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Abstract

Knowledge about past and present land cover is of interest for the assessment of the current status of our environment and, thus,
for proper planning of the future. Information on past land cover is exclusively contained in an implicit way in historic remote
sensing imagery and historic topographic maps. To make this information explicit, pixel-wise classification methods based on
neural networks can be used. The method proposed in this paper aims to automatically predict land cover based on historic aerial
imagery and scanned topographic maps. The proposed deep learning-based classifier extracts features at different scales from both
modalities and fuses the most complex topographic map features of the smallest scale to enrich the ones derived from the aerial
images. Both, the multi-modal features and those of the aerial images at larger scales, are mapped to pixel-wise predictions by
means of a decoder. Comprehensive experiments show that the result of the proposed multi-modal classifier are superior compared
to those of a uni-modal aerial image classifier; the multi-modal mIOU of 82.3% is 1.4% larger than the one of uni-modal classifier.
This demonstrates that aerial image classification can benefit from additional information contained in topographic maps.

1. Introduction

Land cover information is highly relevant in the context of vari-
ous applications, e,g, for studies related to ecological questions
or urban development. In this context, not only the current
status of the Earth’s surface is of interest, but also trends for
the change of the landscape. Against this background, the Ger-
man Federal Agency for Cartography and Geodesy (BKG) has
established the Gauss Centre (https://www.gausszentrum.
uni-hannover.de/en/, accessed: 10.02.2025). One aim of
the project is to obtain knowledge about historic land cover.
Here, the term historical can refer to any point in the past; in
this paper, it refers to any point in time after the early 1950s,
which is the time when aerial imagery became available at a re-
gional scale. Available regionwide sources of information for
historic land cover are remote sensing imagery and topographic
maps. In these sources, the desired information is typically
contained in an implicit way, requiring an interpretation of the
pixels to make the knowledge explicitly available for computer-
aided analysis. As a manual inspection is infeasible at a large
temporal and spatial scale, supervised pixel-wise classification
techniques play an important role in automatically deriving land
cover predictions.

In the context of land cover classification, the input for a clas-
sifier typically consists of data from a single modality, e.g. aer-
ial or satellite images, or, in case of historic data, topographic
maps, e.g. (Wu et al., 2023). Nevertheless, it is assumed that
the joint consideration of multiple data sources as input is to be
preferred to benefit from interdependencies and complement-
ary knowledge contained in the data. For the classification of
the current state of the landscape, data from various sources
are available, and they can be combined in multi-modal clas-

sification techniques, e.g. (Garnot et al., 2022; Li et al., 2022;
Wang et al., 2023), aiming to achieve more correct predictions
compared to uni-modal techniques. For past epochs, mostly im-
agery, topographic maps and partly elevation models are avail-
able. Nevertheless, most research aiming to derive past land
cover does so in a uni-modal way, e.g. by exploiting historic
aerial images (Mboga et al., 2020; Sertel et al., 2023). Only
very few works investigate multi-modal land cover classifica-
tion from available data sources; one of the few exceptions is
(Le Bris et al., 2020), where height information is considered
jointly with historic aerial images. Particularly, no work could
be identified that successfully considered aerial images and to-
pographic maps for that purpose. As such data are the most
important sources of information for past land cover and be-
cause they are complementary in terms of representing land
cover classes, it is of special interest to investigate methods
for multi-modal classification. For instance, class boundaries
are clearer and intra-class variability is much smaller in maps,
whereas object colour and texture are better represented in im-
ages, and the shapes of the objects reflect reality without gener-
alisation effects. Thus, it is assumed that a classifier can benefit
from using both modalities simultaneously.

In this context, it is not yet clear what is the optimal way to fuse
the data from these modalities, both in terms of the actual fusion
methodology and the stage of a classifier at which the inform-
ation from the different modalities should be fused. This paper
proposes a new approach for multi-modal land cover classific-
ation based on historical maps and historical aerial orthophotos
with a focus on the optimal way of fusing the two modalities. In
our previous work (Dorozynski et al., 2024), maps and images
were treated as equally important at all stages of the approach,
which turned out not to be beneficial: the multi-modal classifier
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performed worse than the one solely based on digital orthopho-
tos (DOPs). The proposed new approach combines the modal-
ities more selectively, while utilizing a more advanced fusion
scheme based on attention mechanisms. The scientific contri-
butions of this work can be summarized as follows:

• We propose a new approach for fusing fine-grained aer-
ial image features and high-level multi-modal features de-
rived from scanned maps and images for historic land
cover classification.

• In this context, we adapt an attention mechanism (Song et
al., 2022) from the field of image retrieval for fusion of the
two modalities for pixel-wise classification.

• We investigate whether convolutions or attention mechan-
isms are to be preferred for the extraction of spatial fea-
tures from the two modalities.

• We provide a comprehensive analysis of the impact of the
multi-modal features on classification compared to a uni-
modal classification.

2. Related Work

This section provides an overview about existing literature re-
lated to pixel-wise land cover classification from remote sens-
ing imagery and topographic maps. Besides uni-modal classi-
fication approaches based on these sources, techniques for com-
bining multi-modal data are also discussed.

