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Abstract 

 

With the continuous advancement of urbanization, the demand for comprehensive monitoring of diverse suburban areas is increasing, 

which simultaneously raises the need for high-precision positioning technologies especially for the automatic positioning for video 

surveillance imagery. The current challenges in high-precision positioning for surveillance data include: (1) The difficulty of matching 

wide-angle images; (2) The significant scale differences between Tower-mounted Video Surveillance (TVS) and Remote Sensing (RS) 

ortho-images complicate multi-scale automatic focusing; (3) The positioning accuracy decreases due to the physical factors in suburban 

scene areas. To address these issues, this study proposes a Dual-Feature Image Matching-based Method for High-Resolution RS and 

TVS Collaboration method for precise positioning in complex suburban areas, referred to as DFMC. Through the processes of geo-

referencing, dual-feature image matching, homography transformation and geographic coordinate computation, the proposed DFMC 

overcomes the challenges of high-precision matching between wide-angle video images and RS images, facilitating the projection of 

any point coordinates from the pixel coordinate system of TVS frames to the projected Cartesian coordinate system of RS ortho-images. 

Experiments are conducted using over 28,000 video frames of tower-mounted surveillance system across 210,000 km2 in Hunan 

Province of China. The results indicate the proposed DFMC achieves a positioning accuracy error of less than 1.5 meters in flat areas 

and less than 3 meters in complex suburban areas. Therefore, DFMC enables rapid monitoring and positioning in complex suburban 

areas, providing valuable informational support for relevant authorities. 

 

 

1. Introduction 

Suburban areas are typically regarded as part of the city due to 

their unique geographical locations and important functions in 

urban development planning. In recent years, with the 

acceleration of the urbanization process, research on land use, 

management, security assurance, and infrastructure maintenance 

in suburban areas has gradually increased (Wu et al. 2023, Yang 

et al. 2013). However, traditional positioning technologies 

struggle to meet the comprehensive demands of the 

geomorphologically diverse suburban areas. In particular, 

Remote Sensing (RS) imagery is close to vertical photography, 

the gained orthoimage has high positioning accuracy and can be 

easily matched with map coordinates, while cannot be captured 

in real time. The real time Tower-mounted Video Surveillance 

(TVS) data obtaining is widely used in suburban areas, while 

cannot be directly matched with the map coordinates, thus the 

positioning accuracy is low. Using the advantages of RS data to 

get high-resolution image and accurate positioning, combining 

the advantage of real-time TVS data to monitor the change and 

potential risk can effectively enhance positioning accuracy, 

making it more suitable for application in functionally complex 

and geomorphologically varied suburban areas. The application 

of the above method will not only aid in tackling the management 

and development challenges of suburban areas but will also 

provide critical intelligent management support in fields such as 

resource monitoring, smart city construction, urban intelligent 

transportation, and emergency response, thereby laying a solid 

foundation for the long-term development of the nation (Haight 

et al. 2023). 

 

The key issue of TVS-RS collaboration lies in how to integrate 

and process multi-source data to achieve effective data 

management. Multi-source data primarily includes remote 

sensing images data from satellite or Unmanned Aerial Vehicle 

UAV (such as latitude and longitude coordinates) and ground 

target information (such as images and videos provide pixel 

coordinates); data processing refers to the rapid and high-

precision transformation of these two types of data. RS images 

are acquired through non-contact methods and have become 

effective tools for monitoring urban expansion and early warning 

of geological disasters (Casagli et al. 2023). However, RS 

method has several drawbacks such as slow update frequency by 

using satellite and small coverage area and require trained staffs 

to operate by using UVA. In contrast, ground video monitoring 

technology, particularly TVS systems, may be affected by 

weather conditions and have a limited coverage area; however, 

they offer advantages such as resistance to natural factors like 

cloud cover, real-time video capture, and the ability to achieve 

remote control. Therefore, the combination of these data and 

technologies effectively addresses the limitations of remote 

sensing technology regarding timeliness and the shortcomings of 

TVS concerning the coverage area. Furthermore, ground 

monitoring not only provides intuitive visual information that 

enhances the validation capability of precise positioning system 

data but also accelerates emergency response in critical situations, 

improving the efficiency of rescue or law enforcement operations 

and providing important evidence for post-event analysis. 

Therefore, effectively combining remote sensing with ground 

video monitoring can fully leverage their respective strengths and 

significantly enhance the efficiency of suburban management. 

