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Abstract

We propose a method to improve data quality in paid crowdsourcing by leveraging CNN-based real-time feedback. Data acquired
through paid crowdsourcing often suffers from inconsistencies or inaccuracies as workers prioritize task completion speed over
precision to maximize earnings. To address this issue, we developed a lightweight, two-branch CNN that evaluates and provides
quality feedback on polygon acquisitions of tree outlines in aerial imagery. As workers modify their polygons, the CNN predicts
a quality score, displayed as a traffic light signal (red, yellow, green), indicating whether adjustments are needed. Our study
compares a test group receiving this feedback with a control group without feedback. Results show that the test group achieves a
notably higher average Intersection over Union (IoU) score as well as a lower standard deviation, indicating improved quality and
consistency. By integrating the results of multiple workers, the test group achieves even better data quality with fewer samples
than the control group. This approach reduces the need for redundant data acquisition, demonstrating its potential for time and cost
savings in large-scale data collection campaigns.

1. Introduction

The manual acquisition of high-quality data, including geospa-
tial applications, has traditionally been the domain of experts,
which still holds true in an era of increasing applications of
machine learning (Wang et al., 2023, Ostyakova et al., 2023).
This desire for high-quality data includes the field of remote
sensing (Wang et al., 2023): Although expert annotations en-
sure high quality, they remain labor- and cost-intensive, im-
peding scalability (Rasmussen et al., 2022, Ostyakova et al.,
2023). Further problems may arise from systematic errors
such as annotator bias or inconsistencies across multple acquisi-
tions (Rasmussen et al., 2022). A scalable and cost-effective al-
ternative, that cancels out effects like systematic errors, is paid
crowdsourcing (Brabham, 2013), which is used in many fields
such as natural language processing or computer vision (Zhang,
2022). Crowdsourcing in general distributes tasks to a large,
diverse pool of individuals, who may be paid or act on a vol-
untary basis (Brabham, 2013). Voluntary crowdsourcing relies
on intrinsic motivation (Hossain, 2012), i.e., interest in the pro-
ject itself. Subsequently, voluntary crowdsourcing not only has
the advantage of no or limited monetary costs, but the intrinsic
motivation can lead to higher-quality output (Rogstadius et al.,
2011). Generating such intrinsic motivation might be challen-
ging, leading to paid crowdsourcing as a straightforward altern-
ative. However, the financial incentive often leads to a mostly
extrinsic motivation that can have a negative influence on output
quality: Workers prioritize the speed of their task completion
over the thoroughness of their submissions in order to maxim-
ize their financial gain (Chandler et al., 2013). This behavior
can lead to inconsistent or deliberately incorrect data submis-
sions, with up to 45% of workers producing low-quality out-
put (Vuurens et al., 2011), making data quality a persistent issue
in paid crowdsourcing (Kobayashi et al., 2022).

In order to prevent these low-quality submissions, different
quality control mechanisms can be implemented to ensure data
quality (Jin et al., 2020). These might range from simple

