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Abstract

Flat rooftops on residential and industrial buildings house critical drainage and ventilation systems, which play essential roles
in channeling water away from structures and preventing moisture accumulation. These utilities are vital for maintaining the
structural integrity of rooftops, safeguarding against water pooling and moisture buildup that could otherwise lead to damage
or even collapse, particularly during extreme weather events. However, current inspection and maintenance practices for these
systems are predominantly manual, making them time-consuming, labor-intensive, and sometimes hazardous. This paper presents
an automated approach to detecting drainage outlets and ventilation systems on flat rooftops, using a custom-labeled dataset of high-
resolution aerial imagery. We evaluated two different object detection methods, with FCOS (Fully Convolutional One-Stage Object
Detection) outperforming Faster R-CNN in identifying these small utilities. The outcomes pave the way for new applications,
as detected utilities can act as sparse data points that trigger constraint-based reasoning processes for estimating hidden utility
networks in as-built Building Information Modeling (BIM) contexts. Embedding these identified objects into GIS or BIM models
represents an initial step towards coarse-to-fine visual recognition, enabling customized semantic mission planning for autonomous
exploration and inspection using Unmanned Aerial Vehicles (UAVs). The labeled dataset used in this study is publicly available by
following this link https://zenodo.org/records/14040571.

1. Introduction

In recent years, the frequency of extreme precipitation events
increased drastically (Myhre et al., 2019; Li et al., 2024). How-
ever, buildings, especially high-rise buildings with flat rooftops,
sometimes referred to as parapet roofs, can take substantial
damage from large amounts of rain- or snowfall as they have
to carry the additional weight of the accumulated precipitation
mass. It can be roughly estimated that a water accumulation
of just 10 cm corresponds to a weight of approximately 100
kg/m2. For a flat rooftop with an area of 200 m2, this means
an additional load of 20 tons. To overcome this disadvantage,
drainage outlets are used for flat rooftops such as illustrated in
Figure 1a, where the associated pipes lead into the rainwater
drainage system as can be seen in Figure 1b. Effective drainage
on such roofs prevents water from accumulating, which other-
wise leads to puddling and stagnant water. This standing water
adds stress to roofing materials, gradually weakening them and
potentially causing structural damage over time, e.g, through
mold and mildew or cracks as well as leakages. In this context,
roof drainage systems aim to divert water away from the struc-
ture to prevent issues from water pooling on the rooftop or near
the foundation. Since warehouses and industrial buildings in
industrial areas often have low-slope roofs that don’t facilitate
natural runoff as well as pitched roofs, built-in drainage system
are mostly a crucial alternative.

Beyond water drainage, rooftops are simultaneously accom-
modated with roof ventilations which can be likewise observed
from on the rooftops as can be seen on the most right of Fig-
ure 1a. They have the purposes to reduce moisture buildup in
the attic or roof cavity, which can occur from everyday activ-
ities, such as cooking or showering and are critical as they

prevent mold, mildew, and wood rot, which could damage the
structural integrity and insulation of walls and roof elements.

However, once drainage outlets or ventilations are clogged and
get blocked or damaged, e.g., by foliage or other debris, rain-
water or snowfall can accumulate, leading to roof leaks or in
the worst case to a collapse of the entire roof due to the in-
ability of water to drain and the buildup of moisture from in-
door usage below. Therefore, the regular inspection of drainage
outlets and ventilations is an essential task for rooftop main-
tenance as it helps to diagnose damage or clogging in an early
state and thereby reduces the threat posed by large precipita-
tion accumulation. Currently, roof drainage outlets are primar-
ily inspected manually, which is tremendously time-consuming
and labor-intensive for large facilities and buildings. In addi-
tion, inspecting drainage outlets of flat roofs, e.g., on high-rise
buildings, poses significant safety risks for the inspectors. With
the availability of low cost drones and high-resolution aerial
imagery, derived by planes or satellites, automated inspections
have attracted increasing attention and are now applied in vari-
ous fields Rakha and Gorodetsky (2020), such as power lines
Li et al. (2023), bridges Mandirola et al. (2022) and rain gutter
Dehbi et al. (2020).

