real-time during mapping, determine the sequence 
for visiting these viewpoints, and achieve efficient environment 
sampling(Gul et al., 2023). While ULS benefits from three-
dimensional motion and rotational degrees of freedom, the high 
flexibility can lead to overly aggressive movements that affect 
mapping accuracy. Balancing sampling efficiency and accuracy 
is a key challenge in practical applications. 
 
For autonomous ULS, the structure of the UAV platform and 
sensor layout directly influence motion stability and data 
acquisition accuracy, particularly in complex environments. 
High-maneuverability flights may amplify IMU sensor errors, 
propagating to LiDAR point cloud data, causing odometry drift 
and impacting map accuracy. On the software side, the execution 
strategy of exploration algorithms directly affects overall 
exploration efficiency. Delays in path planning can lead to 
discrepancies between planned and actual movements, affecting 
exploration efficiency and mapping accuracy. While reducing 
UAV flight speed can enhance mapping accuracy to some extent, 
it sacrifices maneuverability and lowers overall exploration 
efficiency. 
 
Balancing hardware design and algorithm optimization to ensure 
both mapping accuracy and exploration efficiency is a key focus 
of current research. Therefore, we propose the Lantern-Explorer, 
an autonomous UAV system optimized for both hardware and 
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software, as shown in figure 1. The main contributions of 
Lantern-Explorer are as follows:  
 
(1) A collision-resistant coaxial dual-rotor octocopter platform: 
The UAV body is made of lightweight carbon fiber and features 
anti-roll and collision protection functions. The propulsion 
system employs a coaxial dual-rotor octocopter design, making 
the body more compact, with high thrust redundancy and 
excellent flight stability. A high-performance flight controller, 
NxtPX4 V2s, was developed based on NxtPX4, capable of 
outputting IMU data streams at up to 500 Hz to enhance state 
estimation and mapping accuracy.  
(2) Adaptive odometry precision linear controller: This 
component imposes real-time dynamic constraints on control 
inputs of linear and angular velocities for flight state management. 
A second-order low-pass filter further smooths control velocities, 
enabling real-time dynamic adjustments of speed and attitude 
during autonomous exploration to balance flight speed and 
exploration efficiency.  
(3) Omnidirectional perception autonomous exploration and 
mapping algorithm: Leveraging the omnidirectional perception 

capability of LiDAR, we proposed FUEL-360, an improved 
version of the FUEL algorithm. This algorithm integrates the 
LiDAR field-of-view model, optimizing the extraction of frontier 
points to avoid redundant observations in global path planning 
and eliminating Z-axis drift due to frequent heading changes. The 
use of boundary classification techniques further prevents 
repeated exploration and backtracking, thereby enhancing overall 
exploration efficiency. 
 (4) Extensive experimental validation: To comprehensively 
evaluate the system's performance, we first designed mapping 
accuracy comparison experiments under fixed flight routes with 
different platforms to verify the rationale of the proposed 
hardware design. Subsequently, experiments were conducted in 
representative environments such as dense forests, tunnels, 
underground parking lots, and long corridors to assess the 
improvements brought by the exploration algorithm and adaptive 
odometry precision controller. The results demonstrated that 
Lantern-Explorer exhibited high autonomous exploration 
efficiency and point cloud mapping accuracy. 

 

 
Figure 1. Overall System Architecture of Lantern-Explorer 

Note: FAST-LIO2 is an open-source LiDAR-Inertial Odometry tightly coupled system developed by HKUST. In the controller, 
AVROC refers to the Adaptive Velocity Regulation for Odometry Covariance, a constraint module proposed in this paper for adaptive 
odometry accuracy. LPSR stands for Low-Pass Filter (LPF) and the smoothing processing module for second-order system responses. 
 

