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Abstract 
 
Floods are among the most destructive natural disasters, posing significant risks to human lives and property. This study investigates 
the impact of Hurricane Matthew on built assets in Greenville, North Carolina, USA in 2016 using an integrated approach that 
combined floodwater extent mapping, depth estimation, and impact assessment. In particular, our objective is to accurately map and 
estimate floodwater depth using deep learning techniques combined with aerial imagery and lidar data to assess the extent of flooding’s 
impact on critical infrastructure such as buildings and roads. The pretrained UNET model utilized, achieved high accuracy in mapping 
flood extent, with a 93% accuracy, while floodwater depth estimates yielded a root mean square error (RMSE) of 0.75, reflecting a 
deviation of approximately 1ft from field measurements. The results highlighted the severe damage sustained by essential assets, 
notably Greenville Airport, which experienced significant flooding and disruption. The research results revealed that approximately 
32% (415 acres) of developed land, 26% (185) of buildings, and 66% (23 miles) of roads were affected. These findings provide critical 
insights that can guide policymakers in crafting effective mitigation and adaptation strategies to protect urban areas and essential 
infrastructure.  
 
 

1. Introduction 

The increasing frequency and intensity of climate change-driven 
flooding poses a growing threat to lives and properties, 
particularly in flood-prone areas. Globally, projections indicate 
that by 2100, 52% of the population and 46% of all assets will be 
at risk from intensified flooding. Also, the frequency of flood will 
continue to rise, with areas near rivers likely to experience 
flooding every 10-50 years, instead of the anticipated 100 year 
interval (Wienhold et al., 2023). In the United States, flooding 
from major tropical cyclones has consistently inflicted severe 
economic damage, especially in urban and coastal areas. 
Hurricanes like Harvey (2017) and Ian (2022) caused over USD 
100 billion in economic losses combined, while earlier storms, 
such as Katrina (2005), was responsible for more than USD 5 
billion in infrastructural damage across Alabama, Louisiana, and 
Mississippi (Museru et al., 2024; Shahabi and Tahvildari, 2024). 
These extensive societal and financial damages can be attributed 
to the fact that over 80% of the population in the United States 
are located in urban areas (World Bank, 2023). 
Coastal states are particularly vulnerable to these devastating 
flood events. Studies predict that by 2100, the area to U.S. coastal 
floodplains susceptible to a 100-year flood event could expand 
by 55% if shorelines remain fixed (Alizadeh Kharazi and 
Behzadan, 2021). North Carolina, for example, suffered 
catastrophic damage from Hurricane Matthew in 2016. Reports 
from local, state, and federal agencies estimated economic losses 
of about USD 5 billion, including the destruction of roughly 
110,000 homes and businesses, as well as severe impacts to 
electricity infrastructure, with inundated substations and blown 
transformers, leaving approximately 900,000 people without 
electricity (Benfield, 2017; Berg, 2017). Given the increasing 
severity, frequency, and impact of flooding, there is a pressing 
need to leverage advanced technology to map and assess risks 
and vulnerabilities in populated areas, helping to mitigate future 
losses. 
Access to accurate and timely information following major 
natural disasters, such as floods, is crucial for effective 
emergency response and recovery. Additionally, it plays a vital 
role in supporting mitigation and adaptation strategies aimed at 
ensuring long-term socio-economic and environmental resilience 
in vulnerable areas. (Alizadeh Kharazi and Behzadan, 2021). 

