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Abstract

Precise  mapping  and  tracking  of  wheat  crops  are  crucial  to  improve  agricultural  management,  particularly  for  small  farms  in 
challenging  landscapes  such  as  Nepal.  By  utilizing  temporal  Sentinel-2  imagery,  this  research  maps  wheat  fields  by  examining 
phenological  stages  using  machine  learning  methods,  which  enhances  classification  accuracy.  Sentinel-2,  a  component  of  the 
Copernicus program by the European Space Agency, offers high-quality multispectral images for precise monitoring of crop growth
over time. Two classification models, Random Forest (RF) and Support Vector Machine (SVM), were employed to distinguish wheat 
from non-wheat areas. The accuracy of classification was improved by integrating in-situ data collected with Kobo Toolbox. The 
findings showed that Random Forest performed better than SVM, reaching 99% accuracy in training and 86% in validation, with 56%
of the study region classified as wheat. RF's outstanding performance is due to its capacity to manage temporal and spectral intricacies, 
particularly in capturing the phenological cycle of crops. This research showcases how machine learning, specifically Random Forest, 
can enhance the accuracy of wheat mapping for small farms by analyzing phenological stages effectively, with plans to apply these 
methods to rice and maize in the future.
 

1. Introduction

Wheat is a crucial grain crop that is fundamental for global food
security, offering a substantial amount of energy and protein to a 
sizable part of the world's population. Nevertheless, increasing 
worldwide food consumption because of population expansion
and economic  growth  has resulted in challenges for wheat 
production (Mishra et al., 2023). In Nepal, wheat is the third most 
important cereal crop and plays a crucial role in rural economies, 
particularly during the winter Rabi season. Even though wheat 
cultivation  is  significant  in  Nepal,  it  is  typically  done  through 
traditional subsistence farming, leading to lower yields because
of restricted access to modern inputs, pest control, and irrigation 
systems and modern monitoring systems. (Qamer et al., 2014).
 
Recently, remote sensing and machine learning has become vital 
for enhancing agricultural monitoring and decision-making. 
Sentinel-2 satellite images, known for their detailed, 
multispectral features, provide an affordable, widespread 
monitoring  option  that  outperforms  conventional,  land-based
techniques. The timing of crop life cycle events, known as crop 
phenology,  is  essential  for  evaluating  crop  productivity  and 
improving management techniques. According to Sakamoto et al. 
(2005),  by  combining  phenological  information  with  remote 
sensing, specifically utilizing Sentinel-2, it is feasible to 
effectively  observe  the growth  phases  and  condition of  wheat. 
This  study  aims  to  create  a  specialized  approach  for  mapping 
wheat in Nepal using Sentinel-2 satellite images, with a focus on 
small-scale farms.

2. Study Area

The study area is located in the western Terai region of Nepal, 
encompassing six municipalities across Kailali and Bardiya 
districts. Defined by geographical coordinates ranging from 28° 
21' 49’’ to 28° 37' 26’’ N latitude and 81° 15' 44’’ to 80° 53' 33’’ 
E longitude, this region is characterized by fertile alluvial plains, 
essential for agriculture. The subtropical climate features distinct 
wet  and  dry  seasons,  influencing  cropping  patterns,  with  rice 
predominating  in  the  summer  and  wheat  in  the  winter.  The 
agricultural landscape comprises a mix of irrigated and rainfed 
systems, primarily managed by smallholder farmers. 
Understanding the region's geographical and seasonal dynamics 
is crucial for interpreting the outcomes of this research, which 
leverages temporal Sentinel-2 imagery to analyze phenological 
stages of wheat and enhance mapping precision for smallholder 
farms.
 
 

Figure 1. Western Terai region (Study Area). 
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3. Data and Research Methodology

The  methodology  for  this  research  involves  a  comprehensive
approach to investigate agricultural dynamics in the study area to 
map cropland followed by the step in the figure 2.
 