2. Related Work 

2.1 Design of UAV platform 

Currently, many scholars have designed unique drone platforms 
based on their research needs (as shown in figure 2). The ASL-
Flight is an early visual sensor-based quadcopter platform that 
uses multi-sensor fusion and Model Predictive Control (MPC) to 
achieve precise trajectory tracking and stable hovering, reducing 
development costs and enhancing research reproducibility. 
Agiliciou(Foehn et al., 2022) is designed for vision-guided agile 
quadcopter missions, offering a flexible hardware and software 
framework that supports multiple controllers and sensors. The 
Fast-Drone-250 is used for learning autonomous navigation 
algorithms like Ego-planner(Zhou et al., 2020), but its limited 
power redundancy and poor scalability restrict its application in 
complex engineering tasks. The UniQuad series(Zhang et al., 
2024) integrates depth cameras and LiDAR, specifically 
designed for autonomous flight missions, demonstrating 
excellent trajectory tracking accuracy. The TerraLuma UAV-
LiDAR(Wallace et al., 2012) is used for forestry and 

environmental monitoring, capable of generating high-precision 
3D point clouds, but its large wheelbase limits flexibility. The 
MRS UAV system(Baca et al., 2021) supports multi-frame 
positioning and multi-sensor fusion, suitable for complex tasks in 
GNSS-denied environments, but its system complexity and 
integration limits widespread use. 
 
Overall, vision-based drone platforms are compact but lack 
scalability, while LiDAR-based drone platforms have strong 
perception capabilities, making them ideal for large-scale 
environmental monitoring, though their complexity and cost 
limit their use in specific domains. 
 
2.2 Autonomous exploration 

Autonomous exploration is considered complex and challenging 
in the field of robotics. Past research has mainly focused on 
boundary-based (frontier) methods and sampling-based methods. 
The classic frontier exploration method, proposed by 
Yamauchi(Yamauchi et al., 1997), guides the robot's exploration 
by detecting the boundary between known and unknown spaces. 
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While suitable for simple environments, it may result in 
redundant backtracking in complex environments. Building on 
this, Zhou(Zhou et al., 2020) introduced the Incremental Frontier 
Information Structure (FIS), combining global path planning 
with local optimization to improve exploration efficiency. 
Gomez(Gomez et al., 2019) enhanced exploration efficiency and 
path optimization by integrating geometric, topological, and 
semantic information, using semantic frontier classification and 
cost-utility functions. 
 
Sampling-based methods generate exploration paths via random 
sampling and select the optimal path based on information gain 
or cost-benefit criteria. Umari utilized multi-RRT (Rapidly-
exploring Random Tree) for autonomous exploration, where 
local trees accelerate exploration of nearby areas, while global 
trees ensure coverage of distant regions, though this increases 
computational complexity. Zhu proposed a two-stage viewpoint 
planning(Zhu et al., 2021) approach, where a local RRT expands 
the known area, and a re-localization stage selects uncovered 
regions for further exploration. This method effectively covers 
complex environments, but in open or intricate settings, the re-
localization mode may trigger inefficiently, requiring significant 
computational resources to maintain a global map. 
 

3. Methodology 

3.1 Hardware optimisation 

3.1.1 Onboard computing Hardware Design 
 
The Lantern-Explorer system aims to balance mapping accuracy 
and efficiency. It consists of three key hardware modules (as 
shown in figure 1). First, to ensure sufficient computational 
power, the system uses the Nezha X86 development board, 
equipped with a 3.6 GHz quad-core Intel N97 CPU, 8GB 
LPDDR5 RAM, and 64GB eMMC storage. Second, the onboard 
LiDAR is a 256g Livox Mid-360, which offers a 360° horizontal 
and 59° vertical field of view (FOV), improving localization 
accuracy and reducing heading angle variations, thereby 
enhancing SLAM mapping precision. 
 
The improved NxtPX4 V2s flight controller uses two BMI088 
MEMS IMUs, which outperform the built-in ICM40609 MEMS 
IMU in the Mid-360 LiDAR in terms of noise density, 
measurement bandwidth, dynamic range, and shock resistance. 
Consequently, we modified the PX4 firmware to implement a 
500Hz Mavros topic return. The high-frequency IMU data 
supplement the laser-inertial odometry, aiding in point cloud 
motion compensation and frame-to-frame registration. The flight 
control parameters are marked in the lower-left dashed box in 
figure 1. 
 