qualification tests and hidden tests (short extra tasks as con-
sistency checks) to sophisticated truth inference approaches as
anti-spam measures (Cui et al., 2021). Qualification tests add
to the workload of crowdworkers, while hidden tests raise the
total cost, since more tasks need to be performed (Zheng et al.,
2017). Furthermore, simple anti-spam measures such as these
tests can be circumvented by malevolent crowdworkers (Zhu
and Carterette, 2010). Worker modeling can help to identify
these workers; however, worker modeling relies on redundant
results of the same worker, i.e., observations over multiple com-
pleted tasks (Zheng et al., 2017). Since paid crowdsourcing
typically relies on crowdsourcing platforms such as Microwork-
ers.com (Hirth et al., 2011), where millions of workers are re-
gistered (Microworkers, 2024), approaches based on worker re-
dundancy may be unfeasible, due to the assumed low likeli-
hood of the same workers participating in multiple campaigns.
Alternatively, approaches based on task redundancy instead of
worker redundancy can be employed (Zhang et al., 2016), aim-
ing to leverage the principle of ”wisdom of the crowd” (Jin et
al., 2020). Here, the same task is performed by multiple work-
ers, and results are subsequently integrated, e.g., via majority
voting (Zheng et al., 2017). This integration can help to fil-
ter out spammers or mitigate their effects, thereby improving
data quality (Zhang et al., 2016). For the acquisition of geo-
metric outlines, a common task in remote sensing, research has
shown that an increase in redundant datasets with subsequent
integration leads to higher output quality (Collmar et al., 2023).
Specifically, this study found that while quality continues to im-
prove with high levels of redundancy in acquisitions, the bene-
fits diminish relative to the rising costs (Collmar et al., 2023).
Nevertheless, such high levels of redundancy are generally un-
desirable due to their additional costs in terms of both time and
money. For both mentioned cases, i.e., worker or task redund-
ancy, this creates the unwelcome trade-off between cost and
output quality. Achieving higher quality necessitates high re-
dundancy, driving up financial costs, whereas limiting redund-
ancy to reduce expenses might compromise the output quality.
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Another approach is to provide real-time feedback and peer
evaluation, which research has shown can substantially improve
task quality among crowdworkers (Dow et al., 2012). While
peer evaluation enhances quality, its integration into crowd-
sourcing can be challenging as well as resulting in extended
task durations and higher costs (Collmar et al., 2024). How-
ever, lightweight CNN models, capable of processing data rap-
idly and efficiently, support this need well. These models
have been applied in a variety of applications like object de-
tection (Chandana and Ramachandra, 2022) or emotion recog-
nition (Ozdemir et al., 2019), where real-time feedback is ne-
cessary. In general, CNNs are widely used in computer vision
and remote sensing for both real-time and non-real-time tasks,
such as classification and segmentation (Liu et al., 2023). CNNs
offer a practical solution for large-scale applications where
manual work is unfeasible due to dataset size or cost (Liu et
al., 2023, Chen et al., 2023).

In this paper, we aim to combine the strengths of both ap-
proaches, i.e., CNNs and manual acquisitions, by including a
real-time CNN quality check to provide immediate feedback to
crowdworkers. This approach aims to achieve high data qual-
ity while maintaining cost-effectiveness by minimizing the need
for redundant acquisitions. The paper is structured as follows.
First, we explain our methodology and introduce the datasets
used, followed by an explanation of the training process and
experimental setup. The results consist of two parts: change in
data quality both with and without polygon integration, includ-
ing a redundancy and cost analysis. We then discuss limitations
and motivate future research, concluding with a summary of our
findings.

2. Methodology

In order to combine the advantages of manual acquisition with
the efficiency of automated processes, we propose a approach
that leverages crowdsourcing and real-time CNN feedback for
the example of acquisition of tree outlines from aerial images
via polygons. While we focus on tree outlines in this setup, the
method could be adapted for various types of geometric data.

Crowdworkers are asked to use a web-based interface to an-
notate tree crowns in aerial images by creating polygon geo-
metries that capture tree outlines. To assess the quality of
these polygons, a CNN evaluates the acquired polygons after
every change performed by the user (i.e., adding or removing
polygon vertices) by calculating a score that reflects the ac-
curacy of the tree outline described by the polygon. For this,
we use a two-branch CNN inspired by the solution proposed
by Shi et al. (2017), and convert all crowd-acquired polygons to
binary masks as input. Although they also propose a multi-scale
network, we prefer their two-branch solution: while it performs
only slightly worse in terms of quality, it addresses speed lim-
itations necessary for a real-time response, offering an efficient
trade-off. Furthermore, as our setup should allow for simultan-
eous communication between multiple crowdworkers and the
server handling the CNN operations, computational resources
may need to be divided among users. To manage this, we use
a lightweight CNN model and optimize backend processes to
ensure that each worker receives real-time feedback, enabling a
scalable solution that maintains high performance.

Our adjusted network architecture therefore consists of two
branches, each following a sequence of alternating Conv layers
and MaxPool layers, arranged as Conv → MaxPool → Conv

→ MaxPool → Conv → MaxPool. This structure progress-
ively reduces the spatial dimensions, allowing the network to
retain critical features while minimizing computational load.
Before being processed by the network, each input consists of
the original aerial image and a corresponding binary mask of
a polygon, which are separately fed into the two branches of
the CNN. Given our input image resolution of 416x416, as will
be explained in the next section, we found that this setup ef-
fectively captures the necessary features without requiring ad-
ditional layers. After the branches are concatenated, a single
dense layer is applied, enabling efficient feature consolidation
without the need for additional fully connected layers, further
improving real-time performance for parallel computation of
multiple workers. Figure 1 provides a detailed overview of the
adjusted architecture, including input shapes and layer config-
urations, highlighting our focus on optimizing both speed and
memory usage for the proposed real-time application.

