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Abstract

This study investigates the relationship between flame length measurements and the temperature of the refractory lining in combus-
tion chambers with multiple burners interacting in terms of fluid dynamics. As this has not been done before, this study investigates
the general feasibility and can serve as a baseline for future studies. The data stems from the post-combustion chamber of a haz-
ardous waste incineration plant, where waste is burned at very high temperatures to minimize pollution. It was recorded by a
near-infrared camera, which samples pixel-wise temperatures with a frequency of 50Hz. Four burners mounted at the same height
are considered within the chamber, producing four flames mutually influencing each other. The flames are segmented with a deep-
learning model. The acquired flame masks serve as a basis to determine individual flame properties. We introduce burner axis flame
length and medial axis flame length and show that the shape or bending of a flame can be deduced depending on the relationship
between those two lengths. Combined with their magnitude, these lengths indicate whether certain parts of the refractory wall
are at risk of exposure to thermal stress, making the implementation of an automatic, generalizable, and transparent combustion
control system feasible. Finally, we also highlight that all burners must be considered for effective automatic control in a complex
multi-burner geometry. This system optimizes burner settings based on the observed and measured flame geometry, maximizing
throughput while minimizing refractory wear, thus improving sustainability.

1. Introduction

Over half of the world’s CO2 emissions stem from the energy
and industrial sectors. Industrial high-temperature and com-
bustion processes are responsible for the largest share of these
emissions, according to the European Commission (2020). The
growing concern over climate change and its direct link to CO2

emissions has emphasized the urgent need for sustainable solu-
tions and stimulated intensive research towards decarbonizing
the process industry. Although the measures to reduce the en-
vironmental impact are already having an effect and will con-
tinue unabated, there are limits since some of the emissions are
inherent to the respective process and cannot be entirely preven-
ted (as in the calcination process of cement production or waste
incineration). Although carbon capture, utilization, and stor-
age technologies have become essential for achieving net zero,
they can only serve as a last resort. Consequently, further op-
timization and advanced process control strategies have become
crucial for reducing emissions and enhancing sustainability.

The optimization of industrial combustion processes is based on
several pillars, including offline approaches focused on optim-
izing the ideal steady state and online optimization. Research
efforts range from improving the processes themselves to op-
timizing entire plants. Experimental insights and findings from
plant operation during maintenance downtimes are complemen-
ted by numerical methods like computational fluid dynamics, a
powerful tool for understanding and designing, e. g., more effi-
cient burners and combustion chambers like Yang et al. (2002).
Effective online optimization builds on detailed and reliable in-
formation about the current process state, delivered by adequate
sensor equipment installed throughout the plant and in the com-
bustion chamber. Ideally, a fully automated control system can
be set up to adapt to dynamic changes and ensure optimal plant

operation. This is as important as it is challenging in those
applications involving fuels of fluctuating composition or with
otherwise highly variable properties such as their moisture and
calorific value. These fuels, e. g., refuse-derived fuels employed
as alternative fuels to decarbonize cement production or utilized
for energy generation, necessitate constant adaptation of burner
settings. In reality, owing to the complex dynamics, only parts
of the process are entirely automatized, and optimal set points
for operation often have to be determined by experienced oper-
ators in the control room, leaving the control partly open-loop.
To set up an effective closed-loop control for the combustion
process, including automatic burner control, three requirements
have to be met: (i) the availability of detailed information, (ii)
continuous in an automated and quantitative manner, and (iii)
options to adjust the relevant settings accordingly. This paper
contributes to closing the gap by addressing the second aspect:
We introduce a generalizable approach to flame-feature extrac-
tion that is particularly suited for complex multi-burner setups
and demonstrate the application potential of the proposed novel
flame properties.