Consequently, researchers have increasingly applied advanced 
remote sensing techniques to efficiently map and analyze flood 
dynamics (Do Lago et al., 2023; Gebrehiwot and Hashemi-Beni, 
2021). Other studies have focused on flood damage and 
susceptibility mapping (Museru et al., 2024; Wang et al., 2020). 
Moderate resolution satellite imagery, including Landsat 8 and 
Sentinel 2 provide valuable information for mapping flooded 
areas, as well as training models for predicting flood 
vulnerabilities and damage assessment for various flood 
scenarios. Additionally, other remotely sensed datasets, 
including radar imagery (e.g. Sentinel 1, PALSAR-2) (Cian et al., 
2018; Iervolino et al., 2015; Schumann et al., 2007), aerial 
imagery (including UAV imagery) (Fonstad and Marcus, 2005; 
Scorzini et al., 2018), as well as surveillance camera footage(e.g. 
river cameras) (Liu and Huang, 2024; Moy De Vitry et al., 2019) 
have been relied on for various flood studies.  
Traditionally, classical remote sensing methods and machine 
learning techniques were applied to process and extract 
meaningful environmental information from these datasets for 
different applications (Agboola and Hashemi-Beni, 2023; 
Anokye et al., 2024; Wasehun et al., 2024) ; However, these 
methods tend to yield low accuracy results due to the complex 
textual information and nonlinear relationships between flood 
related variables, especially in complex environments like the 
urban area  (Gebrehiwot and Hashemi-Beni, 2022). The use of 
advanced deep learning networks, particularly convolutional 
neural networks (CNNs), for flood mapping and assessment is 
increasingly being adopted to address existing limitations and 
demonstrate high performance (Gebrehiwot et al., 2019; 
Hashemi-Beni et al., 2024). CNNs excel at learning and detecting 
complex nonlinear relationships among features through various 
convolutional operations.  
Their capability to process and extract information from raw 
image data, leveraging spatial information at the pixel level, has 
contributed to their widespread acceptance and application 
within the remote sensing community. (Guo et al., 2020; 
Hashemi-Beni and Gebrehiwot, 2021). Various remote sensing 
studies have applied different CNN network architectures for 
flood mapping, with the UNET architecture being particularly 
prevalent in studying various flood dynamics (Kabir et al., 2023; 
Popandopulo et al., 2023; Yokoya et al., 2022). Other 
architectures, such as Mask R-CNN (Alizadeh Kharazi and 
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Behzadan, 2021; Song and Tuo, 2021), conditional Generative 
Adversarial Network (cGAN) (Burrichter et al., 2023; Do Lago 
et al., 2023), and Deeplabv3+ (Muhadi et al., 2024) have also 
been applied for similar purposes. Despite its robust capabilities, 
deep learning is inherently data-intensive, requiring sufficient 
high-quality data to achieve optimal performance. 
Rarely do studies provide a comprehensive approach that 
includes floodwater extent mapping, water depth estimation, and 
impact assessment. This study aims to address this limitation by 
leveraging artificial intelligence and advanced remote sensing 
techniques to predict floodwater extent, estimate water depth, 
assess the impact on building structures and road infrastructure 
in settlement areas. This integrated analysis offers a 
comprehensive perspective on flood dynamics and potential 
impacts, with each indicator contributing valuable insights 
essential for shaping sustainable flood mitigation and adaptation 
policies.  
 

2. Data and Methodology 

2.1 Study Area 

The study focused on Greenville, a city in Pitt County, North 
Carolina, USA. Situated in the north-central coastal plains region 
of East North Carolina, Greenville was significantly impacted by 
Hurricane Matthew, which brought severe flooding to the coastal 
plains, causing widespread damage to both lives and properties. 
Our analysis focused on the Greenville airport enclave (Figure 
1), with a land cover area of 1,981 acres. The area constitutes 
approximately 66% built-up areas, 19% open water, 15% 
vegetation, and less than 1% other land cover types (Figure 2). 
This area includes around 708 buildings and approximately 35 
miles of roadway (Table 1). 

 
Figure 1: Study area map of Greenville airport enclave 

 

 
 

Figure 2: Landcover types for study area 

 
 
 
 
 
 
 

Table 1: Building structures and road infrastructure statistics. 
 
2.2 Data 

To achieve the study objective, a range of geospatial datasets 
were employed. The primary data sources included post-flood 
aerial imagery from NOAA, landcover data from the National 
Land Cover Database (NLCD), lidar data and building footprints 
from North Carolina Emergency Management (NCEM), and 
road data from Open Street Map (OSM) (Figure 2).  
The post flood aerial imagery, with a resolution of approximately 
25 cm was downloaded from the NOAA web portal and used for 
mapping flooded areas within the study area. The 2016 Land 
Cover dataset for the Continental United States (CONUS) was 
accessed from the NLCD web portal, at a resolution of 
approximately 30 m, was employed to estimate land cover types 
in the study area. Lidar data, derived from the North Carolina 
Spatial data web portal, at 2 points per meter resolution for 2015, 
was used to generate a digital elevation (DEM) raster for the 
study area. Building footprints for 2020 were accessed from the 
same source. Additionally, road data was extracted from open 
street map (osm) using a plugin API in QGIS. These datasets 
facilitated the impact assessment analysis. USGS field 
measurements of floodwater depth was also utilized as reference 
points for evaluating the accuracy of the floodwater depth 
estimates. 

 
 

Figure 3: (A) Post flood Aerial imagery. (B) National 
landcover data. (C) Lidar data from NCEM. (D) Building 

footprint, and road data (osm). 
 

