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Abstract

The coastal area of New Hanover County in North Carolina encompasses diverse wetland habitats influenced by unique coastal and
tidal dynamics, with researchers examining the impacts of landscape changes, sea-level rise, and climate fluctuations on wetland
health and biodiversity. This study integrates multispectral imagery data, LiDAR, and additional sources to enhance classification
accuracy. The study also addresses binary classification for wetland and non-wetland classification and a multi-classification for
different wetland classes, leveraging on the Random Forest algorithm which significantly improved the overall accuracy of wetland
mapping. The Random Forest model’s performance in different scenarios was evaluated, with Scenario 1 achieving an overall
accuracy of nearly 93.9%, Scenario 2 achieving an overall accuracy of 93.5%, Scenario 3 achieving an overall accuracy of 94.1%,
and Scenario 4 achieving an overall accuracy of 88.2%. These results underscore the model’s effectiveness in accurately classifying
coastal wetland areas under diverse remote sensing scenarios, highlighting its potential for practical applications in wetland mapping
and ecological research.

1. Introduction

1.1 Wetlands

Coastal wetlands are defined by the Coastal Area Management
Act (CAMA) as tidally influenced wetlands that contain one or
more of the ten salt-tolerant and fresh marsh plant species de-
signed (Carle, 2011). These wetlands play a key role in regional
and global environments, and are critically linked to major is-
sues such as climate change, wildlife habitat, biodiversity, wa-
ter quality protection, and global; carbon and methane cycles
(Torres-Bejarano et al., 2021), (Hu et al., 2017), (Bwangoy et
al., 2010), (Tiner, 2016), (Ouyang et al., 2014),(Gutzwiller and
Flather, 2011), (Mitra et al., 2005).

In coastal areas, wetlands serve as a key source of nutri-
ent cycling capacity to maintain water quality (Childers et al.,
2006), peatlands play a key role in carbon sequestration from
the atmosphere (Harenda et al., 2018), and mangrove forests
are important habitats for many aquatic and terrestrial species
(Nagelkerken et al., 2008). In flood mitigation, coastal wet-
lands act as natural habitats where they can store excess water
during flood events and storm damage (Acreman and Holden,
2013),(Michener et al., 1997). For example, the Pantanal wet-
land in South America can store up to 3 meters of water dur-
ing the rainy season (Junk and de Cunha, 2005). Despite the
many living resources provided by coastal wetlands, people
neglect their ecological capacity while simultaneously pursu-
ing high urbanization rates. Between 25 and 50 percent of the
world’s coastal wetlands were historically converted to farm-
land or aquaculture in the 20th century, and predictions indicate
that the rise of sea level will cause an additional 20 to 45 percent
loss this century (Kirwan and Megonigal, 2013). It becomes
imperative for the management and conservation of wetlands
using various mapping and surveying techniques.

Mapping and monitoring coastal wetlands is particularly chal-
lenging due to their complex spatial structure and frequent

flooding, which restricts accessibility and complicates tradi-
tional survey methods (Kalacska et al., 2017). Shifting tidal
waters and dense or overlapping canopy layers further add to
the difficulty, especially when mapping forested coastal wet-
lands. However, technological developments have facilitated
the extensive use of remote sensing data for wetland mapping
and classification, with improved accuracy. Multispectral and
LiDAR systems have been reviewed as the main sensors used in
this type of analysis and other environmental management ap-
plication (Chust et al., 2008), (Rapinel et al., 2015),(Gonzalez-
Perez et al., 2022) (Pricope et al., 2024), (Agboola and Beni,
2024), (Blay et al., 2024), (Wasehun et al., 2025), (Hashemi-
Beni et al., 2024). LiDAR sensors offer detailed elevation and
vegetation structure data, which is crucial for hydrological and
ecological studies, while multispectral sensors are especially
useful for vegetation classification and soil moisture (Adam et
al., 2010), (Hashemi Beni, 2023). However, LiDAR-derived
elevation data might vary in accuracy, especially in wetlands
with dense vegetation. Notwithstanding these difficulties, the
combination of LiDAR and multispectral data has helped to
improve wetland delineation and mapping (Carle, 2011). Few
studies have thoroughly examined the combined use of its full
range of outputs - altimetry, topographically derived features,
and intensity data for comprehensive coastal habitat mapping
(Anokye et al., 2024) (Lin, 2019), (Ahmed et al., 2015), (Mer-
rick et al., 2013). This study sought to evaluate the combin-
ation of multispectral imagery and LiDAR data to accurately
map the distribution of wetlands along the coast of New Han-
over County in North Carolina.