 

Recently, researchers have attempted to integrate TVS imagery 

with RS images in a nested manner, applying this approach to 

specific scenario-based tasks. For instance, Milosavljević et al. 

(Milosavljević et al. 2016) proposed a method that integrates 
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Augmented Reality (AR) technology with three-dimensional (3D) 

Geographic Information Systems (GIS) into video surveillance 

systems. Shao et al. (Shao, 2020) developed a precise matching 

method for vector data and surveillance videos based on dense 

matching techniques. This method enables the identification of a 

sufficient number of control points from two-dimensional (2D) 

GIS data and selected reference video images, subsequently 

achieving alignment of remote sensing imagery with PTZ (Pan-

Tilt-Zoom) video image frames through automated feature 

matching techniques. However, georeferencing is required at 

each stage of the process and imposes high demands on the video 

scene being utilized. To connect surveillance videos with a 

virtual 3D GIS environment, Milosavljević et al. (Milosavljević 

et al. 2017) proposed a parameter estimation method that jointly 

matches video feature points with 3D coordinates. This method 

relies on high-resolution Digital Orthophoto Maps (DOM) and 

Digital Elevation Models (DEM), employing the Levenberg-

Marquardt iterative optimization algorithm to ultimately 

determine the most suitable camera position and orientation 

information. However, due to variations in camera focal length 

and angle, this method struggles to obtain accurate and reliable 

physical information of the imagery, thus it is rarely used in 

practical applications. 

 

To ensure national security and support global sustainable 

development strategies, many provinces and cities in China have 

established real-time land monitoring systems. For instance, 

Jiangsu Province's ‘Guarding the Land with Insightful Eyes 

Surveillance system’ system and Ningbo City's arable land 

protection supervision system. The former has deployed over 

18,000 video surveillance points in key areas of Jiangsu Province, 

allowing for the overlay of real-time video monitoring images 

with fundamental databases such as cadastral survey data, overall 

land use planning, and mineral resource distribution. This system 

can automatically compare and analyse discrepancies to issue 

early warnings and monitor suspected illegal activities (Cao et al. 

2019, Ouyang et al. 2022). The latter leverages Ningbo's tower 

video monitoring system to overlay existing arable land map 

layer data and create electronic fences for agricultural land. This 

system can monitor illegal occupation of arable land within a 15-

kilometer radius around tower base stations in real time, 

supporting the automatic identification of 33 target types, 

including red brick piles, excavators, and prefabricated houses, 

with an average accuracy of 90% (Wang et al. 2022, Li et al. 

2022). Additionally, Jiaxing City, Zhejiang Province, has 

recently established the ’National Land Sky Eye Surveillance 

System’ (Zhang et al. 2020). It achieves real-time monitoring of 

land use and illegal construction within a 3-5 square kilometre 

area around communication towers through 101 communication 

tower stations and video monitoring equipment, with platform 

operational efficiency exceeding 99%. 

 

Although these existing TVS-RS collaborative systems have 

initially realized monitoring and analysis functions in the area, 

they still exhibit the following deficiencies: 1) The difficulty of 

matching wide-angle images: Conventional global affine 

transformations lead to geometric distortions that may extend to 

kilometres, failing to meet the necessary supervision standards; 

2) Inaccurate image feature matching: There is a discrepancy in 

feature point matching between TVS images and RS imagery, 

preventing precise image alignment; 3) Weak anti-interference 

capability: High-altitude cameras on towers are easily affected by 

external geographic factors (such as complex suburban areas) and 

variations in focal length, which in turn impact high-precision 

positioning. Consequently, the current TVS-RS collaborative 

systems struggle to meet the requirements posed by the diverse 

geomorphology of suburban areas, particularly in hilly terrains, 

making efficient management and monitoring of these areas 

challenging. 