Figure 1. Proposed two-branch CNN architecture.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-197-2025 | © Author(s) 2025. CC BY 4.0 License.

 
198



The output, i.e., a quality score between 0 and 1, can then not
only be used to estimate the quality of the acquired polygon,
but to indicate if an applied change (adding or removing a poly-
gon vertex) yields benefits. To keep the feedback intuitive and
to manage minor variations from the CNN, we use a simple
’traffic light’ system: red, yellow, or green lights signal to work-
ers whether further refinement is required.

3. Dataset & Training

For this study, we used two distinct datasets, both consisting of
image sections from a large-scale orthomosaic generated using
drone imagery captured over different orchards in southern Ger-
many. Each image section measures 416x416 pixels. Dataset A
consists of 474 such image sections, whereas Dataset B only
contains 50 image sections. Dataset A was used for training and
validation of the CNN described above, while Dataset B was
used for the actual study. Both datasets were captured under
differing conditions: Dataset A was collected in the morning
on a sunny day, resulting in visible shadows, whereas Dataset B
was captured around noon on a cloudy day, producing smaller,
less intense shadows and a generally different radiometry. Pre-
vious studies on manual tree crown annotation have shown that
changes in image quality, resolution, and environmental con-
ditions can influence the accuracy and consistency of manual
annotations (Steier et al., 2024, Budde et al., 2024). There-
fore, these variations in the two datasets are expected to enable
an evaluation of our model’s robustness and adaptability, po-
tentially offering insights into its generalizability across differ-
ent conditions. Figure 2 shows two examples that highlight the
aforementioned variations.

Figure 2. Examples from Dataset A (left) and Dataset B (right).

The training of the CNN was performed with Dataset A, with
80% of sections randomly assigned to training and the remain-
ing 20% used for validation at the start of each epoch. A total
of 15,218 manual polygon acquisitions of varying levels of de-
tail from a previous crowdsourcing campaign were utilized as
masks for training. For the quality parameter, we used the In-
tersection over Union (IoU) in respect to the available ground
truth. During training, the IoU between the user-provided poly-
gon and the ground truth mask is computed and used as the
target, allowing the CNN to learn to predict a quality score
that correlates with IoU rather than explicitly calculating it. A
key advantage of predicting a quality score instead of explicitly
computing IoU is that it enables the use of the full range of
training data, including both high- and low-quality annotations.
This ensures that the model learns to distinguish varying levels
of annotation accuracy rather than relying solely on perfect ex-
amples, allowing it to generalize better across varying input
qualities, including lower-quality acquisitions that would oth-
erwise be difficult to assess. Since no ground truth is available
during deployment, this generalization is essential for providing

reliable quality feedback in real-world scenarios. The training
process was executed over 10 epochs with a batch size of 16
for a good balance between the speed of training and memory
efficiency. Figure 3 illustrates the training and validation loss
over epochs 3 to 10 for the proposed CNN architecture. The
plot begins at epoch 3 to exclude the larger fluctuations in the
initial training epochs.

Figure 3. Training and validation loss for epochs 3 to 10.

Interestingly, although the training loss decreases further in
epoch 10, subsequent epochs remain mostly stable. This sta-
bility, combined with the low final loss values, indicates that
the model achieves a strong alignment between predicted and
actual outputs. This demonstrates good performance within the
training dataset, while maintaining a low risk of overfitting.

4. Experimental Setup

In order to evaluate the impact of our CNN on data quality
in crowdsourcing, we conducted two separate crowdsourcing
campaigns: one in a traditional way, without any CNN checks
included, and one with CNN-based quality checks. For this,
we established two distinct groups: a control group and a test
group. The control group operated completely without CNN
checks in order to assess user performance without any ex-
ternal input. In contrast, the test group operated with quality
checks provided by the proposed CNN. This setup enables a
direct comparison of task accuracy between the groups in or-
der to measure the potential impact of the CNN-based quality
checks on the worker.