2.3 Methodology 

The methodology leveraged the artificial intelligence (AI) 
capabilities of ArcGIS pro, combined with a series of key steps 
to delineate floodwater extent, and estimate floodwater depth. 
This approach facilitated a detailed analysis of flood impact on 
building structures and road infrastructure within the designated 
study area. The flowchart (Figure 4) shows the steps of the 
proposed methodology, which are further outlined below 
: 
 
 

Built assets Total 

Building structures 708 

Roads 34.94 miles 
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Figure 4: Flowchart of the proposed methodology 

 
2.3.1 Floodwater Extent Boundary Extraction: To estimate 
floodwater depth, identifying flooded areas within the study 
region is essential. The initial step in our methodology focused 
on delineating these areas using the post-flood aerial imagery, 
which is processed through the UNET image segmentation 
algorithm. The UNET model, originally proposed by 
(Ronneberger et al., 2015), is highly effective for image 
segmentation tasks and is widely recognized for its performance 
in similar applications (Blay et al., 2024; Guo et al., 2022; Kabir 
et al., 2023).  
The UNET architecture is a U-shaped network, constituting two 
main parts; a contracting path for downsampling and an 
expansive path for upsampling. The contracting path applies 3x3 
convolutions with ReLU and 2x2 max-pooling, doubling the 
feature channels at each step. The expansive path upsamples with 
2x2 convolutions, concatenates with cropped feature maps from 
the contracting path, and uses additional two 3x3 convolutions, 
each followed by a ReLU activation to refine results. The final 
layer map features to classes with a 1x1 convolution, amounting 
to a total of 23 convolutional layers. Furthermore Input tile sizes 
are chosen to ensure smooth tiling of the segmentation output 
(Ronneberger et al., 2015). 
For this study, we leveraged a pre-trained UNET model, 
specifically the “High resolution Land Cover Classification-
USA” model available in the ArcGIS python API. This model, 
trained on the Chesapeake Bay Landcover dataset, has an overall 
accuracy of approximately 87%, and about 93% in precision, 
recall, and F1-score for detecting open water areas (ESRI, 2024). 
The UNet model was employed to perform segmentation of the 
post flood aerial imagery into seven (7) land cover classes. Our 
primary interest was in the open water class, so we extracted the 
water class and qualitatively reviewed it for any 
misclassifications, including errors of commissions or omissions 
in this category. Any misclassifications, such as the classification 
of other land cover classes as open water, or otherwise, were 
corrected (Figure 5).  

The following steps summarize ArcGIS Pro deep learning 
implementation workflow; 

1. Segmentation of Imagery: Loaded the post-flood 
aerial imagery into the ‘Classify Pixels using Deep 
Learning’ tool, and segment it into seven land cover 
classes using the pre-trained model. Converted 
segmented raster results into polygon using “Raster to 
Polygon” tool. 

2. Visual Quality Assessment (VQA): Conducted a post-
segmentation VQA focused on the open water class 
and other landcover types (Figure 6). 

3. Extraction of Flooded Areas: Used SQL Query 
Builder to extract the open water class, from the 
segmentation results, as an indicator for flooded areas. 

4. Flood Extent Assessment: Refine the floodwater 
extent delineation and finalize results. 

This workflow enabled efficient segmentation and extraction of 
floodwater extent, leveraging artificial intelligence capabilities to 
accurately identify open water areas (Figure 5 and 6). 
 
 

 
Figure 5: Floodwater extent delineation workflow. 

 
 

 
 

Figure 6: (A) aerial imagery. (B) segmentation results with 
water misclassification. (C) Final floodwater extent post VQA 
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2.3.2 Floodwater depth estimation and Impact assessment: 
Our approach for estimating the floodwater depth is based on a 
knowledge-based approach employed by various studies (Blay et 
al., 2024; Gebrehiwot and Hashemi-Beni, 2021; Surampudi and 
Kumar, 2023; Wienhold et al., 2023), which leverages on just 
floodwater extent and an underlying DEM data. This approach is 
a pixel-wise estimation of floodwater depth within a flood 
domain, by deducting the water surface height from the 
underlying DEM (Blay et al., 2024). This approach is based on 
the principle of hydrostatic equilibrium, which states that 
stationary fluids exert equal pressure in all directions due to 
gravitational forces. This causes water to flow into lower areas, 
creating a relatively level surface in the absence of flow. Thus, 
we can assume that the water surface along the perimeter of the 
flooded area is close to a uniform elevation. By interpolating this 
water surface height using the water extent, we can estimate the 
floodwater depth by subtracting it from the DEM, giving an 
estimated water level within each flooded region. After obtaining 
these floodwater depth estimates, we overlaid building and road 
infrastructure, as well as the landcover data on the flood map to 
assess the impact, determining the number of affected buildings, 
roadways, and the extent of affected developed areas within the 
study area. Our implementation followed the steps outlined in 
(Blay et al., 2024), allowing for an effective evaluation of flood 
depth and its impact on built infrastructure.  
In summary, the implementation workflow included; (1) 
Clipping the underlying DEM to the floodwater extent boundary; 
(2) extracting elevation values along the water extent perimeter 
from the clipped DEM; (3) using linear interpolation to estimate 
the water surface heigh for each flooded area; and (4) calculating 
floodwater depth by subtracting the estimated water surface 
height from the underlying DEM (Figure 7). 