As an application example, we consider post-combustion cham-
bers of rotary-kiln-based hazardous waste incineration plants
(see Figure 1 for an overview), which are ideally suited for
deriving generalizable solutions due to their multi-burner geo-
metry with the inherent need to consider the challenges asso-
ciated with complex dynamics of interacting flames. Further-
more, the complex interplay of various ecological, safety, and
economic objectives in hazardous waste incineration, such as
maintaining minimum temperatures, ensuring complete burnout,
maximizing energy recovery, and optimizing throughput while
reducing emissions, stabilizing the process, and minimizing re-
fractory wear, highlights the importance of a sophisticated con-
trol system. State-of-the-art facilities employ comprehensive
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Figure 1. Schematic of the combustion section of a hazardous waste incineration plant, with a rotary kiln and a post-combustion
chamber. In the post-combustion chamber, various burners are mounted to the walls. Their flames can be visualized using an NIR

camera installed at the chamber’s ceiling. The encoded information can be used to optimize the flame shape by adjusting the burner
settings. The corresponding image-processing flow for automatic parameter extraction proposed in this paper is shown at the right.

process and plant technology to ensure safe and efficient op-
eration. Regulatory compliance is maintained through stringent
monitoring of temperatures and emissions, with automatic shut-
downs in place for violations. However, the primary focus is
often on global parameters, such as temperature and emissions.
In contrast, local phenomena, such as the spatial distribution
of temperatures and flame characteristics (like flame length)
within the combustion chamber, can provide valuable insights
for optimization. Infrared (IR) camera technology offers an ex-
cellent way to capture this spatial information, yet translating it
into actionable control inputs, especially closed-loop, remains
challenging. It is a precious tool that regularly provides op-
erators with real-time visual feedback on combustion condi-
tions, thereby allowing for improved manual optimization of
burner settings. In principle, state-of-the-art image processing
(including artificial intelligence (AI) methods) can automatic-
ally extract quantitative information characterizing the current
process state from IR images recorded in the combustion cham-
ber. However, identifying meaningful metrics for utilization
in combustion control is not straightforward since parameters
must be identified in the images, which can be linked to a con-
trollable root cause. Parameters such as flame length, structure,
and wall temperatures are interesting, although they vary sig-
nificantly with operational conditions. Furthermore, it depends
on plant specifics, such as the number of burners and their ar-
rangement, which of the available parameters would be suitable
process values for automatic control. One further aspect of suc-
cessfully implementing technological innovations into a plant’s
control scheme is the transparency and explainability to human
operators. This poses additional challenges for leveraging AI’s
novel possibilities, particularly deep-learning (DL) methods, to
extract characteristic parameters automatically.

To tackle that, this paper presents an approach to subsequent
flame segmentation and feature extraction, combining DL im-
age processing methods for pixel-wise flame detection with pro-
cess knowledge for performing 2D flame measurements. This
two-stage approach enhances transparency and reduces the risk
of model performance degradation over time since AI is only
used to solve the rather generic task of flame segmentation.

Last but not least, it facilitates the approach’s generalizabil-
ity to other plants and similar applications. For example, this
could prove highly useful in the transformation towards green
hydrogen with its differing combustion behavior. As a res-
ult, this paper presents novel parameters for real-time monit-
oring and closed-loop control of multi-burner combustion sys-
tems and a robust method for automatically and in real-time
obtaining this information in the post-combustion chamber of
a hazardous waste incineration plant. The proposed approach
optimizes burner settings dynamically by leveraging advanced
sensor technologies and data-driven models, ensuring safe, effi-
cient, and sustainable operation. Specifically, metrics for meas-
uring the length of a flame based on near-infrared (NIR) ima-
ging technology are considered since they are of interest from a
maintenance perspective: While the throughput should be high
to use the plant’s optimal capacity, a high thermal load dam-
ages the refractory lining and should be kept to the minimum
required for complete burnout. Flames with a potentially dam-
aging extent to the refractory lining should hence be detected
early to optimize the corresponding burner settings (swirl, axial
air, fuel mass flow rate) as far as possible. Therefore, we assess
the proposed characteristic parameters’ potential to capture un-
desirable process states in multi-burner systems by analyzing
their thermal effect on the combustion chamber wall. As a word
of caution, the analysis is based on real-world data from a plant
in which the processes are already optimized manually. Hence,
the statistical significance of those results can only be limited.
Still, they strongly indicate that the proposed parameters can
be of practical use. Moreover, our results provide an essential
baseline for similar future research.