Classification of remote sensing imagery: Predicting land
cover from remotely sensed images such as aerial images and
satellite images is a classical task in Photogrammetry and Re-
mote Sensing. Standard methods exploit fully convolutional
networks (Long et al., 2015), encoder-decoder networks such
as UNets (Ronneberger et al., 2015) or variants thereof, e.g.
UPerNet (Xiao et al., 2018), to map the input to pixel-wise
predictions for land cover. To do so, the input is first pro-
cessed to generate feature maps by an encoder, frequently a
convolutional neural network (CNN) (Krizhevsky et al., 2012),
though current approaches tend do use attention-based architec-
tures (Vaswani et al., 2017) such as Swin Transformers (Liu et
al., 2022). Nevertheless, there are indications that convolutions
are to be preferred for the extraction of spatial features, also
because attention-based methods require patchification, which
restricts the accuracy near object boundaries (Voelsen et al.,
2024). Recently there has been a growing interest in using his-
toric image-based data sources for the prediction of the past
land cover, e.g. (Mboga et al., 2020, 2021; Van den Broeck et
al., 2022; Sertel et al., 2023). While a pixel-wise classifier for
the prediction of historic land cover is trained in a fully super-
vised way in (Mboga et al., 2020; Sertel et al., 2023), Mboga
et al. (2021) and Van den Broeck et al. (2022) focus on do-
main adaptation to transfer knowledge about current land cover
to past epochs. These works focus on pixel-wise classification
(semantic segmentation in Computer Vision) of satellite or aer-
ial images only and, thus, represent uni-modal approaches, neg-
lecting other sources of information for land cover.

Classification of topographic maps: historical topographic
maps provide an alternative source of information about past
land cover (Uhl et al., 2021). In recent years, various ap-
proaches have been developed to use the potential of deep learn-
ing to identify map objects, e.g. text (Kim et al., 2023) or build-
ing footprints (Heitzler and Hurni, 2020). As in many deep

learning domains, a major problem is the provision of ground
truth, for which various approaches have been proposed. Jiao
et al. (2022) suggest creating so-called imitation maps, i.e. us-
ing old symbols to create historical-looking maps from current
digital landscape models. Wu et al. (2023) take advantage of
the fact that despite the changes of topographic objects over the
years, there is still a high probability that some objects (or parts
of them) have not changed their position; this is considered in a
domain adaptation framework. Nevertheless, these works also
concentrate on a single modality only.

Multi-modal classification: Combining several data sources
in multi-modal classification, aiming to solve the task in a better
way compared to uni-modal techniques only relying on a single
data source, is an ongoing field of research. In the context of
land cover classification, several data sources were jointly con-
sidered as inputs: images of two satellites (Stocker and Le Bris,
2020), aerial images and satellite images (Heidarianbaei et al.,
2024), elevation data and remote sensing images (Chen et al.,
2018; Le Bris et al., 2020), radar and optical images (Garnot et
al., 2022; Wang et al., 2024), optionally also considering height
(Li et al., 2022), and optical and LiDAR data (Wang et al.,
2023). There are different strategies for fusing the two mod-
alities in multi-modal methods (Hong et al., 2020; Garnot et al.,
2022). In data-level fusion, also called early fusion (Chen et al.,
2018), the input data are combined before being presented to
the classification network. Such a fusion scheme requires both
modalities to have the same spatial resolution and to provide
a similar level of detail. Alternatively, in case of less syner-
gistic modalities, a fusion of extracted features is to be pre-
ferred, where the degree of correspondence of the modalities
determines whether to fuse at earlier, e.g. (Wang et al., 2024),
or at later stages, e.g. (Stocker and Le Bris, 2020; Le Bris et al.,
2020; Li et al., 2022). In late fusion approaches, e.g. (Wang et
al., 2023), the feature maps of the decoder are combined, while
the predictions of two classifiers trained independently for each
modality can be fused in decision level fusion approaches.

Nevertheless, none of the works cited so far combine topo-
graphic maps and image data in a multi-modal classifier and,
in particular, there has not yet been any investigation to find out
which scheme is most suitable for fusing these modalities. Such
a fusion is of interest because both modalities play a crucial role
in understanding the evolution of landscapes (Liu et al., 2018;
Van den Broeck et al., 2022; Ettehadi Osgouei et al., 2022; Min-
ervino Amodio et al., 2023). While orthomosaics of different
epochs are classified in (Van den Broeck et al., 2022), historic
maps for older epochs and orthomosaics for more recent epochs
are classified in (Liu et al., 2018; Ettehadi Osgouei et al., 2022;
Minervino Amodio et al., 2023), respectively. It can be assumed
that, if available, the combination of these sources could im-
prove the classification results by leveraging the complement-
ary information contained in the two data sources. To the best
of our knowledge, the only work that combines these modalities
for land cover classification is our previous one (Dorozynski et
al., 2024). However, the early fusion approach proposed in that
study does not outperform the uni-modal counterparts of the
proposed classifier, demonstrating the need for further research
on the fusion of these two modalities.

Discussion: The success of multi-modal classification meth-
ods over uni-modal ones, e.g. (Garnot et al., 2022), as well as
the requirement to classify historical geodata, such as histor-
ical orthophotos (Mboga et al., 2020; Sertel et al., 2023) and
maps (Chiang et al., 2023) to obtain information about past land
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cover, e.g. (Ettehadi Osgouei et al., 2022; Minervino Amodio et
al., 2023), lead to the conclusion that there is the need for multi-
modal methods that successfully combine these data to obtain
the most reliable predictions for historic states of landscapes.
Our previous work (Dorozynski et al., 2024) has shown that
early fusion by feature concatenation does not help to exploit
the full potential of combining the two sources. We believe that
this might be caused by the fact that the maps are affected by er-
rors due to changes in the landscape not considered in the map,
but also due to generalization and different underlying model-
ling schemes. Therefore, another fusion scheme is required to
address these problems. This paper aims to take a further step
towards closing this research gap for the successful fusion of
maps and orthoimages for pixel-wise classification.