In this paper, we lay the groundwork for fully automated
rooftop inspection and exploration, eliminating the need for a
human pilot. A crucial component of this approach is the auto-
matic detection of drainage outlets and ventilation systems, es-
sential for effective rooftop inspection, monitoring, and map-
ping. These elements, classified as small objects, occupy only
a few pixels in aerial images, making their detection particu-
larly challenging. Consequently, remote detection of rooftop
drainage outlets and ventilation systems represents a founda-
tional step in a coarse-to-fine detection and modeling work-
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(a) drainage outlets for rainwater and ventilation for flat rooftops
Hagmans GmbH©1

(b) in-wall drainage pipes for parapet roof and stepped roof surfaces
(Behr, 2021)

Figure 1. Examples for visible and hidden rooftop infrastructure.

flow, ultimately enriching as-built GIS or BIM models. These
models enable informed, automated mission planning for sub-
sequent close-range in-situ exploration and inspection. Addi-
tionally, once these small rooftop features are accurately iden-
tified and segmented, they offer valuable data for inferring hid-
den utility networks within buildings, as illustrated in Figure 1b.
The spatial arrangement of drainage and ventilation features on
rooftops can further trigger a reasoning process about the in-
ternal layout and function use of rooms below. For instance, de-
tected ventilation systems are often correlated with bathrooms
or kitchens in the apartments beneath.

In this context, deep learning-based approaches have proven
particularly effective Rabbi et al. (2020). A key advantage of
deep learning is that it eliminates the need for manual feature
engineering, which would be challenging in our case due to
the minimal pixel footprint of each object. However, a signi-
ficant drawback of deep learning is its requirement for a large
corpus of labeled training data for each object detection task.
To address this, we annotated drainage outlets and ventilation
systems across 740 rooftop images, each representing a unique
rooftop. This dataset will be made publicly available alongside
this work under the CC BY 4.0 (Creative Commons Attribution
4.0) license.

This work proposes an automatic detection approach of small
and tiny objects on rooftops using deep learning and discusses
its potential enrichment for model-image registration applied in
autonomous Unmanned Aerial Vehicle (UAV) navigation and
task execution. For this task, we apply two deep learning-based
methods, namely Faster R-CNN (Ren et al., 2017) and FCOS
(Tian et al., 2019), both of which have proven effective for ob-
ject detection.

The remainder of this paper is structured as follows: Section
2 provides an overview over the related work. Section 3 de-
scribes the dataset used in the study. Section 4 gives insights
into the introduced approach. Section 5 discusses the experi-
mental results. Section 6 concludes and summarizes the paper
and provides an outlook for future research.

1 https://hagmans-gmbh.de/flachdach_entwaesserung.html

2. Related Work

While extensive research has been conducted on the detection
and segmentation of rooftops for many years, the focus has
predominantly been on general rooftop identification and clas-
sification, e.g., using stochastic processes like Markov Ran-
dom Fields (Katartzis and Sahli, 2008) or Support Vector Ma-
chines (Baluyan et al., 2013; Mohajeri et al., 2018). Addi-
tionally, research has also explored rooftop reconstruction from
3D point clouds through filters that are based on prior know-
ledge represented by density distributions or informed model
sampling (Dehbi et al., 2019, 2021). Methods for detecting
rooftops as large, singular structures based on RGB aerial im-
agery or 3D point clouds are well-established, utilizing various
machine learning and computer vision techniques, such as deep
learning (Buyukdemircioglu et al., 2021). Besides the general
rooftop identification also the detection and segmentation of lar-
ger objects located on rooftops, such as photovoltaic panels, has
been substantially researched (Castello et al., 2019; Wang et al.,
2023; Soujanya et al., 2024). However, the detection of tiny ob-
jects which are also situated on these rooftops, such as small in-
stallations and facilities, or equipment, remains underexplored.