2. Materials and Methods

2.1 Study Area

The study was conducted in New Hanover County, North Caro-
lina, focusing on coastal wetland ecosystems that play a critical
role in the support of biodiversity and the regulation of envir-
onmental flows (New Hanover County, 2024). This area en-
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compasses diverse wetland habitats influenced by the region’s
unique coastal and tidal dynamics, with researchers from vari-
ous fields examining the impacts of landscape changes, sea -
level rise, and climate fluctuations on coastal wetland health
and biodiversity (Hilburn, 2024). The study site includes signi-
ficant estuarine and marsh areas that serve as protected zones,
supporting ecosystems services for the local environment and
communities (Port City Daily, 2023).

Figure 1. Study Area of coastal New Hanover County located
within the Wilmington City in North Carolina.

2.2 Data

We retrieved multispectral data, LiDAR and additional sources
of data as explained in subsequent sections.

2.2.1 Predictor Data

Multispectral Imagery - We retrieved multispectral im-
agery from the National Agricultural Imagery Program (NAIP)
and PlanetScope. NAIP captures high-quality-lea-on-data dur-
ing the growing season with minimal loud cover, offering 1m
spatial resolution across red, green, blue and Near-InfraRed
bands in a three-year cycle (Mainali et al., 2023). All four
bands were included in our model training. PlanetScope data,
acquired every five days year round, provided four bands
covering Near-Infrared, red, green and blue at a 1m spatial
resolution. To capture seasonal and phenological variations
in wetland reflectance (Mainali et al., n.d.), Planetscope im-
agery from spring (March-May), summer(June-August) and
Fall(September - November) of 2018, 2019, and 2020 were util-
ized.

Topographical Data - LiDAR point cloud data classified
as ”ground” and ”non-ground” returns were preprocessed to
extract (i) intensity image (ii) Digital Surface Model (DSM)
(iii) a Digital Terrain Model (DTM) (iv) Canopy Height Model
(CHM) expressed relatively to the river level.

Intensity is the return strength of the laser pulse that generated
each point, corresponding to the specific spectral wavelength
of the emitted laser. It is particularly characterized as the ra-
tio of the reflected light’s strength to that of the emitted light
(Chust et al., 2008). Wetland soils especially when saturated,
tend to absorb more of the LiDAR pulse than dry areas often
resulting in notably can you lower intensity values for wetlands
and inundated zones compared to non-inundated surroundings
(Mainali et al., 2023). The CHM was created by subtracting

the DTM from the DSM. To derive valley bottom features, the
DTM was adjusted relative to the river slope, creating a new
DTM expressed in terms of river-relative elevation. Both DSM
and DTM can improve the detection of forested wetlands that
are not distinguishable in the NAIP imagery (Maxwell et al.,
2016). All LiDAR-derived images were rasterized at 1m spa-
tial resolution using the nearest neighbor interpolation model to
optimize speed and accuracy.

The Canopy Height Model, CHM is given by:

CHM = DSM −DTM (1)

where DSM = Digital Surface Model
DTM = Digital Terrain Model

Figure 2. LiDAR Derived Topographic Indices.