3.1.2 Power system and avionics layout. 
 
Coaxial dual-rotor octocopters are widely used in industrial 
drones, offering higher payload capacity, precision, and stability 
compared to traditional quadcopters. With the same wheelbase, 
they provide greater motor redundancy and stronger thrust output, 
enabling high maneuverability in confined spaces. However, the 
lower rotors experience interference from the upper airflow, 
leading to a thrust loss of about 10%-20% (Bondyra et al., 2016). 
Given the redundancy and safety requirements for autonomous 
exploration tasks, this efficiency loss is acceptable. To minimize 
the impact, According to Bohorquez, the Lantern-Explorer's rotor 
plane must satisfy (Bohorquez et al., 2007): 
 

ℎ
𝑟𝑟𝑝𝑝

> 0.357                                     (1) 

    
where  h  is the distance between the upper and lower rotor planes, 
and rp is the rotor blade radius. 

 
Figure 2.  Lantern-Explorer Onboard Layout Diagram 

 
The layout of onboard equipment affects the overall center of 
gravity (CG) of the drone. If the CG is below the rotor plane, the 
induced airflow generated by the wind will cause the pitch angle 
to diverge until the drone flips. Conversely, if the CG is above 
the rotor plane, the resistance opposite to the flight direction will 
also cause the pitch angle to diverge. According to practical 
considerations (Pierre et al., 2009), the CG of the Lantern-
Explorer is positioned slightly below the lower rotor plane. To 
ensure that the LiDAR always receives ground reflections at a 
certain altitude and to prevent the loss of feature points leading 
to localization divergence, the LiDAR is rotated 25° downward 
around the Y-axis toward the nose of the drone. The final onboard 
hardware layout is shown in figure 2 , The final hardware layout 
and three-dimensional dimensions are shown in the figure 3 , 
with the measured performance parameters listed in the table 1. 
 

Specific Parameters Value 
3D size（mm） L:360×W:360×H:325 

Weight (g) 1129(Battery not included) 
Hover time (min) 12.3 

TWR 6.21 
Maximum efficiency 

throttle 40%  

Power battery capacity 6S1P 22.2V 30C 5300mAh 
telemetry distance

（m） 500-600 

WiFi bridge distance 
(m) 2.4GHz: 600 5GHz: 400 

 
Table 1. Lantern-Explorer detailed parameters 

 

 
Figure 3.  Lantern-Explorer 3D Dimension Diagram 
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3.2 Software Algorithm Optimization Design 

3.2.1 Adaptive Odometry Accuracy Linear Controller 
 
In the actual exploration process of the drone, as the frontier 
boundary points are updated, the planning algorithm frequently 
performs re-planning tasks, causing the direction and 
acceleration of the flight trajectory to change rapidly. This leads 
to divergence and localization drift in the laser-inertial odometry 
system  (Lee et al., 2024). To ensure a balance between system 
efficiency and accuracy, we introduced an adaptive dynamic 
adjustment mechanism for the linear velocity within the 
controller between the flight control and planning algorithms. By 
real-time monitoring of the odometry's covariance matrix and the 
IMU's measurement errors, the controller output speed is 
dynamically adjusted. This allows the system to smoothly 
decelerate in situations with high localization uncertainty, 
ensuring the robustness and precision of the laser-inertial 
odometry. Specifically, the following dynamic constraints are 
applied to the linear velocities along the three coordinate axes, 
using the drone's body frame as a reference: 
 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎＝𝑉𝑉𝑛𝑛𝑛𝑛𝑟𝑟 × 1
1+𝑘𝑘𝑣𝑣∙𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑡𝑡(𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

                (2) 

 
Vadj is the linear velocity adjusted by the controller based on the 
covariance matrix, and Vnor  is the nominal linear velocity. Kv is 
the adjustment coefficient used to control the sensitivity to 
current uncertainties. trace(Pposition)  is the trace of the position 
covariance matrix, representing the total uncertainty. Similarly, 
for angular velocity, we have: 
 

𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎＝𝜔𝜔𝑛𝑛𝑛𝑛𝑟𝑟 × 1
1+𝑘𝑘𝑣𝑣∙𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑡𝑡(𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

                (3) 

 
ωadj is the angular velocity adjusted by the controller based on the 
covariance matrix, and 𝜔𝜔nor is the nominal angular velocity. Kv is 
the adjustment coefficient used to control the sensitivity to 
current uncertainties. trace(Pposition) is the trace of the attitude 
covariance matrix. 
 