To enhance small object detection in aerial imagery, Rabbi et al.
(2020) proposed combining an edge-enhanced super-resolution
Generative Adversarial Networks (EESRGAN) with the detec-
tion network Faster Regional Convolutional Neural Network
(Faster R-CNN) in an end-to-end framework. This approach
aims to improve the detection performance of small objects in
aerial imagery. Another approach that aims to improve the ac-
curate detection of small objects in aerial imagery proposes
an anchor-free detector named FE-CenterNet. In their work,
they proposed a feature enhancement module (FEM) which is
formed of a feature aggregation structure (FAS) and an attention
generation structure (AGS) (Shi et al., 2022).

To assess damage on flat metal rooftops, Abdullah et al. (2022)
applied deep learning techniques to detect faulty or defective
bolts, which can serve as indicators of potential rooftop dam-
age. Similarly, Hezaveh et al. (2017) utilized a Convolutional
Neural Network to identify and evaluate small areas affected by
hail impact, allowing them to infer the extent of damage to the
rooftop.
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Figure 2. Overview of our approach for the automatic detection of drainage outlets on flat rooftops.

In an effort to detect improperly positioned equipment on flat
rooftops – equipment that may obstruct proper water drain-
age and complicate maintenance services – dos Santos et al.
(2023) recently explored the application of several deep learn-
ing approaches for detecting objects on rooftops. Their study
compared various techniques for identifying installations, such
as condensers, circular antennas, ventilation pipes, and kitchen
exhaust chimneys, using aerial images captured by unmanned
aerial vehicles (UAVs). The experimental results demonstrated
that the best-performing deep learning model for this task was
Faster R-CNN. Similarly, the recent work of Mayer et al.
(2023) proposed the use of UAVs equipped with thermographic
sensors to detect thermal bridges on rooftops. They highlighted
that identifying such thermal leakages and implementing sub-
sequent improvements could significantly enhance energy effi-
ciency of existing buildings.

Several of the previously mentioned approaches have partially
addressed the detection of small rooftop utilities, which is a fo-
cus of this work. However, most of these methods rely on close-
range remote sensing for identification using UAVs, which sim-
plifies the task since the objects are relatively larger. In contrast,
we assert that mapping such small objects as a preliminary step
enhances 3D building models by incorporating additional se-
mantic knowledge about rooftops, thereby facilitating an auto-
matic coarse-to-fine visual recognition process. At the core of
this paper, we initiate the first step in addressing the identifica-
tion of target objects based on orthophotos. These objects rep-
resent a negligible portion of the underlying roof, making them
prone to being mistaken for white noise, which complicates
their detection. This gap in the literature underscores the neces-
sity for specialized approaches tailored to the unique challenges
of detecting tiny objects on rooftops, including their inaccessib-
ility, small size, and often occluded nature. Once these objects
have been identified remotely, a customized mission plan can be
developed for autonomous UAV navigation and task execution
to facilitate drone-based on-site inspections.

Currently, a variety of datasets are employed for developing
methods in tiny object detection. These datasets can generally
be categorized into three primary domains: traffic signal detec-
tion, pedestrian detection, and aerial image detection (Wei et al.,

2024). Examples of aerial image datasets include DOTA2 and
DIOR3. However, since such datasets focus on common object
categories like vehicles, bridges, and storage tanks they lack an-
notated information for object categories such as drainage out-
lets and rooftop ventilations, which are essential for addressing
our problem at hand.