4.1 Webtool

Both groups used a web tool that allows acquisitions of geomet-
ries via polygons by means of simple clicking to add or remove
vertices. Simple consistency checks, such as setting the lower
limit of polygon vertices to five, were implemented for both
groups. The web tool for the test group was extended by the
following feedback mechanism: With each modification of the
polygon geometry, i.e., adding or removing a node, the current
polygon is converted to a mask and sent to the backend. Then,
a quality prediction using the two-branch CNN is performed on
the server. The resulting quality estimation is then sent back to
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Figure 4. Web tool with example acquisition.

the client, where a traffic light indicator informs the user of the
polygon’s quality, as shown in Figure 4.

The traffic light thresholds were chosen as follows. A quality
score of 0.8 was set for a green light, as IoU scores around this
value approach a saturation point, where further improvements
add little value (Collmar et al., 2023). A threshold of 0.5 was
set for the red light, signaling low-quality acquisitions that can-
not be submitted and must be revised. Scores between 0.5 and
0.8 receive a yellow light, which allows submission but encour-
ages further refinement if possible. These thresholds reflect our
chosen criteria but can be adjusted as needed, which might lead
to variations in quality outcomes and task completion rates and
times.

4.2 Worker Recruitment

Worker recruitment was conducted via MicroWorkers.com,
with two separate campaigns that had the same number of work-
ers (nw = 50) for both the control and test group. Both groups
received the same task instructions: five image sections were
shown to each worker, with the instructions to create a com-
plete polygon around a tree. To maintain consistency, a sample
image was provided to guide workers on acquisition standards.

All 50 image sections of Dataset B were processed, with each
section processed by five different workers, resulting in 5 ac-
quisitions per section (na = 5), where the same tree was pro-
cessed, and thereby in a total of 50 · na = 250 acquisitions
per group. As mentioned, five acquisitions were bundled into
a single crowdworker job (nj = 5), resulting in a total of
50 jobs per group, with each job performed by a single crowd-
worker. Compensation was standardized at $0.15 per job, en-
suring equal incentives across both groups. Given 250 acquis-
itions per group, the total cost per group amounted to $37.50,
resulting in an overall cost of $75 for the data acquisition.

4.3 Acquisition Examples

Following data collection through the described campaigns, the
results were visualized to assess compatibility with Dataset B.

Figure 5 provides an example image section of Dataset B, show-
ing polygon acquisitions from both the test group, which had
CNN-based feedback, and the control group, which did not.

Figure 5. Image section with 5 acquisitions: control group (left)
and test group (right); green lines show ground truth.

Judging from Figure 5, the test group acquisitions (left) de-
liver more precise and consistent outlines around the center
trees. In contrast, the control group acquisitions (right) show
greater variability in polygon shapes and overall accuracy, po-
tentially reflecting the absence of real-time feedback. While
these initial observations suggest a quality difference, they do
not quantify it, necessitating a comprehensive quality analysis
with and without an integration process to confirm these obser-
vations.

5. Initial Quality Evaluation

We compared the IoU scores in respect to the reference between
the control group, which didn’t have CNN feedback, and the
test group, which used it. These results directly indicate a po-
tential improvement of quality and consistency in the polygon
acquisitions, as can be seen in Table 1.

Control Group Test Group
Mean 0.73 0.79

Standard Deviation 0.17 0.09

Table 1. Mean and standard deviation of IoU for control group
and test group.

The control group, which worked without any guidance from
the CNN, achieved a mean IoU of 0.73 and a standard devi-
ation of 0.17. While the mean value indicates reasonably good
results, the high standard deviation suggests that a notable por-
tion of workers produced lower-quality acquisitions, a common
occurrence in paid crowdsourcing, as discussed in the introduc-
tion. In contrast, the test group achieved a higher mean IoU of
0.79, combined with a much lower standard deviation of 0.09.
This not only shows an improvement in accuracy, but also a
notable improvement in terms of worker consistency.

The violin plot in Figure 6 highlights the differences in IoU
distributions between the two groups. The width represents the
frequency of IoU scores at each level in form of a kernel density
estimate (KDE), while the center line is a standard boxplot.

As can be seen from Figure 6, the control group’s distribution is
rather spread out, with a visible KDE in the lower IoU range. In
contrast, the test group’s IoU scores are centered around higher
values, with less deviations overall, inherently confirming the
observed lower standard deviation. The histograms of both
groups, that are visualized in Figure 7 along with their respect-
ive KDEs, further illustrate the observed differences.
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Figure 6. Violin plot of IoU scores for control group and test
group.

