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Abstract 

Reconstructing the interferometric phase in decorrelated regions is a significant challenge in interferometric synthetic aperture radar 
(InSAR) techniques, as decorrelation disrupts the continuity of phase fringes and obscures critical information. This paper presents a 
novel two-stage generative adversarial network (GAN) framework to address this issue. In the first stage, GAN is designed to reconnect 
fragmented phase fringes. In the second stage, GAN focuses on reconstructing the phase in masked regions guided by the reconnected 
fringes achieved from the first stage. The proposed model was trained on a simulated topographic phase with the SRTAM product. The 
proposed model achieves a structural similarity index (SSIM) of 0.9 and a peak signal-to-noise ratio (PSNR) of 30.4. Then, we 
conducted a quantitative evaluation with a real interferogram from the Greater Bay Area (GBA). The experiment results demonstrated 
the generalization capabilities of the proposal model, with an average correlation of 0.8 between the predicted and actual phases. The 
proposed approach can effectively preserve phase continuity, reconstruct masked areas, and mitigate the impact of decorrelation. It 
shows potential for use in topographic retrieval and ground deformation monitoring in InSAR applications. 
 
 

1. Introduction 

Phase decorrelation is one of the significant challenges in 
Interferometric Synthetic Aperture Radar (InSAR) applications, 
particularly over the vegetated regions (Hanssen, 2001; Lee and 
Liu, 2001; Abdallah et al., 2024a). InSAR relies on phase 
differences, characterized by high phase quality and coherence, 
between successive radar acquisitions to measure surface 
deformation (Zebker and Villasenor, 1992). However, in areas 
with steep terrain, denser vegetation, or rapid surface changes, 
the phase coherence is often reduced, leading to phase 
decorrelation (Gavas et al., 2023). This reduction can result in 
incomplete or noisy data, hindering the accuracy of InSAR 
measurements. 
 
Traditional phase filtering techniques are commonly used to 
mitigate decorrelation effects. For instance, the Goldstein filter, 
one of the most widely adopted algorithms for noise reduction 
before phase unwrapping, applies a spectral filter to remove 
high-frequency noise while preserving essential phase fringes for 
accurate unwrapped phase estimation (Goldstein and Werner, 
1998). Although effective in many scenarios, such methods often 
struggle in cases of severe decorrelation, particularly in areas 
with steep terrain or dense vegetation (Gavas et al., 2023). An 
alternative approach is the use of masking to exclude 
decorrelated regions; however, this can be time-consuming and 
requires expert input to accurately identify affected areas (Zhang 
et al., 2021). Unresolved masked areas lead to spatially 
incomplete InSAR results, resulting in the loss of critical 
information for applications such as topographic construction. 
 
Spatial interpolation methods, such as Kriging, offer a potential 
solution for reconstructing the phase over the decorrelation 
regions (Wu et al., 2013). Despite their effectiveness, these 
methods often face challenges with significant gaps or wrapped 
phase (Hippert-Ferrer et al., 2021). Additionally, statistical 
methods were explored for phase reconstruction, but they can be 
sensitive to the strength and quality of the recorded signals 
(Prebet et al., 2019). 
 

Recent advancements in deep learning (DL) have significantly 
transformed the field of InSAR such as deformation retrieval and 
interpretation (Abdallah et al., 2024b, 2025). In particular, 
generative adversarial networks (GANs) (Goodfellow et al., 
2014) have introduced innovative approaches for phase 
reconstruction in InSAR (Abdallah et al., 2024a). GANs 
comprise two neural networks—a generator and a 
discriminator—trained in an adversarial manner. The generator 
is designed to create realistic reconstructed outputs, while the 
discriminator evaluates their quality and provides feedback to 
enhance the performance of the generator in producing accurate 
reconstructions (Goodfellow et al., 2014). GANs have been used 
in various InSAR applications, including phase denoising (Fang 
et al., 2022), phase unwrapping (Zhou et al., 2022), atmospheric 
artifact removal (Rongier et al., 2020), simulating InSAR signals 
(Zhou et al., 2024), and generating realistic interferograms (Chen 
et al., 2021). 
 