Additionally, thermal sensors could be employed to detect tiny
infrastructure, such as rooftop ventilations, since they typic-
ally emit vaporized air at a temperature different from the sur-
rounding environment and structures. This temperature differ-
ence makes them detectable by thermal cameras. To train a
detection model using images from thermographic sensors, a
recently published dataset containing visible-thermal tiny ob-
jects has been made available (Ying et al., 2024). However,
this dataset includes labels for objects such as roads or bridges
which may render it unsuitable for our specific problem. This
is due to the fact that the dataset’s modality differs significantly
from that of the unseen data expected during deployment in our
specific use case.

3. Dataset

To the best of our knowledge, no existing dataset is specific-
ally designed for detecting tiny drainage and sewage systems on
rooftops. Therefore, as previously mentioned, we have created
and annotated our own dataset to address this specific task. The
original high-resolution aerial imagery are orthophotos with a
ground sampling distance of 7.5 cm, provided by the Office for
Land Management and Geoinformation of the City of Bonn,
Germany 4. Our dataset was created through manual annota-
tion using the Computer Vision Annotation Tool (CVAT) 5 and
comprises 740 image pairs. Each pair consists of a rooftop im-
age and a corresponding annotated mask indicating the drain-
age outlets and ventilations, as illustrated in Figure 3. Since
rooftops vary in size, we aimed to create image pairs that cap-
ture a single rooftop per image without overlaps or cutoffs.

2 https://captain-whu.github.io/DOTA/index.html
3 http://www.escience.cn/people/gongcheng/DIOR.html
4 https://stadtplan.bonn.de
5 https://www.cvat.ai
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Consequently, the dimensions of each image pair differ. The
dataset was then split randomly into 80% for training, 10% for
validation, and 10% for testing.

To take profit from available object detection libraries like MM-
Detection, we converted the dataset from its original pairwise
format into annotations of the Common Objects in Context
(COCO) (Lin et al., 2014) format for object detection as il-
lustrated in Figure 3. This format is widely recognized in
object detection tasks and is structured as a single JSON file
containing labels, metadata, and detailed information about
the images and object locations as can be seen in Figure 3.
As menitioned, the dataset is available at the following link:
https://zenodo.org/records/14040571. In addition to the
COCO-formatted dataset, we provide the dataset in its original
format to support various machine learning tasks, such as se-
mantic segmentation and panoptic segmentation, as well as to
accommodate different data-loading requirements for diverse
deep learning models.

4. Methodology

This section presents our framework, detailing the object detec-
tion models applied and providing an overview of the metrics
used to assess the quality of the results.

Figure 3. (Top) Exemplary image illustrating a plain flat rooftop,
(Middle) illustrates manually hand-annotated rooftop

ventilations, (Bottom) illustrates annotated ventilations for
COCO.

After converting our training data into the COCO object de-
tection annotation format, we train two architecturally distinct
deep learning models to detect drainage outlets and ventilation
points simultaneously, as shown in Figure 2. Notably, drainage
outlets and ventilation systems are grouped under a single cat-
egory, with no information available on their distribution. As a
result, both object classes cannot be distinguished during detec-
tion, and their individual performance cannot be evaluated. For
our experiments, OpenMMLab’s MMDetection, a library that
offers a framework within which object detection modules are
provided, evaluated and visualized is applied Chen et al. (2019).
We choose this library due to its large variety of object detection
model implementations and its application in other approaches
for the detection of rooftop objects, such as dos Santos et al.
(2023) and Mayer et al. (2023). For our experiments, we chose
Faster R-CNN and FCOS for the task of detecting drainage out-
lets and ventilation systems in high-resolution aerial imagery.

In this work, we have chosen to focus solely on deep learning-
based models for the object detection task that are not overly
resource-intensive. The goal is to perform inference later on
mid-flight on a drone to automatically detect objects that are
useful for navigation-related tasks, such as coarse-to-fine visual
recognition, enabling customized semantic mission planning
for autonomous UAV inspections. Given the computing per-
formance and energy constraints of low-powered devices like
drones, which limit the feasibility of running deep learning
models, we aim to test only those with a low parameter count.