Figure 7. Histogram of IoU scores and corresponding KDE for
control group and test group.

These visualized results demonstrate the impact of the real-time
CNN feedback on the quality and consistency of polygon ac-
quisition: For the control group, IoU scores are widely spread,
with a notable portion of scores around or below 0.6, indicat-
ing cases of low-quality acquisitions. The CNN group, how-
ever, shows most scores clustered in the 0.7 to 0.9 range, with
few scores falling below 0.6. For the higher end, i.e., IoU val-
ues above 0.9, the test group performed better than the control
group as well. These results confirm the effectiveness of real-
time feedback for crowdworkers across all IoU ranges, which is
consistent with the objectives outlined in the methodology and
with previous research, such as (Dow et al., 2012), is consistent.

Table 2 summarizes the percentage of acquisitions within each
0.2 IoU range for both groups and provides a clearer overview
of this shift in IoU.

As shown in Table 2, we divided the possible IoU from 0 to 1
into intervals of steps with the size 0.2 to analyze quality distri-

IoU Range Control Group (%) Test Group (%)
0.0 - 0.2 1.24 0.41
0.2 - 0.4 2.07 0.00
0.4 - 0.6 14.05 2.86
0.6 - 0.8 37.19 39.59
0.8 - 1.0 45.45 57.14

Table 2. Percentage of acquisitions within IoU intervals of 0.2.

bution across different accuracy ranges. In the control group, a
significant portion of acquisitions fell into the 0.4 - 0.6 range,
which roughly corresponds to a red light in our system. Sev-
eral acquisitions even scored below 0.4, underlining the lack
of guidance and the resulting variability in quality. In contrast,
the CNN-assisted group had close to none acquisitions below
0.4 and only a very small portion of 2.86% between 0.4 and
0.6, clearly showing improvement when compared to the con-
trol group. The test group scores slightly better results for the
0.6 - 0.8 range. Most notably, the test group showed a not-
able increase in high-quality acquisitions within the green light
threshold (above 0.8), with over 57% of acquisitions achieving
this level compared to only 45% in the control group. Sub-
sequently, the test group performed strictly better for all IoU
ranges. Furthermore, the more centered distribution improves
both predictability and consistency, again underlining the bene-
fit of our real-time feedback approach: Without external feed-
back, as observed in the control group, there is a notable risk of
lower accuracy and a broader range of outputs.

In summary, these findings demonstrate that the CNN-based ap-
proach with real-time feedback can notably improve both the
accuracy and consistency of crowdsourced data. This higher
output quality, along with increased predictability, potentially
enables a reduction in redundant data acquisition, saving both
time and money, and thereby improving scalability.

6. Integration & Redundancy

It has been established that the CNN-based approach can
achieve higher output quality than traditional methods, suggest-
ing that a reduction in redundant data acquisition may be pos-
siblee. Additionally, we aim to examine the influence of integ-
ration, as described in (Collmar et al., 2023). Such an integra-
tion not only enhances quality through inherent majority voting
but also consolidates results into a single output shape.

In order to assess the potential after integration, the integration
was performed for na = 1, . . . , 5 for both the control group and
the test group. Mean and standard deviation values were calcu-
lated for each group, as shown in Table 3. To further highlight
the efficiency of the CNN-assisted approach, the control group
was extended to na = 25 while the test group remained un-
changed. This allows for a comparison between the test group
and a control group with a higher level of redundancy.

As can be seen from Table 3, an upward trend is visible for the
IoU values, along with a downward trend for standard deviation
values across both groups. This effect becomes noticeable start-
ing from na = 3, where random effects due to particularly high
or low-performing workers are minimized. Figure 8 visually
illustrates these trends by plotting the mean IoU scores and dis-
playing the standard deviations vertically around the data points
for both groups across various sample sizes, i.e., choices of na.