 

In this work, we propose a dual-feature image matching method 

for the collaboration of high-resolution RS and TVS for precise 

positioning in complex suburban areas, termed DFMC. The 

proposed method first establishes a mapping relationship 

between the pixel coordinate system of TVS images and the 

projected Cartesian coordinate system of RS orthoimages to 

achieve georeferencing. Subsequently, DFMC performs feature 

detection and feature description of the TVS image and the 

aligned standard image, and achieves image matching at arbitrary 

angles by dual feature matching. This dual feature matching 

contains two parts, coarse matching establishes a pixel-by-pixel 

dense matching between the tower image and the standard image, 

and then refines the matching accuracy of both images at fine 

matching. Finally, DFMC utilizes homothetic transformation to 

project the coordinates of any point in the current TVS image 

frame onto the reference image coordinate system, achieving 

rapid coordinate conversion and positioning. Practical case 

studies demonstrate that the proposed DFMC method can achieve 

high-precision and rapid positioning in flat areas, as well as 

accurate positioning in complex suburban hilly terrains. The 

collaborative remote sensing precise positioning method 

introduced in this paper offers new perspectives and theoretical 

support for planning, management, environmental monitoring, 

and emergency response in suburban areas. 

 

2. Methodology 

In addressing the complexities of suburban areas, the proposed 

DFMC method can rapidly match a specific image frame from 

TVS with the corresponding RS imagery, map the image 

coordinates of various points, lines, and surfaces in the TVS 

image to the geographic coordinate system of the satellite 

orthoimage. As illustrated in Figure 1, the DFMC method 

consists of three main stages: georeferencing, dual feature image 

matching, homography transformation, and positional 

information conversion. Specifically, georeferencing establishes 

a mapping relationship between the TVS reference image and the 

satellite orthoimage by selecting corresponding feature points, 

thereby eliminating discrepancies caused by factors such as tilt 

angle, shooting height, and color texture, while creating a 

standardized image sample library. Subsequently, through 

feature detection and description of the heterogeneous images, 

DFMC performs dual feature matching. This matching process 

initially establishes dense pixel-wise matching at a coarse level, 

followed by refinement of feature matching at a detailed level. 

Finally, the homography transformation projects any point 

coordinates from the TVS image frame into the RS imagery 

coordinate system, facilitating rapid location conversion. 

 

 
Figure 1. The Proposed Framework of DFMC. 

 

2.1 Georeferencing 

RS imagery employs a projected Cartesian coordinate system, 

while the TVS images utilize a pixel coordinate system. To 
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Figure 2. Dual Feature Image Matching Mechanism. 

 

effectively display the results of surveillance videos within a GIS, 

it is essential to establish a mapping relationship between the 

pixel coordinate system used in TVS images and the projected 

Cartesian coordinate system of the RS orthoimages. Currently, 

commonly used georeferencing fall into two categories: 

homogenous transformation methods and Line of Sight (LOS) 

intersection methods with Digital Elevation Models (DEM) 

(Okolie and Smit, 2022). The former method relies on the 

accuracy, quantity, and spatial distribution of selected feature 

points and typically requires significant user interaction to ensure 

mapping accuracy. The latter method determines the geographic 

spatial coordinates of image pixels by calculating the intersection 

points between the viewpoint line and the DEM. However, this 

method is less frequently applied in practice due to the difficulty 

in obtaining camera parameters and DEM data. In both 2D and 

3D GIS, the generation of the mapping matrix is the final 

outcome of this process. In 2D GIS, the mapping process is 

bidirectional, whereas in 3D GIS, it represents a unidirectional 

mapping from 3D GIS data to 2D surveillance videos. 

Conversely, 2D surveillance videos cannot be directly mapped in 

geographic space. Therefore, a direct conversion between GIS 

digital orthophoto map coordinates (X, Y) and surveillance video 

pixel coordinates (u, v) is not feasible. 

 

To address this issue, this paper proposes a cross-mapping 

model between the 2D GIS image and TVS image under height 

constraints, as illustrated in the following equation: 

 

[

𝑑𝑥

𝑑𝑦

𝑑𝑧

] = [

1 0 0
0 𝑐𝑜𝑠(−𝜃𝑥) − sin(−𝜃𝑥)

0 𝑠𝑖𝑛(−𝜃𝑥) 𝑐𝑜𝑠(−𝜃𝑥)
] [

𝑐𝑜𝑠(−𝜃𝑦) 0 𝑠𝑖𝑛(−𝜃𝑦)

0 1 0
−𝑠𝑖𝑛(−𝜃𝑦) 0 𝑐𝑜𝑠(−𝜃𝑦)

] 

[
𝑐𝑜𝑠(−𝜃𝑧) −𝑠𝑖𝑛(−𝜃𝑧) 0

𝑠𝑖𝑛(−𝜃𝑧) 𝑐𝑜𝑠(−𝜃𝑧) 0
0 0 1

] ([

𝑎𝑥

𝑎𝑦

𝑎𝑧

] − [

𝑐𝑥

𝑐𝑦

𝑐𝑧

])         (1) 