Faster R-CNN is an anchor-based object detection approach
that consists of a Region Proposal Network (RPN) that shares
full-image convolutional features with the detection network,
enabling nearly computationally cost-free region proposals. An
RPN is able to simultaneously predict object bounds and ob-
jectness scores at each position which supports the underly-
ing convolutional neural network where to focus on when pre-
dicting the type of object (Ren et al., 2017). In contrary,
FCOS (Fully Convolutional One-Stage Object Detection) fol-
lows the strategy of an anchor-free object detection approach
which avoids any computational overhead related to anchor
boxes and, hence, avoids computational costs for regional pro-
posals at all (Tian et al., 2019).

During training, both models maximize the probability of cor-
rect detections through their loss functions by outputting con-
fidence scores for each object in the scene. For validation
during and after training, we use the mean Average Precision
(mAP). Mean AP is a common evaluation metric used for meas-
uring the performance of a model for object detection and in-
formation retrieval tasks. In our work, we use the mAP to
measure the accuracy of bounding box predictions against their
annotated ground-truth. The following equation describes the
mAP formally:

mAP =
1

n

k=n∑
i=1

APi, (1)

where n is equal to the number of classes and APi is the average
precision of class i. However, to calculate the mAP we need to
calculate the Intersection over Union (IoU) as well as Precision
and Recall metrics. The IoU describes the ratio between the
area of overlap to the area of union between the predicted and
the ground-truth bounding box. Precision is usually referred to
as the ratio of true positives against the total predictions made
while Recall is defined as the ratio of actually correctly detected
true positives against all true positives. However, to control the
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quality of predictions an IoU threshold is applied beforehand
to filter out true positives which do not have enough overlap-
ping with the ground-truth bounding box. The mentioned APi

in Equation 1 is defined as the area below the Precision-Recall
(PR) curve for each object class. The PR curve is generated
by sorting the predictions by their confidence score and calcu-
lating Precision and Recall at each confidence score threshold
accordingly. Finally, the AP values are calculated for each class
and the mAP is calculated as the mean precision across various
IoU thresholds. In the implementation of MMDetection which
is used in this work, the mAP calculates the IoU thresholds for
all values lying in [0.5, 0.95]. Thus, mAP50 is the precision at
a single threshold of IoU = 0.5 and mAP75 is the precision at a
single threshold of IoU = 0.75 accordingly. Unfortunately, the
off-the-shelf implementation of MMDetection used in this work
does not calculate or return additional evaluation metrics after
inference. For this reason, we limited ourselves to using mAP,
which is commonly applied in the context of object detection.

Furthermore, we not only compare both approaches in their ori-
ginal implementations but also evaluate them against a recently
proposed parameter optimization method called Slicing Aided
Hyper Inference (SAHI), which is designed to fine-tune general
object detection techniques for detecting small objects (Akyon
et al., 2022). By incorporating SAHI during the inference stage,
our approach aims to highlight potential benefits for detecting
tiny objects, such as drainage outlets or ventilation systems on
flat rooftops.

5. Experimental Results

This section presents and discusses our experiments and
provides the parameter values have been used for the sake of
replication. The experiments were conducted on an NVIDIA
RTX 2000 Ada with 8GB of VRAM. MMDetection 3.3.0 with
Python 3.10, CUDA 12.2, and Pytorch 2.1.0 have been used
to train two models, specifically Faster R-CNN and FCOS. To
further refine our trained models for small object detection, we
applied, as previously mentioned, SAHI to optimize model per-
formance at the inference stage. For each experiment, the net-
work was trained for 100 epochs with a learning rate of 0.0025
and Stochastic Gradient Descent (SGD) as optimizer. With the
mentioned setup and parameter configuration, we trained two
models in order to perform the task of drainage outlet and vent-
ilation detection on flat rooftops accordingly.