3. Methodology

In this section, we describe our new deep learning-based multi-
modal classification network. The main idea is to fuse the fea-
tures derived from the two input modalities, DOPs and scanned
topographic maps, at the stage of the network that is expec-
ted to be most suitable in terms of the properties of the fea-
tures derived from the individual modalities, exploiting a fusion
strategy that will focus on the features that are most relevant for
classification. This cannot be achieved by early fusion. Thus,
our method extracts features in two separate encoder branches
(one per modality) before fusing them using trainable attention
weights to allow for focusing on the most relevant information.
For that purpose, we adapt the attention-based strategy of Song
et al. (2022), originally designed for image retrieval, which
combines global and local attention weights both in the spatial
and the feature dimensions and is thus designed to consider all
relevant aspects of the multi-dimensional multi-modal features.
The extracted features are mapped to pixel-wise predictions,
utilizing a UPerNet decoder (Xiao et al., 2018). The network
architecture is presented in Section 3.1, while the method used
for training the network is outlined in Section 3.2.

3.1 Network Architecture

The network architecture of the proposed network is shown in
Figure 1. The input consists of a DOP xae and a co-registered
scanned map xtm. These inputs are presented to two separate
branches of the encoder E (cf. Section 3.1.1). The resultant
features are combined in a multi-modal fusion module (cf. Sec-
tion 3.1.2), yielding the final combined encoder output. Finally,
the resultant features are presented to the decoder D to obtain
pixel-wise predictions of land cover(cf. Section 3.1.3).

3.1.1 Encoder: The encoder E consists of two branches,
Eae with weights wE

ae and Etm with weights wE
tm. In prin-

ciple, any backbone architecture can be used, as long as it con-
sists of multiple stages, each followed by a downsampling step
(in our experiments we compare a CNN and a transformer-
based architecture; cf. Section 5.1). We denote the number
of stages by S; the set of all weights of E is denoted by wE .
The branch Eae takes the DOP xae ∈ RC(0)×H(0)×W (0)

as
its input, while Etm processes the map xtmRC(0)×H(0)×W (0)

.
C(0), H(0) and W (0) are identical for both modalities, which
implies that the two grids have to be co-registered. The two en-
coder branches Eae and Etm produce uni-modal features F(s)

ae ,
F

(s)
tm ∈ RC(s)×H(s)×W (s)

with s ∈ {1, ..., S} at all S stages.

The features generated in the last Sf ≤ S encoder stages (Sf

is a hyperparameter) are fused to generate multi-modal fea-

Figure 1. Multi-modal UPerNet with attention-based feature
fusion. A topographic map xtm and a co-registered DOP xae

are presented to a uni-modal map encoder Etm and a uni-modal
DOP encoder Eae, respectively, generating features at S stages.

The uni-modal features of the last Sf stages are fused to
multi-modal features by means of a fusion module FMmm. The
resulting features (yellow box) and the aerial image features of

the first S − Sf stages (gray box) are processed by a decoder D
to obtain pixel-wise predictions Ŷ.

tures F(s) ∈ R2·C(s)×H(s)×W (s)

in the way described in Sec-
tion 3.1.2. These multi-modal features are combined with the
uni-modal features F

(s)
ae generated by the encoder branch pro-

cessing the DOP in the first (S − Sf ) stages, yielding a com-
bined set of features F

(1)
ae , ...,F

(S−Sf )
ae ,F(Sf ), ...,F(S) which

provides the input for the decoder D. The uni-modal features
F

(s)
tm generated by the first (S − Sf ) stages of Etm are dis-

carded. This strategy, using features of (relatively) high res-
olution only when derived from the DOP and considering the
information from maps only at a relatively coarse resolution, is
designed to overcome the problems of early fusion we identi-
fied in (Dorozynski et al., 2024): In this way, small deviations
of objects in the map do not mislead the classifier. Geometric-
ally detailed information about land cover is only provided by
the image features at higher geometrical resolutions. Neverthe-
less, the topographic map features at coarser geometric resol-
utions are assumed to provide information about larger struc-
tures, which we expect to support the classification. We believe
that this strategy will allow the classification to benefit from the
strengths of both modalities.

3.1.2 Multi-modal Fusion: The fusion of the uni-modal
image and map features to multi-modal features is realized in
a multi-modal fusion module (FMmm in Figure 1) with learn-
able weights wmmf using global-local attention mechanisms
(GLAM) (Song et al., 2022). In this module, GLAM is applied
to each of the last Sf stages individually. At each of these stages
s, the features F

(s)
ae and F

(s)
tm of that stage are concatenated to

form a tensor [F
(s)
ae ,F

(s)
tm] =: F

(s)
in ∈ R2·C(s)×H(s)×W (s). In

order to extract locally relevant context, convolutions are ap-
plied both along the 2 ·C(s) channels and in the spatial dimen-
sions H(s) × W (s). This is referred to as the local attention
(LA) mapping function in (Song et al., 2022) and results in fea-
tures F

(s)
lo . Furthermore, to also consider global context, self-
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attention (Vaswani et al., 2017) is applied both in the channel
and spatial dimensions, which is referred to as global attention
(GA) mapping function and results in features F

(s)
gl . The fea-

tures F
(s)
lo and F

(s)
gl are combined with F

(s)
in by computing the

weighted average of all three features using trainable scalars
wlo, wgl, win, resulting in the output F(s) for a stage s of the
multi-modal fusion module. This can be formalized as follows:

F(s) = GLAM([F(s)
ae ,F

(s)
tm]) = GLAM(F

(s)
in )

= wlo · LA(F
(s)
in ) + wgl ·GA(F

(s)
in ) + win · F(s)

in

= wlo · F(s)
lo + wgl · F(s)

gl + win · F(s)
in .