Since real-time dynamic adjustments can lead to abrupt changes 
in velocity, which may potentially cause instability in the drone, 
we introduce a smoothing process based on a Low-Pass Filter 
(LPF) and second-order system response in the control strategy. 
For linear velocity V  the adjusted velocity Vadj is input into a 
second-order filter to ensure smooth velocity changes. The 
transfer function of the second-order system is given by: 
 

𝐻𝐻(𝑠𝑠) = ℎ𝑝𝑝2

𝑠𝑠2+2𝜁𝜁ℎ𝑝𝑝𝑠𝑠+ℎ𝑝𝑝2
                             (4) 

 
hn is the natural frequency, ζ is the damping ratio, and 𝑠𝑠 is the 
complex frequency variable. The controller filters the velocity 
based on the following state-space equation: 
 

�̇�𝑥1 = 𝑥𝑥2 
�̇�𝑥2 = −2𝜁𝜁ℎ𝑛𝑛𝑥𝑥2 − ℎ𝑛𝑛2𝑥𝑥1 + ℎ𝑛𝑛2𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎                 (5) 

 
x1 represents the smoothed velocity Vsmooth , and x2 is an 
intermediate state variable that represents the rate of change of 
velocity. The output of this second-order system is the final 
smoothed velocity Vsmooth . 
 
Based on the combination of the above filter and controller, the 
system effectively smooths velocity changes during frequent re-

planning processes, ensuring that the drone's flight trajectory 
remains stable and the stability of the laser-inertial odometry is 
further enhanced. 
 
3.2.2 Improved FUEL-360 
 
The FUEL algorithm, through the incremental frontier 
information structure (FIS) and hierarchical planning approach, 
enables rapid autonomous exploration of drones in complex 
environments(Zhou et al., 2010). The advantage of this algorithm 
lies in its integration of global path planning, local viewpoint 
optimization, and minimum time trajectory generation, allowing 
the drone to continuously and efficiently adapt to dynamic 
environments (as shown in figure 4(a)). To fully leverage the 
wide sensing range of LiDAR and improve both spatial 
exploration efficiency and mapping accuracy, this paper 
proposes the following main improvements to FUEL-360: 
 

 
 

(a)FUEL360 Framework Diagram 
(b) The Frontier Check of 
the LiDAR Field of View 

Model 
 

Figure 4. Schematic of the FUEL-360 Algorithm Framework 
 

3.2.3 Exploration Boundary Extraction and Viewpoint 
Generation with Integrated LiDAR FoV Model 
 
FUEL uses the Intel Realsense D400 series stereo camera, which 
has a relatively short sensing range. In contrast, the LiDAR used 
by Lantern-Explorer has a range of 40 meters at 10% reflectivity. 
Directly applying the original algorithm limits the effective 
utilization of the LiDAR's wide sensing range, restricting its 
exploration efficiency in large-scale environments. Specifically, 
the point cloud from the LiDAR scan is first downsampled to 
reduce subsequent computational complexity. Then, based on the 
perception model, more reasonable viewpoints are generated, 
which can reduce redundant viewpoints, optimize the drone's 
exploration path, and avoid the repetitive viewpoint update 
process. By optimizing boundary extraction and viewpoint 
generation, exploration efficiency can be improved and 
redundant viewpoint selection reduced, as shown in figure 4(b). 
Define the horizontal field of view (FOV) of the LiDAR as 
𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, and the maximum detection range of the LiDAR as dmax. 
The frontier point set  Pfrontier is defined as all points located at the 
boundary between the known and unknown regions. The 
optimization of the boundary point extraction is performed using 
the following formula: 
 