 

Here, 𝑑𝑥,𝑦,𝑧  represent the spatial position of a point after 

projection, 𝑎𝑥,𝑦,𝑧  signify the position in 3D to be projected, 

cx,y,z is the position of the camara, with 𝜃𝑥,𝑦,𝑧 as the rotation 

angles of the camera. Through Equation (1), we can align points 

in different coordinate systems between TVS images and RS 

imagery, achieving geographic co-registration. Building upon 

this, we perform feature point matching between the TVS images 

and the RS orthoimages to obtain a sufficient number of 

corresponding point samples, thereby constructing a standard 

image sample library for TVS images at specific angles, aided by 

RS imagery. 

 

2.2 Dual Feature Image Matching Mechanism 

To achieve omnidirectional positioning of the target location or 

area at arbitrary angles, we first need to perform feature detection 

and extraction on both the standard images of the TVS and the 

target TVS images to be matched. Subsequently, we apply 

feature matching algorithms to match these features, ultimately 

establishing a feature mapping relationship to facilitate rapid 

target matching. Feature matching techniques can extract 

distinctive feature points from a given pair of images, which 

typically exhibit invariance to rotation, scale, and illumination 

changes, enabling accurate detection under varying positions and 

angles. Existing feature matching methods are roughly divided 

into two categories based on whether a feature detector is used: 

feature detection-based matching methods and non-feature 

detection-based matching methods. The former is characterized 

by strong robustness and high interpretability, but it comes with 

higher computational complexity; the latter can leverage global 

information and is highly adaptive, making it suitable for 

complex scenes, but it demands substantial computational 

resources and has poorer interpretability. 

 

Due to the lack of texture in the terrain of complex suburban areas  

at multiple focal lengths, existing methods struggle to extract key 

features. Building upon the work of Sun et al. (Sun et al. 2021), 

we propose a dual feature image matching mechanism that 

transitions from coarse to fine granularity. This is a non-feature 

detection-based matching method that first establishes dense 

pixel-wise matching between the target TVS images and the 

standard TVS images, followed by refinement of the matching 

accuracy. As illustrated in Figure 2, the overall dual feature 

image matching mechanism comprises a feature extraction 

module, a coarse granularity matching module, and a fine 

granularity matching module (from left to right). 

 

2.2.1Feature Extraction Module: Assuming that the target TVS 

image to be matched and the calibrated reference image sample 

from the RS imagery are represented as image pairs, we refer to 

them as IA and IB, respectively. We first employ a convolutional 

feature extraction layer to extract multi-level, rich feature 

descriptors from the image pair (IA and IB). This process yields 

coarse features (CcA and CcB) at 1/8 the original image 

dimensions and fine features (CfA and CfB) at 1/2 the original 

image dimensions. Figure 3 illustrates the details of the 

convolutional feature extraction layer. It is worth noting that the 

standard convolutional architecture used in the aforementioned 

process possesses the inductive bias of unique locality and 

translation invariance, making it particularly proficient at 

capturing local feature information from images. Subsequently, 

we introduce a downsampling operation to reduce the input 

length of the local feature transformation module, thereby 

decreasing computational costs. 

 
Figure 3. Convolutional Feature Extraction Layer. 

 

As the processes shown in Figure 2, after feature extraction, we 

can achieve image comparison at any angle through the steps of 

dual-feature matching- coarse matching and fine matching. First, 

through pixel-wise dense matching, a relationship is established 
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between the target TVS image and the reference image (obtained 

by overlaying the orthoimage acquired through satellite remote 

sensing with the map in the orthogonal coordinate system), and 

then the matching accuracy between the two is further improved. 

In the feature matching process, referencing the LoFTR 

algorithm (Sun et al. 2021), we constructed a Transformer-based 

feature transformation module to extract finer-grained features, 

as illustrated in Figure 4.  

 

 
Figure 4. Transformer-based Feature Transformation Module. 