3.1 Satellite Data

For satellite data, multi-temporal Sentinel-2 imagery is obtained, 
providing a comprehensive view of the study area's land cover
and vegetation dynamics over time. The imagery's orbital 
properties  for  Level-2A  (L2A)  and  Level-2B  (L2B)  data  are 
carefully checked to ensure proper alignment and suitability for
the analysis. Also taken in the consideration of tile and satellite 
orbit and its orientation. Tile T44RNS and T44RMS falls in the 
study area and satellite orbit is 19 and orientation is descending
as  represented  in  figure  3.  Satellite  Imagery  with  cloud  cover 
below 10% is chosen for more reliable results. Cloud masks and

gap filling techniques are applied to address cloud cover and data 
gaps, ensuring a continuous and reliable dataset.
 
 
3.2 In- situ Data

To collect in-situ data, we conducted field surveys in 
collaboration with a CIMMYT Nepal Team, targeting farmlands 
within the study area. A structured questionnaire was 
administered to local farmers to gather detailed information on 
cropland characteristics, utilizing the Kobo Toolbox application
to streamline data collection by CIMMYT field surveyors. This 
approach facilitated the systematic addressing of pertinent 
questions  while  accounting  for  the  spatial  layout  of  the  crops. 
Following  data  collection,  the  dataset  was  rigorously  cleaned

using  ArcGIS  Pro,  and  validation  was  performed  by  cross-
referencing the survey data with satellite imagery. The 
methodology for ground data collection is illustrated in Figure 4.
 
3.3 Pre-processing and Feature Screening

The initial step in this study involved the acquisition of Sentinel 
satellite images spanning from November 2022 to April 2023, 
ensuring  a  comprehensive  temporal  coverage.  Cloud  masking 
techniques were applied, capitalizing on the advantageous 
meteorological conditions during the winter season, which 
yielded cloud-free imagery. The pre-processed imagery was then 
used  to  compute  vegetation  indices,  such  as  the  Normalized 
Difference Vegetation Index (NDVI). Crop health and condition 
are measured by NDVI. This vegetation index, which measures 
greenness, has a significant relationship with green biomass, a 
measure  of  growth.  Ground  truth  data  were  then  fused  with 
satellite imagery to plot NDVI charts for all the acquired images, 
facilitating the construction of a phenology timeline. Plotted the 
NDVI  chart  from  November  2022  to  April  2023  for  all  the 
different crop in study area to get the temporal information.

Figure 2. Methodology flow diagram. 
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Figure 4. In-situ data map. 

Figure 3. Satellite Data. 
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The NDVI charts offer valuable insights into the phenological 
development of different crops from November 2022 to April 
2023. Wheat  shows  a  significant  increase  in  NDVI  values, 
starting  at  0.3  in  November  and  reaching  0.8  by  February, 
reflecting its rapid growth during the winter season. In 
contrast, maize, a summer crop, experiences a slight NDVI 
increase  from  0.4  to  0.5  as  it  begins  growing  in  warmer 
months. Potatoes exhibit a gradual NDVI increase from 0.4 to 
0.6 due to their tuberous nature and lower reliance on above-
ground foliage. Lentils follow a similar pattern to potatoes,
with a steady but lower NDVI increase. Shrubs demonstrate 
fluctuating  NDVI  values,  decreasing  slightly  in  winter  and 
recovering by April, while vegetables exhibit variation based
on type, with leafy vegetables such as spinach showing rapid 
growth  compared  to  root  vegetables.  As  a  perennial  crop, 
bananas maintain consistently high NDVI values throughout
the period, reflecting their large leaf area index. These NDVI-
derived patterns are particularly important for crop 
classification, especially for wheat, as its rapid and 
distinguishable NDVI rise during winter enables its accurate 
identification  in  satellite  imagery.  This  data  is  crucial  for 
enhancing wheat mapping accuracy, supporting  precision 
agriculture, and improving crop dynamics monitoring using 
remote sensing technologies
 
3.4 Classification
Prior to classification, in-depth statistical analyses are carried 
out  to  pinpoint  the  most  significant  features,  indices,  and 
spectral bands found in Sentinel-2 imagery captured between 
November  2022  and  March  2023.  This  procedure  entails 
numerous rounds of model testing, with a focus on spectral 
bands like RED, GREEN, BLUE, NIR, and SWIR, as well as 
indices such as NDVI and NDWI, as depicted in the figure 12. 
Through the implementation of a feature screening process,
the analysis ensures the consideration of temporal variations, 
such  as  crop  growth  cycles. This  rigorous  feature  selection

Figure 8. NDVI time series plot for Maize crop. 