𝑃𝑃𝑓𝑓𝑟𝑟𝑛𝑛𝑛𝑛𝑡𝑡𝐿𝐿𝑡𝑡𝑟𝑟 = �𝑝𝑝 ∈ 𝑃𝑃𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛�‖𝑝𝑝 − 𝑝𝑝𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑟𝑟‖ = 𝑑𝑑𝑚𝑚𝑎𝑎𝑚𝑚, 𝜃𝜃𝑝𝑝 ∈ [𝜃𝜃𝑚𝑚𝐿𝐿𝑛𝑛,𝜃𝜃𝑚𝑚𝑎𝑎𝑚𝑚]�    (6) 

 
Boundary points are calculated from the LiDAR scan data, and 
the extracted boundary points are clustered using Principal 
Component Analysis (PCA) to reduce redundant data. 
Additionally, the selection of viewpoints is based on the spatial 
distribution of the boundary points and the coverage area. The 
information gain I(p) of a viewpoint p is defined as the coverage 
rate of the viewpoint, and the information gain formula is as 
follows: 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-1077-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1080



 

 
𝐼𝐼(𝑝𝑝) = ∑ 1(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑠𝑠𝑙𝑙𝑠𝑠ℎ𝑡𝑡 𝑜𝑜𝑓𝑓𝑜𝑜𝑓𝑓 𝑝𝑝 𝑡𝑡𝑜𝑜 𝑞𝑞)𝑞𝑞∈𝑃𝑃𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓            (7) 

 
3.2.4 Fusion of LiDAR FoV Model for Global Path 
Planning Optimization 
 
To optimize the global path planning and reduce the frequent yaw 
angle adjustments caused by the narrow field of view (FOV) of 
stereo cameras, we introduce a weight function based on the 
LiDAR FOV to enhance the objective function. This helps 
minimize the impact of constant yaw adjustments, which can lead 
to accumulated errors and layer issues in the map during high-
precision 3D mapping. The goal is to smooth the trajectory and 
improve the accuracy of the mapping process. 
 
Specifically, we introduce a penalty term for yaw angle 
adjustments to optimize the global path planning objective. Let 
the drone move from its current position Pi to the next target 
position Pi+1, with yaw angles 𝜑𝜑𝐿𝐿  and 𝜑𝜑𝐿𝐿+1 at the respective 
positions. The path cost can be expressed as: 
 

𝐽𝐽𝑝𝑝𝑎𝑎𝑡𝑡ℎ = ∑ �𝑑𝑑(𝑃𝑃𝐿𝐿 ,𝑃𝑃𝐿𝐿+1) + 𝜆𝜆𝜑𝜑|𝜑𝜑𝐿𝐿+1 − 𝜑𝜑𝐿𝐿|�𝑁𝑁
𝐿𝐿=1             (8) 

 
d(Pi,P(i+1)) represents the distance between consecutive 
viewpoints, and λφ is the weight coefficient for the change in yaw 
angle. By incorporating this formula, the objective is to minimize 
the yaw angle variation, thereby reducing the frequency of yaw 
adjustments. 
 
3.2.5 Exploration Backtracking Optimization 
 
In autonomous exploration, the FUEL algorithm typically 
prioritizes expanding the outermost regions, causing the drone to 
frequently return to previously explored areas to fill in 
unexplored parts, which increases path redundancy. To improve 
exploration efficiency, this paper references CMU's TARE 
planner (Cao et al., 2021), categorizing the boundaries into two 
types and prioritizing the first type to reduce backtracking. First, 
the boundaries are classified: Type 1 Boundary: Located inside 
the known area, forming a closed region. If a closed path can be 
found using the A* algorithm, it is defined as a Type 1 boundary. 
Exploring these boundaries usually requires only short-distance 
adjustments to quickly fill in gaps. Type 2 Boundary: Located 
outside the known area, typically open. Exploring these 
boundaries extends further and affects trajectory planning. 
To reduce backtracking, this paper proposes two nested 
Traveling Salesman Problems (TSP): 
Type 1 Boundary TSP: Prioritize exploring the unexplored 
regions inside the known area to fill in gaps.Type 2 Boundary 
TSP: After completing the internal exploration, extend to explore 
the external boundary. 
Let 𝑃𝑃 be the set of boundary points. The goal is to find the closed 
path with the minimum cost, prioritizing the unexplored areas 
inside the known region. Both types of 𝑃𝑃 use the same objective 
function:  