 

As shown in Figure 4, the feature transformation module mainly 

consists of a position encoding module and a Transformer 

transformation module. This feature transformation module is 

capable of converting the coarse features (CcA and CcB) obtained 

from the feature extraction module into position and context-

aware local features, which are subsequently transformed into 

easily matchable feature representations ( 𝑇𝑡𝑟
𝑐𝐴 𝑎𝑛𝑑 𝑇𝑡𝑟

𝑐𝐵 ). The 

Position Encoding (PE) module unfolds the acquired coarse 

features into long sequences, assigning positional information to 

each element of features CcA and CcB. We then add the position 

encoding information to the image pairs CcA and CcB, ensuring 

that each element of the coarse features has a unique position, 

which is beneficial for detecting feature points in areas where 

features are not prominent. 

 

After the PE by the Encoder module, we feed the feature elements 

with added positional information into the Transformer 

transformation module. The core of the Transformer 

transformation module is the attention mechanism, which 

primarily consists of query vectors (𝑸), key vectors (𝑲), and 

value vectors (𝑽). Similar to information retrieval, the query 

vector 𝑸 computes attention weights based on the dot product 

with the corresponding key vector 𝑲 for each value 𝑽, allowing 

information to be retrieved from the value vectors 𝑽 . 

Mathematically, the attention mechanism can be represented as: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸𝑲𝑽) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑸𝑲𝑇)𝑽         (2) 

 

As shown in Equation (2), the attention mechanism selects 

relevant information by calculating the similarity between the 𝑸 

vector and each 𝑲 vector. The output vector is the weighted sum 

of the 𝑽  vectors based on the similarity scores, ultimately 

extracting relevant information from the most similar 𝑽 vectors. 

Let the lengths of 𝑸  and 𝑲  be represented as N, and their 

feature dimensions as D. Due to the computational complexity of 

the dot product operation between 𝑸 and 𝑲 increasing with 

the length of the input sequences, the computational cost of the 

aforementioned operations grows quadratically, yielding a 

complexity of O(N²). As illustrated in Figure 3, the Transformer 

transformation module consists of M attention layers. After M 

attention computations, we obtain the easily matchable feature 

representations 𝑇𝑡𝑟
𝑐𝐴 𝑎𝑛𝑑 𝑇𝑡𝑟

𝑐𝐵. 

2.2.2 Coarse Matching Module: This module is designed for 

the entire image and conducts a global search to find mutually 

matching areas, establishing pixel-wise dense matching between 

image pairs IA and IB. The module primarily consists of two 

processes: calculating correlation and normalization, followed by 

threshold filtering. First, it utilizes the dual-softmax operator as a 

differentiable matching layer, using Equation 3 to compute the 

score matrix 𝑆 between the transformed features: 

 

𝑆(𝑖, 𝑗) =
1

𝜏
∙ 〈𝑇𝑐𝐴(𝑖), 𝑇𝑐𝐵(𝑗)〉              (3) 

 

Then, applying the dual-softmax operator on the two dimensions 

of 𝑆 to obtain the probabilities of nearest neighbor matching. 

Specifically, the matching probability for coarse matching, 

denoted as 𝑃𝐶, can be modelled as: 

 

𝑃𝐶(𝑖, 𝑗) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑆(𝑖,∙))
𝑗

∙ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑆(∙, 𝑗))
𝑖
     (4) 

 

Finally, based on the confidence matrix 𝑃𝐶, we select matches 

with confidence levels exceeding the threshold  θC and further 

apply the Symmetric Nearest Neighbor (SNT) criterion to filter 

out irrelevant features. This process can be modelled as the 

following equation: 

 

𝑀𝐶 = {(𝑖, 𝑗)|∀(𝑖, 𝑗) ∈ SNT, 𝑃𝐶(𝑖, 𝑗) ≥ 𝜃𝐶}        (5) 

 

2.2.3 Fine Matching Module: After establishing coarse 

matches, we use the fine matching module to refine the 

aforementioned feature matches to the fine features at 1/2 the 

original image dimensions.  

 

For each coarse match (𝑖̃, 𝑗̃), we first locate its position (i,j）on 

the fine feature maps CfA and CfB, and then crop two local 

windows to size W*W. The cropped features within each window 

will be transformed L times through the Transformer 

transformation module, producing two local feature maps 

centered at i and j, referred to as 𝑇𝑡𝑟
𝑓𝐴

(𝑖) 𝑎𝑛𝑑 𝑇𝑡𝑟
𝑓𝐵

(𝑗) , 

respectively. Next, we associate the center vector of 𝑇𝑡𝑟
𝑓𝐴

(𝑖) 

with all vectors in  𝑇𝑡𝑟
𝑓𝐵

(𝑗), generating a heatmap. This heatmap 

represents the matching probability of each pixel in the 

neighborhood of j with respect to i. By calculating the expected 

value over the probability distribution, we obtain the final 

position on IB with sub-pixel accuracy. Finally, we collect all 

matches{(i,j)} to produce the final fine matching set 𝑀𝑓 =
{(𝑖, 𝑗)}. 