Numerous GAN variants have also been explored. For instance, 
conditional GANs (cGANs) use extra information to guide both 
the generator and discriminator, allowing for more controlled 
generation (Isola et al., 2017; Nazeri et al., 2019). It has been 
proven particularly effective in image translation tasks, 
transforming images from one domain to another while 
maintaining contextual relevance by conditioning on input 
images (Isola et al., 2017). PatchGAN further improves image 
quality by focusing on local patches rather than the entire image, 
thereby capturing high-frequency details for sharper, more 
realistic outputs (Isola et al., 2017). Multi-stage GANs, which 
break down tasks into subtasks, with each GAN addressing a 
specific aspect, have shown impressive results in image 
translation, reconstruction, and inpainting tasks (Nazeri et al., 
2019). In the context of InSAR, the phase reconstruction 
procedure can be divided into two stages: fringe reconnection 
and phase reconstruction. Reconnecting the fringes based on 
remaining contextual information allows for a more accurate 
interpretation of the interferometric phase in decorrelated 
regions (Abdallah et al., 2024a). Thus, multi-stage GANs are 
well-suited to address these challenges. 
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In this work, we propose a novel two-stage GAN framework to 
reconnect phase fringes and reconstruct the phase over masked 
regions caused by decorrelation in a unified approach. The 
framework consists of two distinct GAN models with the same 
generator and a conditional PatchGAN discriminator. The first 
GAN, the Fringe Reconnector Network (FRN), focuses on 
reconnecting fragmented phase fringes disrupted by 
decorrelation. Once the fringes are restored, the second GAN, 
the Phase Reconstructor Network (PRN), reconstructs the phase 
in masked regions, leveraging the reconnected fringes as 
contextual information. It is worth noting that the choice of loss 
functions, such as pixel-level losses (L1 or L2 norms) and 
feature-level losses (perceptual loss), is critical for training 
GANs for image synthesis, with perceptual loss being especially 
effective in capturing higher-level perceptual differences for 
visually appealing results (Nazeri et al., 2019). In this regard, we 
designed a combined loss to enhance overall phase 
reconstruction and provide a more accurate interpretation of the 
InSAR interferometric phase. The proposed model is trained 
using simulated data and verified through real experiments. The 
results indicate the effectiveness of the model in phase 
reconstruction over decorrelation regions and demonstrate its 
generalization capabilities in different scenarios. 
 
The following sections of this paper are organized as follows: 
Section 2 provides an overview of the materials and methods, 
detailing the model architecture, data preparation process, and 
training methodologies. Section 3 analyzes and discusses the 
results obtained from the experiments. The paper concludes with 
Section 4, which summarizes the main findings and proposes 
potential avenues for future research. 
 

2. Material and Methods 

This section outlines the model architecture, dataset, 
preprocessing steps, and training process used in our proposed 
two-stage GAN framework for phase reconstruction over 

decorrelated topography. The model was trained and tested on an 
interferometric dataset derived from two regions in China. 
 
2.1 Model architecture 

The proposed approach employs a two-stage generative 
adversarial network (GAN) framework for phase reconstruction. 
The overall architecture of the two-stage GAN model is 
illustrated in Figure 1. The first stage focuses on fringe 
reconnection, and the second stage addresses masked region 
reconstruction, utilizing the reconnected fringes as contextual 
information. Each GAN comprises a generator and a 
discriminator and is trained in an adversarial setting. 
 