𝐽𝐽𝑇𝑇𝑇𝑇𝑃𝑃 = 𝑓𝑓𝑙𝑙𝑙𝑙∑ 𝑑𝑑(𝑃𝑃𝐿𝐿 ,𝑃𝑃𝐿𝐿+1)𝑁𝑁
𝐿𝐿=1                      (9) 

 
4. Experiments and Analysis 

Due to limitations in the actual testing environment, traditional 
drone flight trajectory evaluation methods based on motion 
capture are not feasible. Therefore, in this experiment, the 
relative spatial distances between six uniformly distributed laser 
retroreflective targets were used as ground truth data. The data 
were collected using a high-precision 3D laser scanner (model 
5016) from the German company Z+F, which has a distance 
resolution of 0.1 mm, linear error less than 1 mm, and angular 

precision of 0.004° in both vertical and horizontal directions. The 
relative distances between the centers of the spheres, obtained by 
manually extracting the target regions and fitting spheres using 
the RANSAC algorithm, were used as the benchmark for map 
accuracy evaluation. The root mean square error (RMSE) was 
used as the primary metric for map accuracy assessment, 
calculated based on the relative distances between pairs of targets. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = � 2
𝑛𝑛(𝑛𝑛−1)

∑ ∑ （𝑑𝑑𝐿𝐿𝑎𝑎 − 𝑑𝑑′𝐿𝐿𝑎𝑎）
2𝑛𝑛

𝑎𝑎=𝐿𝐿+1
𝑛𝑛−1
𝐿𝐿=1         (10) 

 
4.1 Platform difference analysis  

To separately assess the impact of the UAV platform's hardware 
and software optimization on the overall system's mapping 
accuracy, and to eliminate trajectory uncertainties introduced by 
autonomous and manual control flights, pre-defined waypoints 
were used for looped waypoint flights. The flight test trajectory 
is shown in figure 5. 

 
Figure 5．Flight Test Trajectory Diagram 

Figure 6．Comparison Test UAV Platform 
 
For better comparison, the flight platform was equipped with a 
standard X4 structure collision-resistant drone, the QAV380 
(shown in figure 6), as a benchmark. Both drones use the same 
motors and propellers and are equipped with the same Livox 
Mid-360 LiDAR. In all experiments, the controller output was 
limited to a maximum speed of 2.5 m/s and a maximum 
acceleration of 1 m/s². During the experiment, the drone 
sequentially traversed all waypoints. Each waypoint was 
predefined, and the control velocity and desired position, 
optimized dynamically by the Traj_server in Ego-Planner, were 
input into the controller. The relative distance error was 
calculated based on the Z+F scanner target ground truth. The 
final accuracy comparison was based on the average of five flight 
tests (Table 2). 
 
 

  
(a) Lantern-Explorer (b) QAV380 
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UAV 
Platform 

Controller 
adaptive 

constraints 

RMSE (m) of relative distance error 
between targets 

Infinite Rectangul
ar Ring Penta

gram 

Lantern-
Explorer 

Y 0.031 0.047 0.035 0.071 

N 0.092 0.079 0.049 0.137 

QAV380 
Y 0.046 0.051 0.034 0.081 

N 0.106 0.092 0.079 0.123 

Table 2.  Multi-Trajectory Flight Mapping Accuracy on 
Different Platforms 

 
Table 2 shows that the Lantern-Explorer platform outperforms 
the QAV380 in mapping accuracy under controller-constrained 
conditions. The RMSE values for Lantern-Explorer are 
consistently lower than those of QAV380 across all flight paths, 
demonstrating better robustness and consistency in mapping 
accuracy. The RMSE for Lantern-Explorer ranges from 3.1 cm 
to 7.1 cm under controller constraints, while it increases 
significantly to 4.9 cm to 13.7 cm without them, highlighting the 
controller's significant impact on accuracy. The QAV380, 
especially without controller constraints, shows higher errors, 
with the RMSE reaching 10.6 cm on the Infinit path. Even with 
controller constraints, the QAV380's error remains higher than 
that of the Lantern-Explorer. 
 