2. Related Work

The use of advanced process control systems, often even com-
bined with the installation of IR cameras, for online optimiz-
ation of the combustion process is a well-established standard
in plants of the process industry around the world. They are
ranked among the best-available techniques for waste incinera-
tion by the European Commission (2019) and ensure safe 24/7
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operation. However, due to the manifold challenges presen-
ted in Section 1 associated with further (online and offline) op-
timization of industrial combustion processes and additionally
driven by the associated high ecological as well as economic re-
wards, this remains a highly active field of research and product
development. Since classical PID controllers are insufficient
for complex multivariable systems, various approaches have
been introduced, including fuzzy logic, model-predictive con-
trol, and digital twins (Tang et al. (2024), Hammerschmid et
al. (2023)). Yet even more critical for successful automatic,
proper closed-loop control in process plants is detailed real-
time information about the current process state, which is a pre-
requisite for dealing with fast dynamics, particularly in indus-
trial combustion processes. Advances in sensor equipment and
increased computation power have enabled new possibilities to
collect, analyze, and utilize data throughout process plants in an
automated fashion. In particular, AI methods offer new options
for solving complex problems in a data-driven manner, as sum-
marized by Shang and You (2019) in the context of the process
industry. While AI is already routinely applied in many applic-
ations, from autonomous driving and industrial automation to
medical imaging, its implementation in the process industry is
still in its infancy, and most studies are purely academic. Of the
many exciting ideas and promising research results related to
this work, we highlight work on soft sensors for the process in-
dustry and flame characterization in industrial combustion pro-
cesses.

Soft sensors are a beneficial complement for hardware sensors
whenever they are unavailable, for technological reasons, high
costs, or because sensor installation in the plant is complicated
or hindered due to challenging conditions. Soft sensors com-
bine the input of existing sensor equipment to calculate novel
process characteristics in real time. This can be achieved by
models based on detailed expert knowledge about the processes
or by using AI in a data-driven manner. The latter corresponds
to a supervised regression task and has gained popularity for
model development. Kadlec et al. (2009) and Jiang et al. (2021)
summarize areas of promising application together with the in-
herent, in parts severe, challenges characteristic for the process
industry: heterogeneity and quality of the data, drifts of sensors
and processes, and co-linearity, which require thorough data
preparation and curation along with regular maintenance. Re-
cent soft-sensor developments which constitute a valuable in-
put for improving process control of industrial combustion pro-
cesses are related to the estimation of emissions (Klier (2023),
Bunsan et al. (2013), Norhayati and Rashid (2018), Xia et al.
(2024)) and (e. g., for co-incineration in cement plants) product
quality (Ali et al. (2022), Pani et al. (2013)).

Different sensor technologies are available for directly assess-
ing flame properties and their continuous monitoring in prac-
tical applications, as summarized by Ballester and García-
Armingol (2010). The most direct feedback on the current com-
bustion process can be accessed by camera technology installed
inside the combustion chamber. Depending on the composi-
tion of the combustion atmosphere and the details of interest
(refractory lining of the combustion chamber, the fuels, or the
flame bodies), appropriate camera technology with a suitable
spectral range can be selected for visualization. Using image
processing to automatically interpret the corresponding (IR) im-
ages and extract relevant features has sparked research interest
but is not routinely used for process control. Flame paramet-
ers with application potential for automatic flame assessment in
industrial combustion processes consider geometrical, lumin-

ous, and color characteristics, primarily based on conventional
image-processing methods. Those can be used to make quant-
itative comparisons of novel burner set-ups (Lee et al. (2021))
and different modes of operation (Yan et al. (2002)). Using
three CCD cameras, even a three-dimensional flame model
has been proposed for detailed monitoring by Lu et al. (2005).
The idea of using vision systems for furnace control and waste-
to-energy plants is also present in the literature, e. g., presented
by Lu et al. (1999) and Zipser et al. (2006). This is especially
relevant for the dynamic adaptation of burner settings in the
context of varying fuel properties of refuse-derived alternative
fuels and waste incinerators. Matthes et al. (2023) proposed a
novel measure of flame stability in image sequences. Flame
length has also been considered in the literature. However, the
existing definitions are limited to the single-flame case, as flame
length is usually defined with respect to a straight horizontal (or
vertical, depending on the orientation of the burner) „center-
line“ of the flame starting at the burner tip. Regarding the en-
dpoint, different definitions (associated with various methods
to measure them) can be found in the literature, as summar-
ized by, e. g., Becker and Liang (1978) or Chu et al. (2024).
The most common definition is based on the position where
the stoichiometric condition occurs, which is particularly use-
ful from the viewpoint of chemistry to compare flames as mani-
festations of exothermic reactions. However, it is not practical
for industrial applications. Other definitions are based on (ther-
mographic) imaging techniques, defining the endpoint based
on the temperature distribution along the centerline or straight-
forwardly using the flame tip of the visible part of the flame
with regard to the centerline. A generalization appropriate to
quantify the properties of the highly interacting flames in multi-
burner geometries of industrial combustion chambers—where
the concept of the centerline is not straightforward—has not
been established yet. Utilization in practical applications re-
quires that the derived parameters encode meaningful informa-
tion about the process state. As a data-driven alternative to ex-
pert knowledge, the relation of novel parameters to other meas-
urements can be analyzed to assess their usefulness. For ex-
ample, as a performance test, Hernández and Ballester (2008)
used the capability to estimate NOx emissions (closely linked
to the combustion conditions).