Figure 6. NDVI time series plot for Potato. 
Figure 11. NDVI time series plot for Shrub tree. 

 

Figure 9. NDVI time series plot for Banana. 

Figure 7. NDVI time series plot for vegetable. 

Figure 10. NDVI time series plot for lentil crop. Figure 5. NDVI time series plot for wheat crop. 
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enhances the model's capacity to accurately categorize crops 
like wheat and maize, thereby notably enhancing the 
dependability of remote sensing data in agricultural 
monitoring.

 
3.4.1 Random Forest Algorithm
As Table 1 illustrates, the Random Forest algorithm performed 
remarkably  well  in  differentiating  between  wheat  and  non-
wheat land, obtaining an overall accuracy of 99 percent. This
is the breakdown of the training and validation metrics:
 

Table 1 RF Accuracy Table 

Metric Value 
Training Accuracy 99% 
Validation Accuracy 86% 
Consumer Accuracy (Wheat) 87.8% 
Consumer Accuracy (Non-Wheat) 86% 

 
Scenario Analysis: 
 
1. Four Bands (All Temporal Images): The classifier trained 

with  red,  blue,  green,  NIR,  and  NDVI  resulted  in  a 
validation accuracy of 76%. 
 

2. Ten Bands (All  Temporal Images): Utilizing all 10 
Sentinel-2 bands yielded a validation accuracy of 83%, 
with consumer accuracies of 63.6% (wheat) and 90.9% 
(non-wheat). 
 

3. Four  Bands  (Top  Ten  Important  Images):  The  model 
improved  with  an  accuracy  of  86%,  better  identifying 
wheat pixels (consumer accuracy of 87.8%) 
 

4. Ten  Bands  (Top Ten  Important  Images): This  scenario 
achieved  an  overall  accuracy  of  80.37%,  with  wheat 
consumer accuracy at 84.78%. 

 
Random Forest classification estimated the total wheat land 
area to be 253.872 km², accounting for 56% of the total land 
area in study area. 
 
 
 
 
 
 

 
3.4.2 Support Vector Machine (SVM)
Support Vector Machine (SVM): This algorithm achieved an 
overall accuracy of 90% in classifying wheat and non-wheat 
land effectively (Table 2). The comprehensive metrics consist 
of the following:

Table 2: SVM Accuracy Table

Metric Value
Training Accuracy 90%
Validation Accuracy 72.83%
Consumer Accuracy (Wheat) 70.97% 
Consumer Accuracy (Non-Wheat) 73.77%

 
Scenario Analysis: 
 
1. Four Bands (All Temporal Images): The classifier trained 

with  red,  blue,  green,  NIR,  and  NDVI  resulted  in  a 
validation accuracy of 72.83%. 
 

2. Ten Bands (All  Temporal Images): Utilizing all 10 
Sentinel-2 bands yielded a validation accuracy of 78.95% 
with a consumer accuracy of 65.22% (wheat) and 84.62% 
(non-wheat). 
 

3. Four Bands (Top Ten Important Images): This scenario 
achieved  with  an  accuracy  of  74.8%  with  a  consumer 
accuracy of 67.2% (wheat) and 81.6% (non-wheat). 
  

4. Ten  Bands  (Top Ten  Important  Images): This  scenario 
achieved  an  overall  accuracy  of 77.8%,  with  wheat 
consumer accuracy at 78.95%. 