 
 

Figure 7: Floodwater depth and impact assessment workflow 
 

 
3. Results and Discussion 

The estimated floodwater depth results revealed a maximum 
water depth of approximately 16ft within the Greenville airport 
enclave. Due to the absence of actual field measurements specific 
to our study site, field gage height measurement data from USGS 
on the Tar River was used as a reference for accuracy assessment 
using the RMSE score. Our floodwater depth achieved an RMSE 
score of 0.75, indicating an average deviation of approximately 
1ft between our water depth estimation and the reference 
measurement. This deviation may be attributed to several factors, 
including the temporal mismatch between datasets, the reliability 
of the ground truth data for the study areas, and minor 
inaccuracies in both the floodwater extent results and the DEM 
data. 

The flooded areas were concentrated primarily in the southern 
part of the study area (Figure 8), with the highest depth levels 
clustered around the south and southwest of the Greenville 
airport (Figure 9). Given the proximity of these areas to the 
floodplains of the Tar River, this result aligns with expectations. 
Further analysis revealed that approximately 32% (about 415 
acres) of the total 1300.5 acres of the builtup area within the 
airport enclave was affected by flooding. Furthermore, 
approximately 26% (185) of the total building structures and 66% 
(23 miles) of road infrastructure within the study area were 
impacted by the hurricane (Figure 10).  
As illustrated in Figure 10, critical built assets such as the 
Greenville airport and various commercial and residential 
buildings, suffered substantial impacts. This level of damage 
underscores the potential for significant economic losses to the 
city following the hurricane. For instance, various state reports 
revealed that approximately 30,000 businesses across the state 
suffered physical damage or operational interruptions, with 
estimated losses totaling USD 2 billion (Benfield, 2017). 
Additionally, many smaller roads, including those in Greenville, 
were expected to be closed for months due to the extent of the 
damage caused by the hurricane. This widespread impact 
highlights the severe economic and infrastructural challenges 
incurred by the affected communities, including Greenville. 
 

4. Conclusion 

Comprehensively mapping floodwater extent, estimating the 
water depth, as well as analyzing the flood impact in populated 
areas provides in-depth insights into flood dynamics and 
strategies for mitigating severity. This study leveraged geospatial 
datasets and artificial intelligence to map floodwater extent, 
estimate flood water depth and assessed its impact on buildings 
and roads affected by Hurricane Matthew in Greenville, North 
Carolina. The deep learning and geospatial analytical capabilities 
were integrated with aerial imagery, lidar-derived DEM, building 
and road data, as well as landcover data. Our findings show that 
Hurricane Matthew affected 32% of developed land, 26% 
building structures, and approximately 66% of roads within study 
area. Notable assets, such as the Greenville airport, were 
significantly affected. Flood extent results achieved 93% 
accuracy, while floodwater depth estimation showed RMSE of 
0.75, indicating a deviation from the ground truth measurements 
of approximately 1ft. 
 

 
Figure 8: Floodwater extent result  

 

 
Figure 9: Floodwater depth estimation result 
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Figure 10: Impact assessment results with ground truth 

 
Despite the study’s comprehensive approach, several 
improvements are needed for future research. A key limitation is 
using DEMs to estimate floodwater depth in complex urban 
terrains, as it may lead to significant underestimations. DEMs 
tend to oversimplify urban landscapes, smoothing out critical 
elevation variations caused by buildings, bridges, roads, artificial 
slopes, and vegetation—features that influence natural water 
flow. This simplification can lead to inaccuracies and misclassify 
high-risk areas. Another key limitation is the temporal mismatch 
in datasets used, as all were captured at different times. For 
example, the aerial imagery was captured in 2016, while building 
footprint data dates to 2020—four years post-disaster. This 
discrepancy may introduce inaccuracies in the impact 
assessment, potentially identifying buildings that did not exist at 
the time of the disaster as affected or overlooking those that were 
impacted. Future studies should find comprehensive ways of 
addressing these challenges to improve flood mapping and 
impact assessment. Such improvements could significantly 
strengthen emergency response planning and infrastructure 
resilience initiatives. 
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