(1)

For more details about the two mapping functions LA and GA,
the reader is referred to (Song et al., 2022).

3.1.3 Decoder: After the encoding of the inputs xae and
xtm to features F(1), ...,F(s), ...,F(S), i.e. S − Sf uni-
modal features F

(1)
ae , ...,F

(S−Sf )
ae and Sf multi-modal features

F((S−Sf )+1), ...,F(S), the resultant S features are mapped to
a pixel-wise class-score map S ∈ RK×H(0)×W (0)

by a UPer-
Net decoder (Xiao et al., 2018) with trainable weights wD . The
class score map has the same spatial extent as the input x. At
each spatial position (h(0), w(0)) with h(0) ∈ {1, ..., H(0)},
w(0) ∈ {1, ...,W (0)}, S consists of a K-dimensional vector of
softmax scores, where K is the number of classes to be differ-
entiated. Each vector with K class scores smh(0),w(0) depends
on the network weights w := [wE

ae,w
E
tm,wmmf ,wD] and in-

puts (xae,xtm) defined in the preceding sections. Its elements
are interpreted as the probabilities for the pixel x(h(0), w(0))
to belong to class k ∈ {1, ...,K}. The network’s prediction
Ŷ(h(0), w(0)) for x(h(0), w(0)) is the class Ck belonging to the
largest softmax score smh(0),w(0),k ∈ smh(0),w(0) .

3.2 Training

The network weights w are determined by minimizing a loss
function L that measures the discrepancies between the predic-
tions Ŷ and the known reference values for the correct class
Y ∈ RK×H(0)×W (0)

. We use the categorical softmax cross-
entropy loss for that purpose:

L
(
Ŷ (xae,xtm,w) ,Y

)
= −

H(0)∑
h(0)=1

 W (0)∑
w(0)=1

(
K∑

k=1

δh(0),w(0),k · smh(0),w(0),k

) .

(2)

It is calculated based on the predictions Ŷ of the decoder D.
The scalar δh(0),w(0),k ∈ Ŷ is a binary indicator variable with
δh(0),w(0),k = 1 in case the pixel at position (h(0), w(0)) be-
longs to the kth class and δh(0),w(0),k = 0 in all other cases.
Equation 2 makes clear that the predictions Ŷ of the decoder
depend on the weights wD of that decoder, those of the multi-
modal fusion module wmmf , as well as those of the two uni-
modal encoder branches, i.e. wE

ae and wE
tm. Minimizing the

loss L affects the values of all these network weights so that
multi-modal dependencies are learned during training.

4. Datasets

The datasets for the evaluation of the multi-modal classifiers
are based on scanned topographic maps at a scale of 1:25.000

(TK25) from 2011 and a DOP obtained from aerial photographs
from 2010. Both data sources show the city of Hamelin (Ger-
many) and its surroundings. Both modalities were transformed
to a joint coordinate system (ETRS89 / UTM zone 32N; EPSG:
25832). Originally, the two modalities were available at differ-
ent spatial resolutions. As our method requires aligned grids
for the two input modalities, they were re-sampled to a joint
ground sampling distance (GSD) of 1 m using bi-linear inter-
polation. This is a compromise between the information con-
tent of the TK25, which corresponds to a GSD of 2.5 m in the
best case, and the GSD of 20 cm of the original DOP. The refer-
ence for land cover was generated by manual digitization based
on a visual inspection of the DOP and considering the TK25.
The digitized polygons were rasterized at the same GSD as the
input using nearest neighbour interpolation. The reference was
generated in two different test areas of different land cover char-
acteristics in the dataset just described and using two different
class structures, resulting in two different datasets to be used for
evaluation that are described in the subsequent sections. Sec-
tion 4.3 discusses the properties of the used topographic maps.

4.1 Multi-modal Building Dataset

The first dataset covers an area of 8.7 km2 and consists of 33
tiles of 512 x 512 pixels each with the GSD of 1 m. In this case,
only two classes are differentiated in the reference: Building
and No Building, hence we refer to it as the building dataset.
The dataset covers the centre of Hamelin, suburban areas, al-
loted settlements and industrial areas.

The dataset is split into three disjoint subsets for training, valid-
ation and testing, respectively. For splitting, the type of building
was considered in a visual inspection such that all three subsets
are representative and contain all kinds of buildings. The num-
ber of tiles per subset and the class distributions in the three
subsets can be found in Table 1. The class No Building is dom-
inant in all subsets (around 75%-85% of the pixels).

Class name Frequencies [%]
Train Validation Test

No Building 86.3 75.6 74.9
Building 13.7 24.4 25.1

Table 1. Statistics for the building dataset. Class name: Name of
the class; Frequencies [%]: Percentage of pixels belonging to

the respective class in the respective subset.