 
 
Based on the SVM classification, the total area of wheatland is 
298.02 square kilometers, while non-wheat land covers 157.69 
square kilometers.  This indicates that wheatland constitutes
approximately 65.39% of the total land area, with non-wheat land 
making up about 34.60%
 
 
 

Figure 13. Random Forest resulted wheat map. 
Figure 12. Feature screening chart. 
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4. Result and Discussion 

 
The  Random  Forest  (RF)  algorithm  showed  a  notable  edge  in 
classification accuracy, with an overall 86% accuracy, 
outperforming the Support Vector Machine (SVM) which 
achieved  78%  accuracy  in  ideal  conditions.  Researchers  can 
easily distinguish key features that differentiate wheat land from 
other land cover types using the interpretability of the RF model, 
which  is  crucial  for  efficient  agricultural  management.  During 
scenario  analyses,  the  model  that  was  trained  with  only  four 
bands (red, blue, green, NIR, and NDVI) achieved a validation 
accuracy  of  76%.  However,  when  all  ten  10  Sentinel-2  bands 
were utilized, the accuracy increased to 83%, with wheat 
consumer accuracy at 63.6% and non-wheat at 90.9%. Training 
with the top ten crucial images using four bands notably 
enhanced the model's accuracy to 86%, while wheat consumer 
accuracy increased to 87.8%.  On the other  hand, the total 
accuracy of the top ten important images ten bands was 80.37%, 
with an accuracy for wheat consumers of 84.78%.
 
By including scenario analysis, the accuracy of these 
classification results is improved by simulating different 
situations that could influence the model's effectiveness. 
Researchers can improve land management strategies by 
examining how factors like temporal imagery and the 
significance of certain bands interact with each other. Although
SVM is effective for high-dimensional data, its vulnerability to 
overfitting could hinder its performance in complicated 
scenarios. Therefore, it is anticipated that RF will continue to be 
the top choice for classifying wheat land, as it outperforms other 
algorithms and can easily adjust to changing agricultural 
conditions. This pattern is expected to persist with the expanding 
availability of satellite imagery data, which enables RF to provide 
more precise and dependable classifications.
 

 
 
 

 

 
5. Conclusion 

 
This research assessed how well Support Vector Machine (SVM), 
and Random Forest (RF) algorithms classify wheat land in crop 
land. The findings showed that the RF algorithm performed better 
than the SVM algorithm, projecting that 56% (253 sq km) of the 
overall area consists of wheat land, with 44% identified as non-
wheat  land.  This  is  consistent  with  the  2021  report  from  the 
Ministry of Agriculture & Livestock Development, which 
approximated  the  total  wheat  area  to  be  around  240  square 
kilometers. The increased precision of RF is due to its resistance 
to  noise and its ability to  understand complex connections 
between the spectral features of various types of crops. 
Furthermore, the scenario analysis pointed out that classification 
accuracy is significantly influenced by varying band 
combinations and temporal images. An example is the scenario
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Figure 16.  RF and SVM wheat land comparison chart. 

Figure 15. RF and SVM wheat land comparison map. 

Figure 14. SVM resulted wheat map. 
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that  performed  the  best,  using  the  top  ten  crucial  images,  and 
reached an accuracy of 86%. This highlights the importance of 
selecting  image  date  and  bands,  to  improve  machine  learning 
results.
 
Due to the proven effectiveness of the RF algorithm in crop and 
land cover classification, it is advisable for agricultural planners, 
environmental  monitors,  and  urban  developers  to  utilize  RF-
produced crop type maps in their projects. Agricultural planners 
can  use  these  maps  to  find  the  best  areas  for  growing  wheat, 
increasing crop yields and productivity by using specific 
strategies that consider soil, water availability, and climate 
conditions. Environmental monitors can use RF-created maps to 
monitor changes in land cover and pinpoint areas vulnerable to 
desertification or deforestation. Urban developers should utilize 
these maps to guarantee that new projects reduce environmental 
impact  by  steering  clear  of  important  agricultural  areas  and 
incorporating green spaces into their plans. Furthermore, the RF 
algorithm  has  the  possibility  to  create  novel  applications  like 
predicting crop yields, detecting pests and diseases, and 
monitoring  the  impacts  of  climate  change.  Stakeholders  can 
improve  by  refining  scenario  analysis  techniques  and  utilizing 
advanced analytical tools.
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