In the Fringe Reconnector Network (FRN), the generator 
receives sliced patches, including masked interferogram, masked 
fringes, and the corresponding mask patches, and learns to 
reconnect fragmented phase fringes caused by decorrelation (i.e., 
Figure 1 (a)). The discriminator evaluates the authenticity of the 
reconnected fringes by determining whether they are realistic or 
remain disconnected, using the ground-truth interferogram as a 
reference. Once the fringes are reconnected, the second stage, 
known as the Phase Reconstructor Network (PRN), focuses on 
reconstructing the phase in the masked regions (i.e., Figure 1 
(b)). The generator in this stage is guided by the reconnected 
fringes from the FRN, ensuring that the reconstructed phase 
aligns consistently with the surrounding interferogram. 
 
Both GANs share the same generator and discriminator 
architecture. The generator follows an encoder-decoder design, 
where the encoder downsamples the input patches twice. This is 
followed by eight residual blocks, which capture fine-grained 
details while preserving global context and ensuring smooth 
gradient flow across all layers. The decoder then upsamples the 
patches back to their original size. The discriminator, leveraging 
a PatchGAN, classifies 70 × 70 pixel segments of the generated 
phase as either real or fake. 
 

 

 
Figure 1. The proposed architecture for the interferometric phase reconstruction (IPR). a) The fringe reconnector network (FRN). b) 

The phase reconstructor network (PRN).  
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2.2 Dataset 

We trained the proposed model using a simulated InSAR dataset. 
The SRTM product is used to generate the topographic phase, 
located at 27°–29° Easting and 85°–88° Northing, as shown in 
Figure 2 (a). The simulated interferometric phase was computed  
 
using Equation (1) and wrapped to a value of 2π, as depicted in 
Figure 2 (b). A decorrelation mask was generated using a random 
function to create a coherence map, and a threshold of 0.5 was 
applied, resulting in approximately 50% of the pixels being 
masked, as shown in Figure 2 (d). 
 

𝜑𝜑(𝑖𝑖, 𝑗𝑗) = mod�
4𝜋𝜋 ∗ 𝐵𝐵⊥ ∗ ℎ(𝑖𝑖,𝑗𝑗)

𝜆𝜆 ∗ 𝑅𝑅 ∗ sin(𝜃𝜃) , 2𝜋𝜋� (1) 

 
where 𝜑𝜑(𝑖𝑖, 𝑗𝑗) is the wrapped phase of the pixel (𝑖𝑖, 𝑗𝑗), 𝐵𝐵⊥ is the 
perpendicular baseline, set to 100.0 m, 𝜆𝜆 is the radar wavelength 
(0.055 m), 𝑅𝑅 is the orbit height (907 km), 𝜃𝜃 is the incidence angle 
(42.1°), ℎ(𝑖𝑖,𝑗𝑗) is the altitude, obtained from the three arc-second 
SRTM DEM dataset. 

 
2.3 Preprocessing 

To prepare the data for the GAN models, we sliced the 
interferogram and the corresponding mask into smaller 
overlapping patches, each of size 256 × 256 pixels. A stride of 
128 pixels was used to ensure overlapping and capture contextual 
information between patches. This sliding window approach 
ensures that each patch shares information with its neighbors, 
both horizontally and vertically. Figure 2 (c) and (e) show 
examples of the interferogram and mask patches, respectively. 
The interferogram patches were normalized to the range of [0, 1] 
for input into the FRN. In contrast, they were normalized to the 
range [-1, 1] for the PRN to maintain data consistency across the 
stages. Fringe lines were identified from one of the initial feature 
maps of the VGG-19 model, which was pre-trained on the 
ImageNet dataset (Russakovsky et al., 2015; Simonyan and 
Zisserman, 2015). A threshold of 0.5 was applied to extract these 
lines, reinforcing the concept that the earlier layers in a deep 
convolutional neural network (CNN) function as edge detectors 
(Le and Kayal, 2021). 
 

 

 
Figure 2. The simulated data used for training the network. a) The geographic location of the SRTM used to generate the topographic 
phase. b) The simulated interferogram. c) The extracted patch from the interferogram. d) The simulated decorrelation mask. e) The 

extracted patch from the decorrelation mask. The patch size equals 256 × 256 pixels with a stride of 128 pixels. 
 