Developing Digital Terrain Surface Metrics - Integrating
Topographic indices from DTM helps to capture dynamics such
as ground water influence, surface flow, and soil moisture dis-
tribution (Mohamedou et al., 2019). We extracted Topographic
Wetness Index (TWI), Depth To Water (DTW) and Topograph-
ical Profile Curvature (TPC). Topographical Wetness Index is
calculated using slope and specific catchment area, indicating
potential soil moisture levels based on terrain position (Rii-
himäki et al., 2021). Higher TWI generally correspond to wet-
ter areas TWI has proven useful for detecting areas prone to
wetland formation and inundation by estimating hydrologic re-
sponsiveness across landscapes. This is defined as

TWI = ln

(
a

tanβ

)
(2)

where tan(B) = the local slope
a = specific catchment area

Depth to Water is a soil moisture index based on the assump-
tion that soils closer to surface water, in terms of distance and
elevation , are more likley to be saturated (Mohtashami et al.,
2022), (Echiverri and Macdonald, 2019), (Larson et al., 2022).
The DTW is defined as

The depth to water Dw is given by:

DTW (m) = Hg −Hw (3)
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Figure 3. Surface metrics generated from Digital Terrain Model.

where c = principle distance
Dw = depth to the water table
Hg = ground elevation
HwZ = water table elevation

Topographic Profile Curvature describes the slope curvature
of the terrain, influencing water flow, velocity and direction
(Halabisky et al., 2022), (Li et al., 2020). Positive values of-
ten lead to diverging water flows, while negative values favor
converging flows, which are critical in forming saturated areas
favorable for wetland. This is defined as

Kp =
∂2z

∂x2
cos2 θ +

∂2z

∂y2
sin2 θ + 2

∂2z

∂x∂y
sin θ cos θ (4)

where c = principle distance
Kp = profile curvature
z = elevation
xandy = horizontal coordinates
= slope aspect angle

In addition to the above LiDAR-derived products, we also cre-
ated geomorphic landform as an additional predictor dataset
based on its recent use in research studies that have increased
wetland mapping and classification accuracy (Mainali et al.,
2023). Geomorphons are a recent DEM-derived classification
that identifies terrain patterns using local elevation relation-
ships. The method integrates measures of openness to define
areas as higher, lower, or at the same elevation relative to their
surroundings (Mainali et al., n.d.). This classification enables
a self-adjusting search that maps terrain features at multiple
scales simultaneously, leading to 498 geomorphons that repres-
ent common landforms such as valleys, ridges, peaks, and hol-
lows. This highlights the potential of geomorphons for identi-
fying the complex terrain of wetland differentiation (Mainali et
al., 2023),

2.2.2 Reference Data

Figure 4. Geomophorn Landform as additional surface metric.

Reference data with accurate georeferencing were sourced
from the National Wetland Inventory(NWI) and the North Car-
olina Coastal Region Evaluation of Wetland Significance(NC-
CREWS). NWI data for the study area was downloaded
from https://www.fws.gov/program/national-wetlands-
inventory/download-state-wetlands-data and the NC-CREWS
is available at https://www.deq.nc.gov/about/divisions/coastal-
management/coastal-management-gis-data/download-coastal-
wetlands-spatialNC-CREWS. All reference wetland data were
obtained in vector format and converted into binary rasters,
which we refer to as label data.

Figure 5. Multispectral NAIP Imagery with the corresponding
Groundtruth mask.

2.2.3 Data Pre-processing
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We ensured that all data were resampled to a uniform spa-
tial resolution of 1m and properly aligned within the area of
interest (AOI). The predictor data and reference data were geor-
eferenced in the North Carolina State Plane - NAD 1983 State-
Plane North Carolina FIPS 3200 (Meters)

2.2.4 Random Forest Classification

The Random Forest (RF) model was developed using the pre-
dictor input variables. The random forest algorithm was run
under four different scenario with different input predictor data
for each scenario. This was to assess the relevance of the dif-
ferent input predictor variables in the accuracy of the wetland
mapping.