When looking at both Table 3 and Figure 8, the improved data
quality observed in the previous sections is also clearly evid-
ent after integration. For instance, the highest mean IoU for the
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na Mean (Ctrl) Mean (Test) Std (Ctrl) Std (Test)
1 0.750 0.815 0.183 0.063
2 0.748 0.813 0.172 0.066
3 0.763 0.818 0.156 0.062
4 0.774 0.824 0.147 0.059
5 0.784 0.827 0.137 0.056
6 0.793 N/A 0.130 N/A
7 0.800 N/A 0.124 N/A
8 0.806 N/A 0.119 N/A
9 0.811 N/A 0.115 N/A
10 0.814 N/A 0.111 N/A
· · · · · · · · · · · · · · ·
15 0.827 N/A 0.990 N/A
20 0.835 N/A 0.910 N/A
25 0.841 N/A 0.085 N/A

Table 3. Mean and standard deviation for different na.

Figure 8. Mean and standard deviations for different na, shown
only up to 10 for better readability.

CNN-assisted group is recorded at na = 5, reaching approxim-
ately 0.827, while the control group with the same sample size
has a noticeably lower IoU of 0.784. Even when the control
group’s sample size is doubled, its mean IoU remains lower,
only approaching the performance of the CNN-assisted group
when na is increased threefold to 15. However, the standard de-
viation for na = 15 in the control group is nearly twice as high
as the standard deviation for na = 5 in the CNN-assisted group.
Even when na is increased to 25 for the control group, the
standard deviation of the test group is still notably better com-
pared to the control group, regardless of the chosen sample size
for the test group. This highlights that the CNN group achieves
both higher accuracy and consistency with less redundancy also
after integration. Furthermore, even with just a single acquis-
ition per image section, i.e., na = 1, the mean IoU for the
CNN-assisted test group was comparable to the mean IoU res-
ults for na = 10 in the control group, resulting in a tenfold
reduction in the number of necessary acquisitions. However,
a single acquisition per image section may be too limited and
prone to error due to small variations, which is why we recom-
mend choosing na ≥ 3.

In terms of cost reduction, both groups, i.e., the control group
and the test group, are paid the same salary of $0.15. The finan-

cial costs for data acquisition at na = 5 amount to $37.50 each,
as mentioned before. However, to achieve a similar output data
quality in terms of IoU values, na had to be set to 15 for the
control group, resulting in costs of na = $112.50. In contrast,
the CNN-assisted group, which incurred costs of only $37.50,
delivered significantly better results in terms of standard devi-
ation, a level of performance that the control group could not
achieve even for a much larger sample size.

It remains to add that, although there are costs in terms of
money and time associated with training the CNN, these are
one-time expenses. Particularly when considering the un-
matched standard deviation observed in the test group, even at
low sample sizes compared to high sample sizes in the control
group, these one-time costs become secondary. Not only can
overall costs be reduced to achieve the same mean level of IoU,
but the results obtained through real-time CNN feedback also
contribute to improved scalability for large datasets by provid-
ing acquisitions of better or similar quality with fewer annota-
tions.

To illustrate this, Figure 9 shows a comparison of cumulative
costs between a CNN-enhanced acquisition process, which in-
cludes the one-time training cost, and a traditional approach
without real-time feedback, assuming both methods achieve the
same quality level. The numbers used are those described in
Section 4, which details the experimental setup: each job is
paid $0.15 for 5 polygons in both the test and control groups.
Additionally, training data were acquired at $0.10 for 5 poly-
gons (or $0.02 per acquisition), resulting in total training costs
of approximately $300. The figure visualizes different poten-
tial worker ratios for na between the control and test groups,
derived from the results in Table 3. The actual worker ratio
may vary by application, so we present multiple lines as gen-
eral solutions.

Figure 9. Cumulative cost comparison for different worker
ratios.

While the CNN approach initially incurs higher costs due to the
necessary training, the cumulative cost grows more slowly over
time as the reduced sample size leads to lower costs per ac-
quisition. As the number of tasks increases, the CNN-enhanced
approach yields significant savings for the same data quality.
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This makes it a more scalable and cost-effective solution for
large-scale data collection campaigns: For the case of a worker
ratio of 3:1, as in this study (na = 15 vs. na = 5 in Table 3), a
sample size of 1,000 tasks or more is sufficient to achieve cost
savings. In contrast, with a worker ratio of 10:1 (na = 10 vs.
na = 1 in Table 3), cost savings appear much sooner, present-
ing even greater opportunities for efficiency and scalability.

7. Limitations & Future Research

While we have demonstrated and discussed the strengths of our
approach, several limitations and areas for improvement remain
to be considered.