While the extensive research efforts and, e. g., the position pa-
per of the ProcessNet Expert Group "Waste Treatment and Re-
cycling" (2022) underline the interest in viable solutions, there
is still a shortfall of already existing geometric measurements
concerning their applicability in multi-burner settings with
strongly interacting flames. The recent availability of DL mod-
els for flame segmentation (Großkopf et al. (2021), Landgraf et
al. (2023a)) offers the possibility to segment multiple and even
partly overlapping flames. Thus, the image-based flame charac-
terization by characteristic parameters also becomes feasible in
more complex plant geometries for the first time. Klier (2023)
already considered flame lengths in a multi-burner setting using
parts of the same data; we built on their definitions and refined
them for our purpose. In addition, by investigating the relation-
ship between flame lengths and combustion chamber wall tem-
peratures, we establish for the first time the potential of novel
flame length definitions for practical applications.

3. Data

The NIR image data, on which this study is based, was recor-
ded for almost 1.5 years in the post-combustion chamber of
a state-of-the-art industrial hazardous waste incineration plant.
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Figure 2. Thermal image of the chamber with all burners active.
The burner starting points, as well as their axes, are included.

The circle accentuates the geometry of the chamber on the
burner level. Finally, three temperature fields are highlighted.

The camera technology and measurement setup are described
in Section 3.1. More details on the dataset are presented in Sec-
tion 3.2. Since the data is firmly protected within the industry,
the dataset cannot be made available. A comparable dataset,
however, in the visual spectral range, was published by Land-
graf et al. (2023b).

3.1 Measurement Setup

A typical hazardous waste incineration plant design is shown
schematically in Figure 1. It combines a (slightly tilted) rotary
kiln and a post-combustion chamber to ensure the safe and en-
vironmentally friendly disposal of various hazardous materials
in solid, pasty, liquid, and gaseous form in compliance with
the regulatory requirements. The top view of the circular post-
combustion chamber shows the walls with several burner open-
ings and the opening of the rotary kiln. The liquid burners ana-
lyzed here are installed at equal angular intervals and the same
height as the post-combustion chamber.

The image data (see Figure 2 for an example) has been recor-
ded at a frequency of 50Hz using the PYROINC 768N model
by DIAS, with a spectral range of 0.8 µm to 1.1 µm (near in-
frared). This spectral range is characterized by low transmis-
sion through the flames’ soot; hence, this technology is applic-
able to visualize the flame bodies (Waibel, 2014). Exceptions
are pure fuels such as natural gas or fuels with a high water con-
tent, which burn with flames that are mostly transparent in the
NIR range. The sensor has 768 pixel x 576 pixel, and the res-
ulting images contain pixel-wise temperature information in the
temperature range 600 ◦C to 1500 ◦C, subject to measurement
uncertainty of 2% (3% for object temperatures above 1400 ◦C).
If necessary, it is calibrated every one and a half years using a
black body. The camera was inserted into the post-combustion
chamber through a guiding tube at its top, and it was equipped
with protective measures (cooling and cleansing) appropriate
for 24/7 operation.