Scenario 1 Under scenario 1, we employed the four bands of
the NAIP imagery with the surface metrics (TWI, TPC and
DTW) as the predictor variables. Together, these metrics al-
low the model to leverage topographic and hydrological data
for accurate wetland mapping, particularly in areas where soil
and vegetation indicators alone may not provide sufficient in-
formation.

Scenario 2 Under scenario 2, we employ the topographic in-
dices generated from LiDAR point cloud as additional inputs.
That is the Digital Surface Model, Canopy Height Model, Geo-
morphic Landform, and LiDAR Intensity.

Scenario 3 Under scenario 3, we refined the model by integrat-
ing land cover derived datasets such as Sentinel 2 land cover,
NDVI and NDWI. Combining these layers allows the Random
Forest model to capture distinct spectral and structural features
of wetlands, improving its ability to predict their locations with
greater precision and reliability.

Scenario 4 Under scenario 4, we employed all the pre-
dictor variables with the reference data to perform a multi-
classification showing the different wetland classes in the study
area using the random forest model.

To evaluate model performance, separate random data subsets
were generated for the dependent and independent variables:
one subset for model training (the calibration dataset) and an-
other for validation (the target dataset). Model quality was as-
sessed and the final predictions were validated on the full target
dataset, with precision, recall and f1-score metrics reported.

3. Results and Discussion

The results and accuracy of the wetland classification using
multispectral and LiDAR data are explained below based on
each scenario.

3.1 Scenario 1

The integration of only the topographic predictor variables un-
der scenario 1 generated the classified map showing the wetland
and upland (non-wetland) classes as shown in Figure 6 with its
evaluation performance metrics in Table 1 below.

From Table 1 above, wetland class has a relatively high preci-
sion, meaning that most predictions for this class are accurate.
However, the recall is slightly lower, suggesting that some in-
stances of wetland class may have been misclassified as other
classes. Non-wetland class has a high recall, indicating that the

Figure 6. Classified map showing areas of predicted wetland
extents under scenario 1

Class Precision Recall F1-score
Wetland 0.952 0.878 0.913
Non-wetland 0.932 0.975 0.953
Accuracy 0.939
macro avg 0.942 0.926 0.933
weighted avg 0.940 0.939 0.938

Table 1. Evaluation metrics for Random Forest classification -
Scenario1

model captures most actual instances of this class. The high f1-
score shows a balance between precision and recall, highlight-
ing the model’s effectiveness for this class. The model has a
strong overall accuracy across all classes, capturing nearly 94%
of cases correctly.

3.1.1 Scenario 2 Integrating the Canopy Height Model and
LiDAR intensity and the Geomorphic Landform generated the
following results as expatiated below. Figure 8 shows the clas-
sified map for scenario 2.

Class Precision Recall F1 score
Wetland 0.934 0.885 0.909

Non-wetland 0.935 0.964 0.949
Accuracy 0.935
macro avg 0.935 0.924 0.929

weighted avg 0.935 0.935 0.935

Table 2. Evaluation metrics for Random Forest classification -
Scenario 2

The overall accuracy under scenario 2 is 0.935, indicating the
model correctly classifies 93.5% of instances.The high preci-
sion and recall for both classes suggest good performance, es-
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Figure 7. Classified map showing areas of predicted wetland
extents under scenario 2 with misclassified pixels shown in the

red rectangular red box

pecially for the ”Non-wetland” class with a recall of 0.964, in-
dicating a low rate of false negatives. Moreover, the pixels in
the red boundary are upland areas that were misclassified as
wetland areas.

3.1.2 Scenario 3 Integrating landcover products showed the
following outputs as shown in the classified map in Figure 9
and evaluation metrics table in Table 3 below. The overall
accuracy under scenario 2 is 0.935, indicating the model cor-
rectly classifies 93.5% of instances.The high precision and re-
call for both classes suggest good performance, especially for
the ”Non-wetland” class with a recall of 0.964, indicating a low
rate of false negatives.