4.2 Multi-modal Vegetation Dataset

This dataset, to which we refer as the vegetation dataset, covers
an area of 4 km2 and consists of four tiles of 500 x 500 pixels
each with a GSD of 1 m. In total, 9 land cover classes can be
differentiated (Figure 2), but due to the low frequency of five
of them, these classes are summarized in a joint background
class Other, which is differentiated along with three foreground
classes Crop, Deciduous trees and Coniferous trees.

The dataset is split into three disjoint subsets for training, val-
idation and testing, respectively. Splitting was conducted based
on the tiles such that every class is contained in every subset
with roughly the same relative frequency. As a result, the sub-
division with 12 tiles for training, 2 tiles for validation and 2
tiles for testing as visualized in Figure 2 was achieved. The
corresponding class distributions can be found in Table 2. De-
ciduous trees cover more than half of the area of each subset
(54%-70%), while the classes Other and Coniferous trees are
underrepresented (1.7% and 9.8%, respectively).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-221-2025 | © Author(s) 2025. CC BY 4.0 License.

 
224



Figure 2. Reference of the vegetation dataset, covering 4 km2.
The blue and purple rectangles indicate the validation and test

subsets, the remaining areas are used for training.

Class name Frequencies [%]
Train Validation Test

Crop 30.5 24.4 36.5
Deciduous trees 54.2 69.2 51.4
Coniferous trees 9.8 1.7 3.5
Other 5.5 4.7 8.6

Table 2. Statistics for the vegetation dataset. Class name: Name
of the class; Frequencies [%]: Percentage of pixels belonging to

the respective class in the respective subset.

4.3 Generalization and Representation of Land Use in To-
pographic Maps (TK 25)

The topographic map series TK 25 represents generalized geo-
graphical information. In contrast to the land cover, which can
be observed in aerial images and digitized from those images,
the topographic map primarily shows aggregated areas of land
use. Land use areas may contain various land cover types, and
conversely, the same land cover type can be found within dif-
ferent land uses. Not all objects are included in the map, as
the selection relies on minimal capture size thresholds based on
object types, e.g. 1 hectare (ha) for agricultural land, 0.1 ha for
forests and lakes or 50 m2 for buildings. Water bodies wider
than 12 m are shown as areas, otherwise, they are depicted as
lines. Forests are generalized into deciduous, coniferous, or
mixed types, represented by symbols spaced about 5 mm apart
on the map, equating to a distance of 125 m in reality, with
no clear boundaries demarcating different forest types. This
makes it very difficult to distinguish between the tree types in
mixed forests on the topographic map. It is also important to
note that there is no guarantee of temporal alignment between
map data and image data for individual objects. Update cycles
and priorities vary, potentially leading to discrepancies in data
up-to-date-ness. All of this leads to both semantic and geomet-
ric discrepancies between aerial images and topographic maps.
This discrepancies motivate the design of the fusion process in
the network architecture.

5. Experiments

The goal of the experiments is to assess the performance of the
proposed multi-modal classifier. For this purpose, the method
presented in Section 3 is applied to the data described in Sec-
tion 4. Section 5.1 provides an overview about the setup of all
conducted experiments as well as the evaluation protocol. In
Section 5.2, the results are presented, analysed, and discussed.

5.1 Experimental Setup

We conducted experiments using two variants of the network,
differing by the backbone used in the encoder. In both variants,
the encoder has S = 4 stages. One variant uses a ResNet18 (He
et al., 2016) backbone, whereas the other one uses the tiny vari-
ant of the Swin Transformer (Liu et al., 2022) with a patch size
of P = 4 pixels for the patchification of the input and a win-
dow size W = 16. The different backbones used in the models
are indicated with a corresponding superscript R or S in the ex-
periments. Preliminary experiments not reported here for lack
of space have shown that the consideration of TK25 features
of the last stage only (i.e., Sf = 1; cf. Section 3.1.1) is to be
preferred in terms of the classification performance compared
to other options. The reduction of the spatial resolution of the
inputs follows (Xiao et al., 2018), so that the field of view after
the fourth down-sampling stage amounts to 32 pixels in case of
a ResNet-based encoder; in case of a Swin encoder, the entire
input patch of 256 × 256 pixels contributes to the value of a
node in the latest stage.

For all experiments, before being presented to the classifier, the
channels of both input modalities, DOP and TK25, are indi-
vidually normalized to have a zero mean and a standard devi-
ation of one for all subsets. In training, patches of a size of
256 x 256 pixels are randomly cropped from these tiles, i.e.
H(0) = W (0) = 256 and C(0) = 3. Data augmentation is ap-
plied in training, using a random rotation by an angle between
0◦ and 360◦, random flipping in horizontal and vertical direc-
tions, as well as a potential transposition. All random com-
ponents in the generation of the input patches are identical for
each modality, so that each pixel in each modality refers to the
same location on the ground. In each training iteration, a batch
of 8 such patches is presented to the classification network.
The network weights w are randomly initialized using variance
scaling (He et al., 2015), except for the weights wE

ae, wE
tm of

the respective variant of the encoder that are initialized with
weights obtained in a pre-training on ImageNet (Russakovsky
et al., 2015). All weights are optimized using ADAM (Kingma
and Ba, 2015) with standard parameters (β1 = 0.9, β2 = 0.999
and ϵ̂ = 1 · 10−8) and a learning rate of 1 · 10−2. Training is
proceeded until no improvement in the mean F1 Score on the
validation set can be observed for 30 epochs, where an epoch is
defined to consist of 1000 training iterations.