3.2 Dataset

For our analysis, we rely on 879 frames showing different situ-
ations in the post-combustion chamber. The selection was drawn
from frequent measurement campaigns conducted over almost
1.5 years with the setup described in Section 3.1. The dataset
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Figure 3. Scaled temperature distribution for all frames
distinguished by field.

covers the range of typical process situations relevant to auto-
matic control, with all prevalent combinations of active burn-
ers present. One exemplary situation is shown in Figure 2 as
a grayscale image, where the temperature range of this image
was mapped to 0 to 255. Each frame contains up to four burner
flames, and individual burners can be turned on and off indi-
vidually for process control. Additional flames could emerge
from the two natural gas burners (visible as dark holes on the
left and right of Figure 2) and the rotary kiln at the bottom.
However, these flames have been excluded from our analysis.
The undisturbed fuel trajectory of each burner is indicated by
an arrow in Figure 2.

From the three regions denoted as field 1, field 2, and refer-
ence field, we extract spatially averaged temperatures using the
median to be robust concerning outliers. Field pixels that are
covered by flames are excluded from the median. We chose the
specific positions of field 1 and field 2 because they are good
examples of different thermal stress situations. The reference
median temperature of the reference field is used to scale the
extracted temperatures of field 1 and field 2. The scaling is done
since the overall temperature in the chamber can vary consider-
ably, and we regard the upper left corner (showing only the wall
of the post-combustion chamber, not influenced by any burner)
as sufficiently robust to short-time fluctuations throughout all
recorded data. Figure 3 shows the scaled temperature distri-
butions for both fields over all frames. Within our dataset, both
fields are hotter than the reference field, with field 2 often reach-
ing higher temperatures than field 1.

4. Methodology

This section will present our procedure as outlined in Figure 1.
First, we describe the details of the segmentation process. Af-
terward, we introduce the flame lengths investigated in this work.

4.1 Flame Segmentation

We rely on an updated version of the DL model introduced
by Landgraf et al. (2023a) to segment flames. It generates one
flame mask per burner. The segmentation results are then post-
processed using scikit-image (van der Walt et al., 2014) in two
steps: Firstly, holes in the flames are removed, and secondly,
the number of segmented flame areas per burner is limited to
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Figure 4. Schema of both flame lengths. The BA flame length is
the distance between the burner position and the last pixel of the

segmented flame along the undisturbed burner axis. The MA
flame length is the longest path of the flame skeleton extracted

from the largest segmented flame area.

one. Since not all flames have one body, the DL model might
(correctly) detect several disconnected regions. Smaller regions
are dropped, and flame lengths are extracted from the most sig-
nificant connected component. An example result of the final
segmentation can be seen in Figure 5.

4.2 Flame Length

We focus on two flame lengths in this study: burner axis (BA)
flame length and medial axis (MA) flame length, which are il-
lustrated in Figure 4 as well as Figure 5. All lengths have been
scaled concerning the chamber cross section at burner level us-
ing the respective burner axes, i. e., the arrows’ lengths depicted
in Figure 2 are the corresponding scaling factors.

4.2.1 BA Flame Length The BA flame length describes the
distance between the burner location and the most distant seg-
mented pixel along its (undisturbed) fuel trajectory, i. e., along
the burner axis. This property generalizes (to arbitrarily po-
sitioned burners) what is usually referred to as flame length
in the literature, which is especially beneficial in the context
of a single burner with an undisturbed flame. A BA flame
length example for burner 1 can be seen on the left side of Fig-
ure 5. A line is included, showing the burner’s fuel trajectory
over the entire chamber cross-section. The line color is red for
parts overlapping with burner 1’s flame; otherwise, it is white.
The red segment represents the BA flame length, which, when
scaled to the full chamber length, scores a value of 0.49 in this
example. Generally, the BA flame length lies between 0 and 1
but can also become slightly larger than 1 (cf. Figures 6 and 7)
if the flame reaches the opposite wall and is deflected upwards.

4.2.2 MA Flame Length We extract the skeleton of a seg-
mented flame mask using the Zhang method (Zhang and Suen,
1984) as implemented in scikit-image (van der Walt et al., 2014).
We rely on the „analyze_skeletons“ method of the Python pack-
age „FilFinder“ (Koch and Rosolowsky, 2015) for further ana-
lysis. It can extract the longest path within a skeleton as illus-
trated in Figure 5. We refer to the length of the longest path as
MA flame length. As mentioned, we remove holes in the seg-
mented mask before the skeleton extraction as they can cause
a deceptively long MA flame length. We highly weigh the
skeleton pixel closest to the burner to ensure that the longest
path’s starting point is always near the burner. Weighting can
be achieved by giving this pixel a higher value in an otherwise
binary mask. Again, the MA flame length is scaled by the full
chamber length, resulting in 0.75 in Figure 5. As the MA flame
length is not straight, it can be longer than the full chamber
length, leading to values that are considerably greater than one.
The extensive range of obtained MA flame lengths (see Fig-
ures 6 and 7) reflects the variety of flame shapes in the dataset.