2.4 Loss function 

To optimize the two-stage GAN model, we employed a 
combination of reconstruction and adversarial losses. The 
adversarial loss encourages the generator to produce realistic 
interferometric phase reconstructions, while the reconstruction 
loss ensures that the reconnected fringes and masked regions 
align with the true phase values. The overall loss function for 
both GANs is defined as follows: 
 

min
𝐺𝐺

max
𝐷𝐷

ℒ = min
𝐺𝐺

�𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎 max
𝐷𝐷

ℒ𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℒ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� (2) 
 
where ℒ𝑎𝑎𝑎𝑎𝑎𝑎  represents the adversarial loss, ℒ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the 
reconstruction loss, and 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎  and 𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  are weighting factors 
that balance the two losses. In the FRN, the reconstruction loss is 
a feature-matching loss derived from the discriminator, whereas 
in the PRN, it is a weighted combination of pixel and feature 
space losses.  

 
2.5 Training and Evaluation 

The model was trained using a simulated dataset including 
topographic phase component, which was divided into an 80% 
training set and a 20%  validation set. Initially, the two GANs 
were trained independently with a learning rate of 10−5 , 
followed by joint training at a reduced learning rate of 10−5 until 
convergence was achieved. The Adam optimizer was utilized to 
iteratively optimize both the generator and the discriminator 
(Kingma and Ba, 2015). During training, the generator 
minimized the adversarial and reconstruction losses, and the 
discriminator distinguished between real and generated phase 
reconstructions. 
 
To evaluate the performance of the model, we compared the 
reconstructed phase data with the simulated truth, focusing 
mainly on decorrelation regions. Evaluation metrics included 
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accuracy, precision, and recall assessing fringe reconnection 
quality. Furthermore, the accuracy of the phase reconstruction is 
assessed through several metrics, including mean squared error 
(MSE), mean absolute error (MAE), peak signal-to-noise ratio 
(PSNR), and structural similarity index (SSIM). 
 

3. Results and discussions 

This section presents the results of the proposed two-stage GAN 
framework for phase reconstruction over decorrelated regions. 
The results include both qualitative visualizations of phase 
reconnection and reconstruction, as well as quantitative metrics 
that assess the accuracy and consistency of the reconstructed 
phases. 
 
3.1 Phase Reconnection 

The first stage of our framework is focused on reconnecting 
phase fringes in areas where decorrelation has disrupted the 
continuity of phase patterns. Figure 3 provides a side-by-side 
comparison of the input fragmented phase fringes (2nd column), 
which exhibit visible discontinuities, with the output reconnected 
fringes (3rd column) that show smoother transitions and fewer 
breaks in continuity. The ground truth fringe lines are displayed 
in the 4th column. The FRN effectively preserves the overall 
structure of the fringes while reconnecting broken segments, 
establishing a robust foundation for the subsequent phase 
reconstruction. 
 
Initially, the FRN generator assumes all masked pixels are 
positive. Through multiple iterations, the model learns to remove 
low-probability pixels, ultimately producing complete fringe 
lines. To quantify the effectiveness of this approach, we evaluate 
the reconstructed interferograms using reconnection metrics. As 
shown in Table 1, the model achieves high accuracy, precision, 
and recall, indicating that the reconnected fringes are structurally 
consistent with the ground truth in both the training and 
validation datasets. 
 

Data Accuracy Precision Recall 
Training 0.9230 0.8424 0.6853 

Validation 0.9197 0.8369 0.6887 
Table 1. Summary of Accuracy, Precession, and Recall scores 

for training and validation datasets used for FRN. 
 