The trained model is applied to the test set tiles, where the pre-
dictions for evaluation are determined in a sliding window ap-
proach with a horizontal and vertical shift of 128 pixels; in over-
lap regions, the class scores are averaged. The predictions thus
obtained are compared to the land cover reference and per ex-
periment the mean F1 score (mF1), the mean Intersection over
Union (mIOU) and the Overall Accuracy (OA) are determined.
The class-wise IoU and F1 scores are also analysed. Each ex-
periment is conducted three times. We report mean values and
standard deviations of the quality metrics.

All conducted experiments follow the general setup just de-
scribed and are listed in Table 3. To allow for an analysis of
the performance of the multi-modal classifier, the classifier is
applied both to the building dataset (BR

ae+tm, BS
ae+tm) and the

vegetation dataset (V R
ae+tm, V S

ae+tm). Furthermore, it of in-
terest to asses the quality of a uni-modal aerial DOP classifier
to be able to analyse the impact of the map features in the multi-
modal classifier. Thus, a classifier per dataset is trained on aer-
ial DOP only (BR

ae, BS
ae and V R

tm, V S
tm), which is realized by

presenting the DOPs to the encoder Eae (Figure 1) and setting

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-221-2025 | © Author(s) 2025. CC BY 4.0 License.

 
225



Sf = 0, i.e. feature fusion is realized at none of the stages
such that exclusively aerial features are considered in the de-
coder D. To be able to get an impression of which land cover
information can be extracted from the topographic maps, uni-
modal map classifiers are trained additionally (BR

tm, BS
tm and

V R
tm, V S

tm), though this is not the main goal of this paper. For
training the uni-modal map classifiers, the topographic maps are
presented to Eae (which is identical to Etm), and again Sf is
set to Sf = 0. A comparison of the experiments with ResNet18
encoders Eae and Etm to those with Swin-based encoders al-
lows for an analysis of the suitability of convolutions versus
self-attention for feature extraction.

Name Dataset Modality Encoder
DOP TK25

BR
ae+tm Building yes yes ResNet18

BR
ae Building yes no ResNet18

BR
tm Building no yes ResNet18

BS
ae+tm Building yes yes Swin

BS
ae Building yes no Swin

BS
tm Building no yes Swin

V R
ae+tm Vegetation yes yes ResNet18

V R
ae Vegetation yes no ResNet18

V R
tm Vegetation no yes ResNet18

V S
ae+tm Vegetation yes yes Swin

V S
ae Vegetation yes no Swin

V S
tm Vegetation no yes Swin

Table 3. List of Experiments. Name: Name of the experiment;
Dataset: either the building (Section 4.1) or the vegetation

dataset (Section 4.2); Modality: Input modality presented to the
network (DOP: xae, TK25: xtm); Encoder: Encoder backbone

for Eae, Etm, superscript R for ResNet and S for Swin.

5.2 Results and Discussion

5.2.1 Average Quality Metrics: The quality metrics per
experiment averaged over three runs, as well as the corres-
ponding standard deviations are listed in Table 4. For all four
experimental series, the multi-modal variants of the classifier
(BR

ae+tm, BS
ae+tm, V R

ae+tm, V S
ae+tm) perform best for all three

quality metrics, i.e. better than their uni-modal counterparts.
The only exception is the classification of the vegetation dataset
with a ResNet-based encoder, where the OA of the uni-modal
aerial classifier (V R

ae) performs slightly but not significantly bet-
ter than the multi-modal classifier (V R

ae+tm) in that series. This
shows that the consideration of both modalities compared to
considering only one modality is to be preferred. The higher
mF1 and higher mIOU, respectively, demonstrate that particu-
larly individual classes can be differentiated in a better way un-
der consideration of both modalities. Comparing all classifica-
tion results per dataset, i.e. all ResNet-based and all Swin-based
classifiers, the best performing classifier on the building data-
set extracts features based on convolutions (BR

ae+tm) whereas
the best performing classifier on the vegetation dataset does so
based on attentions (V S

ae+tm). The behaviour on the building
dataset can be explained by the requirement to identify small
details to make correct building predictions at a GSD of 1 m,
which is possible with the ResNet encoder that takes individual
pixels as an input. In contrast, the objects in the vegetation data-
set are larger compared to buildings, such that a larger global
context is more of interest than details. The Swin-based en-
coder enables to consider not only local but also global context,
and the patchification (P = 4 pixels) might lead to features that
can represent larger structures in a better way compared to con-
volutions. Be that as it may, the average metrics demonstrate

Name Quality metric [%]
mF1 mIOU OA

BR
ae+tm 90.1 ± 0.25 82.3 ± 0.39 92.5 ± 0.24

BR
ae 89.2 ± 0.49 80.9 ± 0.73 91.8 ± 0.37

BR
tm 84.6 ± 0.24 74.2 ± 0.37 88.7 ± 0.29

BS
ae+tm 86.9 ± 0.29 77.4 ± 0.42 90.1 ± 0.14

BS
ae 86.2 ± 0.76 76.4 ± 1.07 89.7 ± 0.43

BS
tm 84.0 ± 0.42 73.3 ± 0.56 88.2 ± 0.12

V R
ae+tm 82.2 ± 0.21 72.1 ± 0.25 91.5 ± 0.33

V R
ae 81.6 ± 1.34 71.3 ± 1.71 91.6 ± 0.22

V R
tm 58.7 ± 0.29 51.4 ± 0.40 87.2 ± 0.40

V S
ae+tm 83.0 ± 0.42 73.0 ± 0.59 91.6 ± 0.17

V S
ae 82.1 ± 0.22 71.8 ± 0.31 91.3 ± 0.05

V S
tm 54.0 ± 2.41 46.9 ± 1.99 84.8 ± 0.45

Table 4. Quality metrics achieved in all experiments. The
numbers are mean and standard deviations achieved in three runs

per experiment. Name: Name of the experiment (cf. Table 3).
The best results per series is highlighted in bold font.