 

This dual-feature matching mechanism is capable of finding a 

large number of corresponding point pairs even in areas with 

sparse texture, significantly enhancing matching accuracy and 

laying the groundwork for subsequent geographic localization. 

 

2.3 Homography Transformation and Positional 

Information Conversion 

After obtaining corresponding points between image pairs 

through feature matching, the DFMC utilizes homography 

transformation to establish the mapping relationship between 

real-time monitoring images and standard images. Homography 

transformation, which incorporates perspective projection, can 

handle objects at both close and far distances, taking into account 

the camera's position and orientation, thereby preserving the 

properties of lines and parallel lines in the images. The essence 

of homography transformation is calculated through the 

homography matrix 𝑯. Here, 𝑯 can be defined as: 
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Figure 5. Localization Results for Xingfu Suburban Plain Areas at Focal Lengths of 1x, 4x, 7x, and 10x.

 

𝑯 = [

𝐻11 𝐻12 𝐻13

𝐻21 𝐻22 𝐻23

𝐻31 𝐻32 1
]             (6) 

 

where the homography matrix 𝑯 contains 8 unknowns; therefore, 

four pairs of non-collinear corresponding points are sufficient to 

solve for all the unknowns in the homography transformation 

matrix. 

 

Assuming the coordinates of the corresponding points in the two 

images are represented as 𝑷 = [𝑥, 𝑦, 1]𝑇  and 𝑸 = [𝑢, 𝑣, 1]𝑇 

where 𝑷 is a point in the reference image and 𝑸 is a point in 

the target TVS image frame to be matched. Given the 

homography transformation matrix H, the relationship between 

𝑷 and 𝑸 can be expressed as: 

𝑷 = 𝑯 ∙ 𝑸                  (7) 

 
[𝑥, 𝑦, 1]𝑇 = 𝑯 ∙ [𝑢, 𝑣, 1]𝑇          (8) 

or: 

𝒙 = 𝐻11𝑢 + 𝐻12𝑣 + 𝐻13          (9) 

 

𝒚 = 𝐻21𝑢 + 𝐻22𝑣 + 𝐻23         (10) 

 

The above equations allow for the calculation of the true 

geographic coordinates of any point in the target TVS image 

frame. Moreover, this mapping relationship is reversible. For the 

region of the orthoimage covered by the current TVS image 

frame, the corresponding point in the surveillance image can be 

found for any point in the orthophoto through the inverse process. 

 

3. Results 

 

3.1 Experimental Datasets 

This study utilizes remote sensing image data provided by the 

'YunYao-1' series of satellites, which employs the CGCS2000  

 

 

coordinate system. The tower-mounted video surveillance 

images are selected from the Hunan Province Tower Sentinel 

System. To train the DFMC method for feature extraction from 

TVS and RS reference images, the MegaDepth dataset (Li and 

Snavely, 2018) is used as the training dataset, with the training 

method referencing the LoFTR (Sun et al. 2021). This dataset 

contains millions of real-world images obtained from the internet, 

covering a diverse range of landscapes and rich structural scenes. 

To test and validate the method's effectiveness in complex 

suburban environments, we utilize real-time screenshots captured 

under various lighting and weather conditions using tower-

mounted video equipment. The test data includes TVS data from 

the Xingfu suburban area, near the Yiyang city center, and the 

Changputang suburban area, adjacent to Fenghuang City, both 

located in Hunan Province. The camera view in Xingfu primarily 

covers farmland, characterized by flat terrain and few 

obstructions. In contrast, Changputang are mountainous areas 

with numerous hills, villages, and forests, featuring significant 

terrain undulation and many obstructions. 