To begin with, the datasets themselves: Since this study serves
as a proof-of-concept, the focus on tree outlines rather than
other objects appears justifiable. The training of our CNN re-
lied on a single dataset with limited diversity and environmental
variations such as lighting, weather or seasonal changes. While
the model delivered strong results on the second dataset, incor-
porating additional datasets with diverse environmental condi-
tions during training could further enhance generalization and
build upon the already solid results.

The CNN itself was designed to be lightweight in order to
both maximize the processing speed to handle acquisitions from
multiple crowdworkers in parallel, while still maintaining low
latency and accurate results. An alternative approach, although
potentially influencing scalability, could reduce the number of
parallel workers in order to allow more resources to be alloc-
ated to each instance of the CNN. Therefore, more resources
would be available to focus on optimizing feature extraction and
overall accuracy of the CNN, which could involve adding addi-
tional layers after the concatenation of the two branches, using
the previously discussed multi-layer CNN, or even incorporat-
ing transformer architectures. Ultimately, the primary goal of
this study was to demonstrate the benefit of real-time feedback,
with the specific CNN structure being of secondary importance.

Separately, the CNN was trained using IoU as the primary qual-
ity metric. While IoU is a standard choice, it doesn’t necessarily
capture fine geometric details but rather an overall impression
of the delivered polygon. A combination of parameters, such as
the higher polygon moments, as used for the filtering process
in (Collmar et al., 2023), could be used instead, allowing for a
more detailed real-time analysis and potentially further increas-
ing output quality. Similarly, in the analysis of the crowdwork-
ers’ resulting polygons, additional metrics such as Hausdorff
distance could capture these fine geometric details better and
subsequently deliver a more comprehensive view of the sub-
mitted polygons’ quality.

Furthermore, the redundancy analysis could be further exten-
ded. Our results show that increasing the number of acquisi-
tions per image section led to higher mean IoU values and re-
duced standard deviations, up to our tested maximum of five
acquisitions. However, this raises the question whether these
trends would persist with larger sample sizes, and if so, what
sample size might lead to a potential saturation point or provide
the most cost-efficient solution.

Future work could include further refining the proposed ap-
proach while keeping costs, both in terms of time and money,
low. Of the previously mentioned points, we consider replacing
or supplementing the IoU quality metric for the CNN training

to be the most important. Instead of rating the overall poly-
gonal shapes, as is done via the used intersection of union, local
features and details might be essential as well. Consequently,
including alternative parameters that capture local variations or
provide a more detailed description of polygons could lead to a
further enhanced model accuracy.

Additionally, future work could involve expanding the current
traffic-light feedback system by a more sophisticated approach.
While the current feedback system provides three levels (poor,
average, or high quality), adding more options or allowing
crowdworkers to respond and provide feedback could help cre-
ate a more adaptive system. Furthermore, tracking how real-
time feedback affects the crowdworkers’ engagement and task
efficiency over time could also help to optimize feedback mech-
anism. It is unclear, however, whether a more sophisticated
feedback system, such as error bars or potentially even gami-
fication elements like high scores, would further improve data
quality or overly complicate the process, as crowdworkers may
have only a few seconds to interpret the feedback. In any case,
further research might allow to optimize our proposed approach
even further.

8. Conclusion

We proposed a real-time feedback mechanism to improve data
quality in paid crowdsourcing, with a proof-of-concept ap-
proach for the acquisition of geometric tree outlies. We used a
lightweight two-branch CNN for a scalable solution with min-
imal latency and high performance even for multiple clients in
parallel. The use of different datasets indicated potential gener-
alization across different environmental effects. The inclusion
of our traffic light feedback system resulted in better data qual-
ity compared to the reference, as measured by intersection over
union of resulting shapes. Not only was the average data quality
higher, but data distribution also improved notably, enabling a
reduction in sample sizes for redundant data acquisitions while
maintaining, or even enhancing, output quality.

When an integration process is performed, the gap in data qual-
ity widens even further, achieving a standard deviation that
would otherwise require notably larger sample sizes. This ap-
proach can be leveraged in two ways: to significantly increase
data quality at the same cost for applications where quality is
the primary concern, or to reduce sample sizes for compar-
able or improved results, allowing for cost savings in time and
money for large-scale datasets, where the one-time cost of net-
work training is feasible.
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