that the classifier can benefit from learning from both modalit-
ies, where, depending on the granularity of the objects, convo-
lutions or attentions are to be preferred for feature extraction.

5.2.2 Class-specific Quality Metrics: The class-specific
quality metrics for the two experimental series on the building
dataset are shown in Table 5 and those for the vegetation dataset
in Table 6, respectively. Generally, the class-wise IOU and F1
scores are in line with the average metrics.

The highest metrics per class per experimental series on the
building dataset (Table 5) can be achieved for the multi-modal
variant of the classifier, where the ResNet-based encoder is to
be preferred over the Swin-based one. A closer look shows
that particularly the class of interest, i.e. Building, can benefit
from the fusion of the modalities. While the IOU for No Build-
ing is improved by 0.7% (BR

ae+tm compared to BR
ae) and 4.3%

(BR
ae+tm compared to BR

tm), respectively, the IOU for Building
is improved by 2.0% (BR

ae+tm compared to BR
ae) and 11.9%

(BR
ae+tm compared to BR

tm), respectively. Similarly, the im-
provements in the F1 scores are much larger for the class Build-
ing compared to the class No Building. A visual inspection of
the predictions (see Figure 3) makes clear that both of the mod-
alities come along with different strengths and the multi-modal
classifier benefits from both strengths: the map-based classifiers
(BR

tm, BS
tm) allow for the prediction of the basic building struc-

tures but fail to predict some buildings that are not contained in
the map, as well as fine-grained building parts (which is to be
expected from the contents in the provided topographic map);
the aerial image classifiers (BR

ae, BS
ae) allow for the prediction

of details, but partly fail to correctly predict inner parts of build-
ing footprints. The multi-modal classifiers (BR

ae+tm, BS
ae+tm)

tend to correctly predict both details and all parts of a building
object, which becomes particularly clear from the building at
the bottom right in the ResNet-based classifier variants (Bae,
Btm, Bae+tm in Figure 3).

In general, the class-wise metrics on the vegetation dataset
(Table 6) show a similar behaviour as the average ones: the
highest metrics are achieved for the multi-modal variants of
the classifier. Exceptions from this general observation are
the classes Crop and Deciduous in the ResNet-based series
of experiments; while for the class Crop both, IOU and F1
score, are (nearly) identical for all three classifiers (V R

tm, V R
ae,

V R
ae+tm), the IOU and F1 score of Deciduous are on par for the

multi-modal classifier (V R
ae+tm) and the uni-modal orthoimage
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Class-specific IOU [%]
Class name Experiment

BR
ae+tm BR

ae BR
tm

No Building 90.4 ± 0.28 89.7 ± 0.45 86.1 ± 0.41
Building 74.1 ± 0.49 72.1 ± 1.10 62.2 ± 0.33
Class name Experiment

BS
ae+tm BS

ae BS
tm

No Building 87.6 ± 0.22 87.2 ± 0.50 85.6 ± 0.12
Building 67.1 ± 0.74 65.7 ± 1.67 61.1 ± 1.02
Class-specific F1 scores [%]
Class name Experiment

BR
ae+tm BR

ae BR
tm

No Building 94.9 ± 0.19 94.6 ± 0.25 92.6 ± 0.21
Building 85.1 ± 0.33 83.8 ± 0.74 76.7 ± 0.24
Class name Experiment

BS
ae+tm BS

ae BS
tm

No Building 93.4 ± 0.12 93.1 ± 0.25 92.2 ± 0.05
Building 80.3 ± 0.49 79.3 ± 1.25 75.8 ± 0.80

Table 5. Class-specific quality metrics on the building dataset.
Experiment: Name of the experiment. Best results per

experimental series are highlighted in bold font.

classifier (V R
ae). Furthermore, while the highest IOU (90.1%)

and F1 score (94.8%) for the class Crop are achieved in the
multi-modal classifier with attention-based features (V S

ae+tm),
the highest scores for the class Deciduous are achieved with
the uni-modal aerial classifier relying on convolution-based fea-
tures (V R

ae). This might be caused by the requirement to predict
not only large structures but also fine-grained details for these
two classes, particularly for Deciduous, which becomes clear
from Figure 4. This Figure also visualizes that the fine-grained
Deciduous tree objects along the roads are not predicted by the
map-based classifiers (V R

tm, V S
tm), which is reasonable given the

provided input data (TK25 in Figure 4; cf. also Section 4.3)
and explains the lower metrics for Deciduous trees achieved by
the map-based classifiers (see Table 6). Similarly, the metrics
in Table 6 and the predictions in Figure 4 for the class Con-
iferous trees by the classifiers V R

tm, V S
tm can be explained by

the input TK25; as the map does not provide any information
about coniferous trees in the forested area at the bottom right,
the classifier can not correctly predict them, even though they
are present according to the orthophoto (DOP in Figure 4). Nev-
ertheless, the multi-modal classifiers (V R

ae+tm, V S
ae+tm) rely on

the more informative DOP for predicting Coniferous trees and
are even better than the aerial classifiers (V R

ae, V S
ae) in correctly

predicting Coniferous trees, which is assumed to be caused by
a more homogeneous representation of the other classes in the
map, leading to less confusion with the class Coniferous trees in
the multi-modal cases. To summarize, the ResNet-based clas-
sifier and particularly the Swin-based classifier benefit from the
joint consideration of aerial images and maps in general, with
fine-grained structures exclusively contained in the aerial image
being slightly better predicted by the uni-modal aerial classifier
relying on convolutions.