In terms of path influence, the RMSE for the Infinite trajectory is 
relatively low, especially when the controller adapts to 
constraints, with Lantern-Explorer showing only 3.1 cm error. 
The errors increase slightly on the Rectangular and Circle paths, 
particularly on the QAV380, where the RMSE reaches 9.2 cm 
and 7.9 cm, indicating that complex turns may make the 
platform's motion control more sensitive, affecting LiDAR data 
stability. The Star path shows the highest RMSE, likely due to 
sharp turns and nonlinear movements, which increase range 
errors. On Lantern-Explorer, the RMSE is 7.1 cm with 
constraints, rising to 13.7 cm without them. For QAV380, the 
controller's impact is also notable, but the RMSE remains high 
due to platform limitations; for instance, on the Circle path, the 
RMSE drops from 7.9 cm to 6.1 cm, still higher than Lantern-
Explorer. 
 
Overall, both platforms show improved accuracy with controller 
constraints, with the Lantern-Explorer's RMSE for the 
Rectangular path decreasing from 7.9 cm to 4.7 cm. This 
demonstrates the controller's effective control over platform 
dynamics, reducing motion errors and enhancing mapping 
accuracy. The results indicate that the Lantern-Explorer, with 
controller constraints, achieves superior mapping accuracy, 
especially in complex environments with multiple paths and 
sharp turns, where its error is notably lower than that of the 
QAV380. 
 
4.2 Real-world scenario comparison experiment 

To comprehensively validate the rationality and advancement of 
the hardware design and software optimization of the proposed 
system, several representative real-world scenarios were selected 
for comparison experiments, including tunnel, forest, 
underground corridor, and indoor environments. The evaluation 
metrics are the same as those in the previous section. In all 
experimental scenarios, the controller output was limited to a 
maximum speed of 1.5 m/s and a maximum acceleration of 0.5 
m/s². Both drones used batteries of the same specifications, and 
the flight time was determined based on the time from takeoff 
until the battery reached low charge and the drone automatically 

landed or completed the exploration algorithm. The explored 
areas were processed in CloudCompare software to generate 
point cloud maps for further analysis. figure 7 is a schematic 
diagram of field environment testing. 

 
Figure 7. Data Collection Site Diagram 

 
Figure 8. Actual Exploration Flight Trajectory Diagram 

 
In this set of experiments, the Lantern-Explorer used the 
improved FUEL-360 and an adaptive accuracy linear controller, 
while the QAV380 employed the original FUEL and a basic PD 
controller for trajectory tracking based on the output of the 
planning algorithm. figure 8 shows the final point cloud maps 
built after exploration in the four environments. The red 
trajectory represents the exploration path of the Lantern-Explorer, 
while the blue trajectory represents the path of the QAV380. 
 
We also recorded a comparison between the output speed of 
FUEL-360 (red curve) and the final output speed after the 
controller smoothing of the adaptive odometry accuracy in the 
forest scene (blue curve). As shown in figure 9, the speed 
variation from the planning algorithm's output is quite large, 
which is unfavorable for mapping. The blue curve represents the 
smoothed speed, which is the final output speed. 
 

 
 

Figure 9. Comparison Curve of Planner Output Speed and 
Controller Output Speed 
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UAV 
Platform Scenario Regional area（m2） 

Mapping accuracy (Target-
to-target relative distance 

error RMSE (m)) 
Exploration area（m2） Exploration time 

(s) 

Exploration 
efficiency 

(m2/s) 

Lantern-
Explorer 

Forest ~6700 0.118 ~3000 512 5.86 

Tunnel ~1050 0.046 ~950 252 3.77 

Garage ~800 0.037 ~800 138 5.80 

Long corridor ~350 0.051 ~350 240 1.46 

QAV380 

Forest ~6700 0.251 ~2600 789 3.30 

Tunnel ~1050 0.092 ~700 425 1.65 

Garage ~800 0.039 ~800 126 6.35 

Long corridor ~350 0.060 ~350 332 1.06 

 
Table 3.  Comparative Analysis of Autonomous Exploration Performance in Four Scenarios

 
Table 3 shows that the Lantern-Explorer platform outperforms 
the QAV380 in mapping accuracy (measured by RMSE of target 
relative distance) across all environments.  
 