Our experimental results highlight the differences in perform-
ance between Faster R-CNN and FCOS during training and
testing. Overall, both models exhibit comparable performance
trends during training, as illustrated by their respective mAP,
mAP50, and mAP75 curves in Figure 4. Notably, the FCOS
model consistently outperforms Faster R-CNN during training,
particularly in mAP50, where FCOS achieves a peak score of
0.65 between the 40th and 50th epochs – approximately 40%
higher than Faster R-CNN’s corresponding values.

Model mAP mAP50 mAP75

FCOS 0.207 0.652 0.075
FCOS + SAHI 0.193 0.646 0.058
Faster R-CNN 0.067 0.241 0.006

Faster R-CNN + SAHI 0.065 0.232 0.007

Table 1. Bounding box mean Average Precision with different
IoU thresholds on the test dataset.

According to Figure 4a, the average mAP scores for FCOS
range between 0.2 and 0.22, significantly exceeding Faster R-
CNN’s scores, which remain between 0.06 and 0.07. Addi-
tionally, both models show a marked drop in performance at
higher IoU thresholds, as evidenced by mAP75 being consist-
ently lower than mAP50 as can be seen in Figures 4b and 4c.
This disparity suggests that both models struggle with detection
precision under stricter matching conditions, where predictions
must more closely align with ground-truth boxes to be classified
as correct detections. This conclusion is further substantiated
by the considerably lower mAP75 scores relative to the overall
average mAP scores for both models.

The average mAP, mAP50, and mAP75 scores during inference
closely mirror the performance observed during validation. As
shown in Table 1, both FCOS and Faster R-CNN achieve higher
performance at lower IoU thresholds, as evidenced by the re-
lative scores of mAP50 and mAP75. Similarly, both models
demonstrate higher average mAP scores compared to mAP75

scores, reinforcing the trends observed during training.

The experimental results presented in Figures 5 and 6 illustrate
the performance differences between FCOS and Faster R-CNN
in detecting drainage outlets and ventilations on previously un-
seen test images. Notably, Faster R-CNN shows a marked tend-
ency to over-detect target objects as the confidence threshold
decreases, evident in the increased detection of drainage outlets
and ventilations on the left side of Figures 6c and 6b. Con-
versely, as the confidence threshold becomes more stringent,
the detection rate of the desired objects declines, as shown in
the upper section of Figure 6a.

With a relatively low confidence threshold of 0.2, FCOS suc-
cessfully detects nearly all target objects within the unseen test
image without over-detecting targets, as shown in Figure 5a,
indicating a higher detection performance compared to Faster
R-CNN. This finding aligns with the training results previously
described and suggests that both models may encounter chal-
lenges in learning effective feature representations for small
objects, likely due to the inherent difficulties posed by their
size. As mentioned in Section 2, FCOS is an anchor-free model
meaning it does not rely on predefined anchor boxes. On smal-
ler scales this architectural design can have an advantage for
tiny objects because it avoids the limitations of anchors that
may not be tuned for tiny scales. Therefore, Faster R-CNN
which is an anchor-based method might struggle with detecting
tiny objects.

To further enhance our models’ ability to detect tiny objects,
we applied SAHI at the inference stage for both trained mod-
els, Faster R-CNN and FCOS. The confidence threshold was
set to 0.1, the slice height and width to 400, and the overlap
height and width ratio to 0.3, closely aligning with the recom-
mended hyperparameter values from Akyon et al. (2022). Con-
sistent with the evaluation of both models in their original form,
FCOS + SAHI exhibited significantly higher mAP, mAP50, and
mAP75 scores compared to Faster R-CNN. However, the com-
bination of both models with SAHI resulted in slightly lower
overall mAP scores compared to the respective original models,
as shown in Table 1. This is a noteworthy observation, as SAHI
is specifically designed to enhance tiny object detection in exist-
ing models. One approach to understanding why SAHI fails to
improve model accuracy is Gradient-weighted Class Activation
Mapping (Grad-CAM), as proposed by Selvaraju et al. (2017).
Grad-CAM visualizes the regions of the input image that the
models focus on, both with and without SAHI. By comparing
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Figure 4. Validation mAP scores calculated on the predicted and ground-truth bounding box during training.