Class Precision Recall F1 Score
Wetland 0.936 0.895 0.915

Non-wetland 0.937 0.967 0.951
Accuracy 0.941
Macro avg 0.937 0.931 0.933

Weighted avg 0.937 0.941 0.939

Table 3. Evaluation Metrics for the binary RF model under
scenario 3

3.1.3 Scenario 4 The results after multiclassification with
the RF model are shown in the Classified map in Figure 11,
with the evaluation metrics shown in Table 4.

3.1.4 Variable Importance The overall importance of each
contributing predictor variable in all scenarios is summarized in
Figure 8. The depth to the water was of high importance due
to its direct influence on wetland hydrology. Depth To Water
which measures the vertical distance from the land surface to

Figure 8. Variable importance of each predictor variable

Figure 9. Classified map showing areas of predicted wetland
extents with newly predicted areas shown in yellow under

scenario 3

the water table, plays a pivotal role in determining soil satura-
tion levels, vegetation types and overall coastal wetland func-
tionality. Other variables such as Sentinel2LandCover, NDVI,
NDWI, and Canopy Height Model also highly contributed to
the wetland’s prediction. Integrating land cover data improved
the accuracy of the model by capturing both spectral and struc-
tural information. NDWI complemented NDVI, providing ad-
ditional insight into the moisture status of wetlands. Variations
in canopy height indicated the presence of different types of
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Class Precision Recall F1-score
Upland 0.969 0.897 0.932
Hardwood Flat 0.348 0.229 0.276
Pine Flat 0.335 0.253 0.288
Salt/Brackish Marsh 0.574 0.947 0.715
Riverine Swamp Forest 0.290 0.411 0.340
Pocosin 0.356 0.300 0.326
Headwater Swamp 0.492 0.171 0.254
Freshwater Marsh 0.429 0.252 0.318
Estuarine Shrub/Scrub 0.207 0.423 0.278
Accuracy 0.882
Macro avg 0.445 0.432 0.414
Weighted avg 0.908 0.882 0.889

Table 4. Classification Report

wetland.

Figure 10. Classified map of different wetland types in the AOI
under scenario 4

The model performs across different wetland types, showing
it’s generally accurate but struggles with certain classes like
”Estuarine Shrub/Scrub” and ”Hardwood Flat,” which have
lower F1-scores due to imbalances in precision and recall. The
model performs with an overall accuracy with an F1-score of
82.8%.

3.2 Conclusion and Discussion

The study evaluated the accuracy of Random Forest classi-
fication in mapping coastal wetland areas under diverse re-
mote sensing scenarios, focusing on New Hanover County,
North Carolina. The research integrated LiDAR, multispec-
tral data, and additional sources to enhance classification ac-
curacy. The results showed that integrating topographic indices
from LiDAR point cloud, landcover products such as NDVI
and NDWI, and multi-classification with the Random Forest

model significantly improved the overall accuracy of wetland
mapping. The Random Forest model’s performance in each
scenario was evaluated based on precision, recall, F1-score,
and overall accuracy. In Scenario 1, the model demonstrated
high precision for the wetland class, but slightly lower recall,
indicating some mis-classifications. However, the overall ac-
curacy was strong, capturing nearly 94% of cases correctly.
Scenario 2 showed improved precision and recall for both wet-
land and non-wetland classes, resulting in an overall accuracy
of 93.5%. Integrating landcover products in Scenario 3 further
enhanced the model’s performance, achieving an overall accur-
acy of 93.5%. The multi-classification in Scenario 4 showed
the model’s ability to perform across different wetland types,
with an overall accuracy of 88.2%. These results underscore
the model’s effectiveness in accurately classifying coastal wet-
land areas under diverse remote sensing scenarios, highlight-
ing its potential for practical applications in wetland mapping
and ecological research. The study’s findings provide valuable
insights into the efficacy of different data combinations in en-
hancing coastal wetland mapping accuracy, contributing to the
understanding of wetland ecosystems and their environmental
significance
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