3.2 Phase Reconstruction 

The PRN reconstructs the phase over masked regions, leveraging 
the output of the FRN as contextual information. Initially, the 
FRN was trained using ground truth fringe lines to familiarize the 
model with the general characteristics of the interferometric 
phase. As shown in Table 2, reconstruction using the PRN with 
ground truth fringes achieves state-of-the-art results. In the 
second step, the reconnected fringes are input to the trained PRN 
to adapt the model to actual fringe patterns. Figure 3 provides 
examples of the input-masked interferograms (1st column), the 
corresponding outputs after phase reconstruction (5th column), 
and the ground truth interferograms (6th column). The model 
demonstrates impressive performance in reconstructing 
interferograms, even when the reconnected fringes are 
incomplete (as seen in the 1st row). This performance is achieved 
after fine-tuning both models in a unified step. 
 
To quantify the effectiveness of this approach, we evaluate the 
reconstructed interferograms using reconstruction metrics. As 
shown in Table 2, the model achieves low mean MAE and MSE, 
as well as high SSIM and PSNR, indicating that the reconstructed 

phase is accurate and structurally consistent with the ground 
truth. The slight performance degradation is attributed to 
incomplete fringes in large, masked regions. 
 
The PRN focuses on reconstructing the phase over masked 
regions, using the output of the first GAN as contextual 
information. Firstly, we train the FRN network using the ground 
truth fringe lines to teach the model of the general characteristics 
of the interferometric phase. Table 2 shows that the 
reconstruction using the PRN with ground truth fringes achieves 
state-of-the-art results. The second step is to submit the 
reconstructed fringes to the trained PRN network to adapt the 
model to the actual fringes. Figure 3 shows examples of input-
masked interferograms (1st column), the corresponding outputs 
after phase reconstruction (5th column), and the ground-truths 
interferogram (6th column).  
 
To quantify the effectiveness of our approach, we evaluate the 
reconstructed interferograms using reconstruction metrics. As 
shown in Table 2, the model achieves a low MAE and MSE and 
high SSIM and PSNR on the training and validation, indicating 
that the reconstructed phase is accurate and structurally 
consistent with the ground truth. The slight degradation in the 
model performance is related to the incomplete fringes that may 
arise in large, masked regions. 
 

Edge Data MAE MSE SSIM PSNR 
Ground
-truth 

Training 0.0100 0.0003 0.9864 41.1115 
Validation 0.0101 0.0003 0.9861 41.3182 

Reconst
ructed 

Training 0.0198 0.0037 0.9034 30.4032 
Validation 0.0198 0.0037 0.9033 30.4031 

Table 2. Summary of the MAE, MSE, SSIM, and PSNR scores 
for training and validation datasets used for PRN. 

 
3.3 Two-stage GAN 

To assess the contribution of each stage in the GAN framework, 
we conducted an experiment evaluating the performance of the 
model when using the PRN without the support of fringe 
reconnection, effectively creating a one-stage solution. As shown 
in Table 3, the two-stage GAN framework outperforms the 
single-stage GAN by 8% in SSIM and 36% in PSNR. These 
results underscore the significance of dividing the interferometric 
phase reconstruction task into simpler subtasks, demonstrating 
that fringe reconnection substantially enhances the overall 
performance. Future improvements to the FRN will likely further 
push the framework towards state-of-the-art results. 
 

Edge MAE MSE SSIM PSNR 
Ground-truth 0.0101 0.0003 0.9861 41.3182 
Reconnected  0.0198 0.0037 0.9033 30.4031 

Without 0.0256 0.0076 0.8256 22.1257 
Table 3. Summary of MAE, MSE, SSIM, and PSNR scores for 

different edge configurations used in the PRN. 
 