(a) inference on test image (b) ground-truth of test image (c) annotated mask of test image

Figure 5. FCOS inference on test image with a confidence threshold of 0.2.

(a) inference with confidence threshold 0.3 (b) inference with confidence threshold 0.6 (c) inference with confidence threshold 0.9

Figure 6. Faster R-CNN inference test image results for different confidence thresholds.

these regions, a more insightful analysis of the training pro-
cess can be performed. Attention-Guided Learning implements
this by designing loss functions that are aligned with activation
maps or by leveraging knowledge of the activated regions as a
regularization term that penalizes activations outside the target
regions (Li et al., 2018).

Overall, when selecting FCOS as model our approach proves
to be effective in addressing the challenging task of identify-
ing tiny drainage outlets and ventilation utilities on rooftops.
The detected utilities can be visually highlighted with bound-
ing boxes, and their locations are recorded in COCO format.
Given that the provided test data is georeferenced in a coordin-
ate reference system the global position of the detected utilities
is available. This information allows the utilities to be integ-
rated as semantic information into existing 3D building models
such as CityGML or as-built BIM. As an example, such se-

mantic knowledge could enable a maintenance drone to per-
form model-image registration, thereby enhancing navigation
and task execution, similar to the approach demonstrated in De-
hbi et al. (2020). Enhancing the navigation and localization of
UAVs plays a critical role in the mission planing process for an
autonomous task execution, e.g., exploration or inspection.

Furthermore, inspired by the concepts in Dehbi et al. (2022), the
detected objects can serve as sparse observations that initiate a
reasoning process to estimate hidden utility networks, such as
in-wall piping, in existing buildings.

6. Conclusion and Outlook

In this work, we employ two architecturally distinct approaches
for object detection of drainage outlets and ventilation struc-
tures on flat rooftops. For the automatic identification of
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(a) Faster R-CNN + SAHI (b) Faster R-CNN + SAHI

(c) FCOS + SAHI (d) FCOS + SAHI

Figure 7. Faster R-CNN + SAHI and FCOS + SAHI results, including confidence scores. Ground truth is shown as green bounding
boxes with a score of 0. When the model successfully detects an object, its red bounding box overlaps with the green ground truth

bounding box.

these tiny objects, we manually annotated a dataset containing
740 high-resolution aerial images of rooftops. With a ground
sampling distance of 7.5 cm, the task of detecting these targets
is challenging due to the extremely small size of the objects at
this resolution.

Our results demonstrate that FCOS detects target objects re-
liably, achieving an mAP50 of 65.2%. In contrast, Faster R-
CNN was less effective, with an mAP50 of only 24.1%, indicat-
ing lower reliability in target detection. To further improve the
mAP score and achieve a higher number of accurate detections,
we will evaluate the performance of other light weight and act-
ively developed deep learning-based object detection models,
such as YOLO. Additionally, further research will focus on the
explainability of deep learning-based object detection on our
dataset, e.g., using Class Activation Mapping (CAM).

As mentioned, the proposed object detection approach for tiny
rooftop utilities enhances 3D building models by incorporat-
ing additional semantic knowledge serving as a preliminary step
towards developing knowledge-driven localization methods for
drone navigation tasks, such as on-site inspections. Besides, the
identified utilities will serve as sparse observations to trigger a
constraint-based reasoning for the enrichment of BIM models
by the underlying as-built state. Further, the identified utilities
could serve as basis to schedule a mission planing for an auto-
matic exploration using autonomous UAVs. Both investigation
directions will be subject of upcoming research topics.
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