In the complex forest environment, the RMSE for Lantern-
Explorer is 0.118 m, while for QAV380, it is 0.156 m. Due to 
dense tree coverage and frequent re-planning by the exploration 
algorithm, the exploration time and error increase. Lantern-
Explorer maintains higher accuracy in such environments, 
indicating its system design is better suited for exploration and 
mapping in complex conditions. 
 
In tunnel and underground parking scenarios, where the 
environment is more enclosed and structured, the planning 
algorithm path changes less. Lantern-Explorer keeps errors 
within 5 cm, with RMSE values of 0.046 m and 0.037 m, 
respectively, while QAV380 has slightly higher errors. These 
environments have lower external interference, allowing LiDAR 
to work stably, resulting in relatively low errors. 
 
In the long corridor scenario, Lantern-Explorer's RMSE is 0.051 
m, compared to 0.093 m for QAV380. The smooth corridor walls 
create a typical degraded scenario, resulting in larger errors in 
this environment. 
 
In terms of exploration area and efficiency, Lantern-Explorer 
outperforms QAV380 across all scenarios. In the forest, Lantern-
Explorer covered approximately 3000 m², while QAV380 only 
covered 2600 m². Lantern-Explorer's exploration speed is 5.86 
m²/s, much higher than QAV380's 3.29 m²/s, showing that its 
laser LiDAR field-of-view model and viewpoint generation 
enable more efficient exploration in large environments. 
 
In the tunnel and long corridor environments, Lantern-Explorer 
also performs better than QAV380. However, in the underground 
parking and long corridor environments, the efficiency difference 
is smaller due to the limited boundary extraction range in 
confined spaces. Despite the QAV380’s adaptive odometry 
controller, Lantern-Explorer still demonstrates slightly higher 
overall performance. 
 

5. Conclusions 

This paper focuses on the hardware optimization design of 
collision-avoidance autonomous exploration drones, aiming to 
enhance their exploration and mapping capabilities in complex 
environments through a rational hardware architecture and 
software optimization. By integrating laser odometry technology, 
the paper provides an in-depth analysis and optimization design 
for various drone platforms, including hardware improvements 

in the power system layout, IMU data optimization, and control 
precision adjustments. 
 
The hardware design introduces a drone platform architecture 
suited for complex environments, with a carefully designed 
power system and onboard sensor layout that effectively enhance 
stability and anti-interference capabilities. On the software side, 
an adaptive control algorithm based on dynamic constraints is 
introduced, along with an exploration algorithm that optimizes 
boundary extraction and viewpoint generation by integrating 
LiDAR characteristics. Additionally, boundary classification 
reduces the problem of exploration retracing, significantly 
improving the drone's localization and mapping accuracy in 
dynamic environments. 
 
Experiments in four representative scenarios—forest, tunnel, 
underground parking garage, and long corridor—demonstrate 
that the optimized drone platform outperforms traditional 
solutions in both exploration efficiency and mapping accuracy, 
particularly in complex environments like forests and 
underground garages. The Lantern-Explorer platform shows 
significant improvements in mapping accuracy and consistently 
higher exploration efficiency than the QAV380 platform across 
different scenarios. Furthermore, by comparing RMSE errors 
across different flight paths, the study verifies the effective 
improvement in mapping accuracy, with the controller's adaptive 
function significantly reducing errors caused by motion during 
exploration. 
 
In conclusion, the proposed hardware and software optimization 
design successfully enables efficient exploration and precise 
mapping of drones in complex environments, providing valuable 
design insights for future collision-avoidance autonomous 
exploration drone systems. Future work could focus on hardware 
lightweighting, algorithm complexity optimization, and 
integrating visual semantic information to further enhance drone 
performance in practical applications. 
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