5. Results and Discussion

To demonstrate the application potential of the flame lengths
defined in Section 4.2 for flame control, particularly for the
multi-burner scenario, we evaluate their information content
about the damage potential of flames touching the refractory
lining. High temperatures are related to thermal stress. How-
ever, this information needs to be traced to its source to adapt
the burner settings accordingly.

We focus on burner 1 and burner 2 in this analysis, as they have
the highest variation in length. We defined fields 1 and 2 so that
they are positioned where the respective burners’ undisturbed
fuel trajectory would hit the opposite wall. Furthermore, field 2
covers the wall where the flame of burner 1 hits the wall when
it’s strongly affected by burner 2. This problem is, of course,
symmetric and could be generalized to all other burners. How-
ever, here, we concentrate on those examples where the benefit
of the novel parameters and their interplay can be most clearly
analyzed and discussed.

Regarding field 1, Figure 6 shows both the MA flame length and
the BA flame length of each frame, color-coded by the scaled
median temperature of the field 1. As expected, field 1 has
a comparatively low median temperature when the BA flame
length is small. Moreover, a high MA flame length and a BA
flame length below 0.8 do not necessarily lead to high temper-
atures. In this area, the flame usually bends towards its right
(due to the effect of burner 2) and thus does not reach the op-
posite wall. Accordingly, the field 1 has no high temperatures.
One cluster, however, is distinguishable: When the BA and
MA flame lengths are high and almost equally significant, the
field 1 is approximately 5% warmer than the reference field.
This cluster represents frames during which burner 1’s flame is
straight and long and thus reaches the opposite wall. An ex-
ample where the flame is straight, and both lengths are compar-
ably long, can be seen in Figure 2. However, the flame is too
short to reach the wall. Hence, the relation between BA flame
length and MA flame length can be used to identify flames
with a high potential for thermal stress at the opposite wall of
the combustion chamber. Burner settings can thus be adjus-
ted before the refractory heats up, reducing permanent damage
as a benefit. This intuitive finding is easily generalizable to
other geometries. However, due to the complex interplay of the
flames in a multi-burner geometry, flames cannot be considered
isolated.

To show a more elaborate analysis, we rely on field 2. The
data is shown in Figure 7, where we highlighted two counter-
intuitive clusters. These clusters show that all flames must be
monitored due to their interaction in a multi-burner system. The
cluster on the bottom left would have a naive expectation that
the wall temperature in the field 2 is low since the burner 1 flame
is short. This is, however, not the case; this cluster reaches
scaled temperatures of around 1.08. Another cluster (where
both lengths are considerable) reaches high temperatures. Fol-
lowing our previous argumentation, this would indicate a very
straight flame. In both cases, the field 2 should not be reached
by the flame of the burner 1. Burner 2 is responsible for this, as
it has a vast and straight flame in these frames, which hits the
field 2 and causes high temperatures. Analogous to field 1 and
burner 1, field 2 is opposite burner 2. Thus, such a setting can
be avoided by additionally monitoring the burner 2’s BA flame
length and MA flame length.

We filtered out cases with a BA flame length of burner 2 higher
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0.49 0.75

Figure 5. Examples for BA flame length and MA flame length for burner 1. The red shading also shows the segmentation results of the
DL model after post-processing. The undisturbed fuel trajectory of the burner 1 is illustrated by the white line in the left image, and its
overlap with the segmented flame (red) is colored in red. The length of the red part is the BA flame length. The red curvy line in the

red flame represents the longest skeleton path; its length is the MA flame length. Both scaled lengths for this example images are
denoted in the top-left corner of the images.