 

Additionally, due to the large coverage area of the surveillance 

cameras, it is necessary to adjust the camera parameters (D for 

rotation angle, T for azimuth angle, and Z for the multiple of focal 

length) to ensure accurate monitoring of farmlands that are 

distant from the monitoring range, thereby enlarging the 

monitoring area for subsequent experiments. Accordingly, the 

dimensions of the altered surveillance images must be adjusted 

based on specific equations. To enhance the accuracy of image 

matching, we sort the matching points according to confidence 

levels, selecting only the top ten pairs of corresponding points 

with the highest confidence for the homography transformation. 

Given that the camera's field of view is 360°, we capture a 

surveillance image every 60° (referred to as standard images), 

and implement point modeling based on pseudo-circular scene 

images, completing the selection of control points for each image 

relative to the RS images. After the control point pairs are 

selected, we use a mathematical model of cross-mapping 

between the two-dimensional geographic information system 

under height constraints and the TVS image to align points across 

different coordinate systems.
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Figure 6. Localization Results for Changputang Village in Suburban Hilly Areas at Focal Lengths of 1x, 1x, 3x and 7x.

 

3.2 Evaluation Index 

Due to the unique characteristics of suburban areas, we primarily 

employ visualization methods to assess the localization 

effectiveness. Visualization provides an intuitive representation 

of complex data in a graphical format, aiding in the analysis of 

regional features and making it easier to identify patterns, trends, 

and anomalies, while also improving the accuracy of localization. 

Additionally, Root Mean Square Error (RMSE) is intuitive as it 

is expressed in the same units as the original data, making it easy 

to interpret and compare, while also being sensitive to large 

errors, effectively highlighting potential issues with the model's 

performance. Thus, we use the RMSE to measure the error 

between the observed values and the actual measurements, as 

shown in the following equation: 

 

𝑅𝑀𝑆𝐸 = √
∑(𝑥−𝑥′)2+∑(𝑦−𝑦′)2

𝑀
          (11) 

 

Here, (𝑥, 𝑦) are the geographic coordinates calculated for the 

selected M points, and (𝑥′, 𝑦′)  are the real geographic 

coordinates. 

 

Video 

Check 

Frames 

RMSE 

(meter) 

Video 

Check 

Frames 

RMSE 

(meter) 

Frame 1 1.3972 Frame 4 0.8494 

Frame 2 1.5406 Frame 5 1.6075 

Frame 3 0.9137 Frame 6 1.5642 

Average 1.3121 

Table 1. RMSE Localization Errors in Suburban Plain Areas 

 

3.3 Experimental Localization Effects 

3.3.1 Localization Effect in Suburban Plain Areas: Figure 5 

illustrates the localization results of the proposed DFMC for the 

TVS images and RS imagery of Xingfu suburban plain areas at 

different focal lengths (Z = 1, 4, 7, 10). As seen in Figure 5, the 

areas highlighted by the red lines in both the orthoimage and the 

surveillance video images correspond to the same area, with a 

high degree of boundary overlap. Additionally, Table 1 presents 

the localization error values for six randomly selected video 

image frames in Xingfu suburban area, revealing a maximum 

localization error of 1.6075 and an average error of 1.3121, less 

than 1.5 meters. This indicates that the matching performance 

between the RS orthoimage and the TVS images is satisfactory, 

suggesting that the proposed DFMC method is suitable for the 

geographic localization needs of tower surveillance videos in 

suburban plain areas. 

 

3.3.2 Localization Effect in Suburban Hilly Areas: Figure 6 

illustrates the localization results of the proposed DFMC for the 

TVS images and RS imagery of Changputang suburban hilly 

areas at different focal lengths (Z = 1, 1, 3, 7). As shown in Figure 

6, the boundaries of the areas highlighted by the red lines in both 

the orthoimage and the surveillance video images have a high 

degree of overlap, indicating good localization performance.  

Additionally, Table 2 presents the localization error values for six 

randomly selected video check image frames in Changputang 

suburban hilly area, revealing a maximum localization error of 

3.3014 and an average error of 2.9881, less than 3 meters. The 

geographic localization requirements for TVS in suburban hilly 

areas are also satisfied by the proposed DFMC method. 

Video 

Check 

Frames 

RMSE 

(meter) 

Video 

Check 

Frames 

RMSE 

(meter) 

Frame 1 3.0158 Frame 4 3.3014 

Frame 2 2.9488 Frame 5 3.1254 

Frame 3 2.6458 Frame 6 2.8914 

Average 2.9881 

Table 2. RMSE Localization Errors in Suburban Hilly Areas 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-173-2025 | © Author(s) 2025. CC BY 4.0 License.