3.4 Generalization to Unseen Data 

One of the primary challenges in deep learning is ensuring that 
trained models can generalize effectively to unseen data. In our 
experiments, the test region in the Greater Bay Area (GBA) 
served as a meaningful case study to evaluate the robustness of 
our model. The results suggest that the two-stage GAN 
framework generalizes well to different terrains with similar 
decorrelation patterns. Figure 4 (a) shows the geographic location 
of the study area while Figure 4 (b) and (c) display the processed 
unwrapped phase and coherence values in the radar coordinate 
system, accounting for shadow and layover decorrelation using 
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GAMMA software (Werner et al., 2000). A coherence threshold 
of 0.5 was applied to mask unstable pixels. 
 
Figure 5 illustrates the reconstruction process for the masked 
patches of the interferogram in the test region. Despite the 
differences between training and testing data, the performance of 
the model remains robust, demonstrating adaptability to different 
topographic environments. This is critical for real-world 
applications, as InSAR data is often collected over diverse 
geographic areas, and a robust reconstruction method must 
handle variations in topographic conditions and decorrelation 

levels. The results for fringe reconnection and phase 
reconstruction remain consistent across different terrains, 
validating the effectiveness of the model in handling 
decorrelation over varying topographic features. The model 
demonstrates a correlation of 0.72–0.87 between the 
reconstructed and ground truth phases. The primary source of 
residual errors stems from phase-shifting areas, highlighting the 
role of fringe lines and the importance of further enhancing the 
fringe reconnection process. 
 

 

 
Figure 3. Results of reconstructing missing interferometric phase using a sample of the processed patches from the simulated InSAR 

dataset. The first column displays the masked interferograms. The second column presents the corresponding masked fringe lines. 
The third column illustrates the reconnected fringe lines. The fourth column shows the ground truth fringe lines. The fifth column 

provides the reconstructed interferograms. The sixth column contains the ground truth interferograms. 
 

 
Figure 4. The real data used to test the networks. a) The Greater Bay Area (GBA) geographic location. The actual interferogram. c) 

The actual coherence. 
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Figure 5. Results of reconstructing missing interferometric phase using a sample of processed patches with the corresponding 

decorrelation mask at a threshold of 0.5. The first column shows masked interferograms. The second column shows the 
corresponding masked fringe lines. The third column gives reconnected fringe lines. The fourth column contains the ground truth 

fringe lines. The fifth column gives corrected interferograms. The sixth column contains the ground truth interferograms. The seventh 
column contains the location of the residues. The eighth column contains the cross-plots of actual and predicted phases over the 

masked regions. 
 

4. Summary and Conclusions 

This paper presents a two-stage GAN-based framework for 
reconstructing interferometric phases over decorrelated regions. 
The first stage addresses the reconnection of fragmented phase 
fringes, while the second stage reconstructs the phase in masked 
regions, using the reconnected fringes as contextual information. 
The model was trained and tested on data from two areas in 
China, demonstrating its ability to generalize across different 
terrains with similar topographic complexities. 
 
The experiment results indicate that the two-stage GAN 
framework outperforms single-stage reconstruction methods 
which use the mask as the conditional map, providing both 
quantitative and qualitative improvements in phase continuity 
and reconstruction accuracy. The model effectively mitigates 
decorrelation effects and achieves smoother phase transitions 
across masked regions. These enhancements are reflected in low 
error rates and high similarity metrics in both training, validation, 
and test datasets. Furthermore, the strong performance of the 
model in the test region highlights its potential for generalization 
to new, unseen geographic areas. 
 
However, several challenges still remain, including instability 
during training and the high computational demands associated 
with both training and inference. The performance of the model 
in areas with extreme decorrelation may require further 
refinement, possibly through enhancements to the FRN. 
Additionally, incorporating transfer learning techniques could 

improve the ability to handle large-scale deformation and fine-
grained noise. 
 
In summary, the proposed two-stage GAN framework offers a 
promising solution for phase reconstruction in InSAR 
applications. It enables more accurate and reliable phase 
reconstructions over decorrelated regions. These advancements 
will enhance the monitoring and analysis of ground terrain in 
densely vegetated areas and natural hazards like earthquakes, 
landslides, and volcanic activity. 
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