0.25 0.50 0.75 1.00 1.25
MA flame length

0.2

0.4

0.6

0.8

1.0

BA
 fl

am
e 

le
ng

th

1.01

1.02

1.03

1.04

1.05

sc
al

ed
 fi

el
d 

1 
m

ed
ia

n 
te

m
pe

ra
tu

re

Figure 6. Scatter plot of BA flame length versus MA flame
length of burner 1. Each dot represents one frame and is colored

according to the scaled median temperature of the field 1.

than 70% of the chamber cross-section for a deeper analysis.
The results can be seen in Figure 8. In the remaining cases,
a small flame correlates with a minor temperature difference
between the field 1 and the reference field. It also shows that an
increased MA flame length leads to higher temperatures. The
median of field 2 can become over 10% hotter than the refer-
ence field median. This is also the case for smaller BA flame
lengths. An example of this can be seen in Figure 2. The flame
is bent towards its right, reaching the field 2. High temperat-
ure occurs mainly when the MA flame length is between 0.75
and 1.2, and the BA flame length is between 0.5 and 0.8. Thus,
the ratio of two lengths can be used to conclude the shape of
the flame. This knowledge can then indicate the extent of the
thermal stress on adjacent fields, such as field 2. Again, this is a
relatively intuitive fact. However, it demonstrates the novel MA
flame length’s potential to contain crucial information about the
flame shape in an explainable and utilizable way. Since these
flame measurements can be extracted in real-time with high
transparency, they can easily be included in a closed-loop pro-
cess control system for optimized burner settings. This finding
could also be generalized to other geometries: an MA flame
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Figure 7. Scatter plot of BA flame length versus MA flame
length of burner 1. Each dot represents one frame and is colored

according to the scaled median temperature of field 2. Two
clusters are highlighted.

length disproportionate to the BA flame indicates a strongly
bent flame. Then again, the described situation does not always
cause high relative temperature differences as illustrated in Fig-
ure 8. This can partially be attributed to several limitations of
this study: first, for the wall to be heated more than usual, it
has to be exposed to flames for a longer period. Brief flame
outbursts could reach a field but not heat it measurably, and
these situations could lie within our dataset, as we sampled ran-
domly. Smoothing the calculated parameters over time could
be helpful when integrating the flame lengths into an automatic
control system. Secondly, a long MA flame length does not ne-
cessarily mean the flame is bent towards the wall, as depicted
in Figure 9. Since the MA flame length measurement is not
performed in a specific direction, the skeleton of a profoundly
branching flame can be difficult to anticipate and interpret. Es-
pecially, as in Figure 9 the MA flame length tail does not bend
towards the wall, yet a large amount of the flame body affects
it. Similar situations arise in approximately 5% of the evaluated
images. Finally, the pixel-wise measurement uncertainty of the
camera lies within the range of our scaled median temperature
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Figure 8. Scatter plot of BA flame length versus MA flame
length of burner 1. Each dot represents one frame and is colored
according to the scaled median temperature of field 2. Samples

with a burner 2 BA flame length > 0.7 have been removed.

0.83
MA flame length

Figure 9. Example of how MA flame lengths might bend away
from the wall rather than following the perceived main body.

difference. Single samples might, therefore, not be meaningful.
However, as we rely on clusters and trends for our deductions,
we still believe they are accurate.

6. Conclusion

This study introduces two methods for measuring flame length
in near-infrared (NIR) imagery: burner axis (BA) flame length
and medial axis (MA) flame length. The BA flame length meas-
ures the flame along the burner’s trajectory, while the MA flame
length identifies the longest skeleton path within a generated
flame mask. We utilize a deep learning (DL) model for pixel-
wise flame segmentation and analyze data from an industrial
hazardous waste incineration plant with multiple interacting
burners.

Our findings indicate that greater BA and MA flame lengths
are associated with higher temperatures in areas opposite the
burner, suggesting a long, straight flame. Conversely, a short
BA flame length and a long MA flame length correlate with el-
evated temperatures in adjacent areas, indicating that the flame
is bending toward the wall. These localized parameters can be

integrated into combustion control systems to automate adjust-
ments and reduce thermal stress.

Given the interactions among burners, we emphasize the im-
portance of monitoring all burners in a multi-burner setup. This
study demonstrates the feasibility of real-time flame measure-
ments in industrial environments, utilizing DL techniques while
remaining user-friendly. Future research should investigate
strategies to ensure the MA flame length is bending towards the
wall and analyze a broader dataset to enhance transferability.
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