 
178



 

Compared to the suburban plain areas, the overlap has decreased, 

but the matching performance between the orthoimage and the 

ground TVS images remains satisfactory. In actual production 

processes, plain areas typically require higher positioning 

accuracy to support activities such as agriculture and urban 

planning. In contrast, hilly regions have relatively relaxed 

accuracy requirements due to complex terrain, lower application 

demands, potential signal obstruction by mountains and other 

obstacles, and variable climatic factors. Therefore, the proposed 

DFMC method is suitable for the geographic localization needs 

of TVS in complex suburban areas. 

 

4. Discussion  

The proposed DFMC demonstrates significantly higher 

localization accuracy at short focal lengths, particularly when the 

target area is close to the camera. This enhanced accuracy is 

primarily attributed to improved feature detection, reduced 

distortion effects, and higher image quality. However, the 

localization accuracy of the DFMC method decreases when the 

target is at a greater distance, due to challenges such as reduced 

image resolution, increased environmental interference, and 

limited feature visibility. To address these issues, future research 

should consider implementing a partitioning approach, which 

involves dividing the target area into smaller sections for 

localized processing, alongside multi-scale data fusion and 

dynamic focal length adjustment to enhance feature recognition 

and matching capabilities. By adopting these strategies, it is 

possible to significantly improve localization accuracy at varying 

distances, thereby extending the applicability of the DFMC 

method in real-world scenarios. 

 

Moreover, to enhance localization accuracy, we can improve the 

accuracy of geographic registration by integrating high-

resolution DEMs. High-resolution DEMs not only provide 

elevation information of the Earth's surface but also facilitate 

more accurate localization of complex topographical features in 

three-dimensional space and help identify terrain occlusion 

issues. By analyzing elevation changes, we can determine which 

areas may be occluded, thereby optimizing monitoring angles 

and line-of-sight selections to avoid data loss or mismatches 

caused by occlusion. Additionally, high-resolution DEMs can 

detail topographical features such as valleys, ridges, and rivers. 

These features can serve as important reference points in map 

matching, enhancing the correlation between different data 

sources and further improving the localization accuracy of the 

DFMC method. Additionally, future research could explore the 

integration of multi-source data, such as LiDAR data and point 

cloud data, leveraging the advantages of aerial, terrestrial, and 

satellite remote sensing. This approach aims to create a 

comprehensive three-dimensional model better suited for 

complex environments, thereby further improving the accuracy 

of map matching. 

 

Finally, the proposed DFMC method currently cannot achieve 

geographical localization from TVS in real time, as this process 

requires approximately 2 seconds. This delay may hinder the 

application of the method in scenarios that demand immediate 

responses, such as security monitoring and emergency response. 

To address this limitation, we will explore parallel computing 

techniques and hardware acceleration strategies, such as utilizing 

Graphics Processing Units (GPUs) or Field-Programmable Gate 

Arrays (FPGAs). By leveraging these technologies, it is possible 

to significantly enhance the processing speed of the DFMC 

algorithm, enabling it to handle multiple video streams 

simultaneously and reduce the time required for localization. 

 

5. Conclusions 

This paper proposes a dual-feature matching-based collaborative 

remote sensing precision localization method tailored for 

complex suburban areas. The method initially establishes a 

mapping relationship between the pixel coordinate system of 

TVS images and the projected Cartesian coordinate system of RS 

orthoimages to accomplish georeferencing. Subsequently, the 

DFMC method conducts feature detection and dual feature image 

matching for both the TVS image and the aligned standard image 

to enable image matching from any angle. Finally, homography 

transformation is utilized to project the coordinates from the TVS 

image frames onto the RS reference images, facilitating rapid 

coordinate conversion and positioning. 

 

As a result, the proposed DFMC method effectively addresses 

issues in the existing collaborative accurate localization of high-

resolution satellite remote sensing imagery and ground tower-

mounted video surveillance images, such as inaccurate image 

feature matching and weak anti-interference capabilities, making 

it particularly suitable for application in complex suburban areas. 

Using tower surveillance videos from Hunan Province and 

orthoimages with a resolution of 0.5 meters from YunYao, the 

results indicate that our proposed DFMC achieves an average 

localization accuracy better than 1.5 meters in flat suburban areas 

and better than 3 meters in complex hilly suburban areas. 
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