6. Conclusions & Outlook

In this paper, a multi-modal classification approach was pro-
posed that combines historic aerial orthoimages and historic to-
pographic maps for the pixel-wise prediction of land cover. To
the best of the knowledge of the authors, this is the first classi-
fier that successfully combines these two modalities for pixel-
wise classification. The classifier benefits from both modalities
by exploiting fine-grained information about the Earth’s surface
contained in the aerial images and exploiting high-level features

Class-specific IOU [%]
Class name Experiment

V R
ae+tm V R

ae V R
tm

Crop 89.5 ± 0.21 89.6 ± 0.31 89.6 ± 0.29
Deciduous 89.3 ± 0.94 89.6 ± 0.29 83.2 ± 0.59
Coniferous 65.8 ± 3.35 63.1 ± 5.84 0.3 ± 0.33
Other 43.7 ± 2.41 42.9 ± 43.7 32.3 ± 1.44
Class name Experiment

V S
ae+tm V S

ae V S
tm

Crop 90.1 ± 0.50 89.4 ± 0.25 85.2 ± 2.91
Deciduous 89.5 ± 0.21 89.0 ± 0.16 81.7 ± 1.16
Coniferous 66.7 ± 2.92 64.7 ± 1.50 0.2 ± 0.28
Other 45.8 ± 1.51 44.1 ± 1.20 20.7 ± 6.10
Class-specific F1 scores [%]
Class name Experiment

V R
ae+tm V R

ae V R
tm

Crop 94.5 ± 0.12 94.5 ± 0.17 94.5 ± 0.17
Deciduous 94.4 ± 0.53 94.6 ± 0.17 90.8 ± 0.36
Coniferous 79.4 ± 2.45 77.2 ± 4.37 0.7 ± 0.59
Other 60.8 ± 2.37 60.1 ± 0.91 48.8 ± 1.69
Class name Experiment

V S
ae+tm V S

ae V S
tm

Crop 94.8 ± 0.28 94.4 ± 0.17 92.0 ± 1.69
Deciduous 94.5 ± 0.12 94.2 ± 0.08 89.9 ± 0.68
Coniferous 80.0 ± 2.12 78.6 ± 1.11 0.4 ± 0.52
Other 62.8 ± 1.39 61.2 ± 1.12 33.8 ± 8.14

Table 6. Class-specific quality metrics on the vegetation dataset.
Deciduous / Coniferous: Deciduous trees / Coniferous trees.

Experiment: Name of the experiment. Best results per
experimental series are highlighted in bold font.

of both, maps and aerial images. These high-level features are
fused based on attentions, allowing to focus not only on relev-
ant local and global contexts but also on relevant feature maps.
A comprehensive evaluation demonstrates that the multi-modal
classifier outperforms both uni-modal counterparts. This em-
phasizes that even a coarse representation in terms of maps can
support the interpretation of the images. Conversely, it is clear
that the classification of maps using the image-related ground-
truth labels cannot yield an optimal solution, due to the discrep-
ancies described above. Furthermore, the experiments indicate
that convolution-based feature extraction is to be preferred for
fine-grained objects, whereas larger objects are predicted in a
better way utilizing attention-based features.

Future work can build on the present one in various ways. From
a methodological point of view, it could be investigated how the
multi-modal classifier could be further improved. For instance,
auxiliary supervision, e.g. (Garnot et al., 2022), could explicitly
force the classifier to extract as much information as possible
from each modality. Furthermore, the method could be adapted
such that it allows for inputs with different GSDs, avoiding the
resampling of the input and consequently, the loss of informa-
tion in case of downsampling. In addition, further sources of in-
formation could be considered, e.g. satellite images, e.g. (Gari-
oud et al., 2023; Heidarianbaei et al., 2024), or height inform-
ation derived from historic aerial stereo images (Le Bris et al.,
2020). It might also be helpful to start from pre-trained weights
obtained from topographic maps and aerial orthoimages by self-
supervised learning (Wang et al., 2022), which would have to
be adapted for the modalities of interest. From an application
point of view, it would be interesting to investigate the general-
ity of the approach in terms of its ability to perform on datasets
of other regions as well as on datasets of other epochs. As it
is assumed that this might be challenging, regional domain ad-
aptation, e.g. (Wittich and Rottensteiner, 2021), and temporal
domain adaptation, e.g. (Mboga et al., 2021; Van den Broeck et
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DOP TK25 Reference

BR
ae BR

tm BR
ae+tm

BS
ae BS

tm BS
ae+tm

Figure 3. Test tile for the building dataset. The first row shows
the available data (DOP: digital orthophoto; TK25: topographic
map; Reference: Reference label map) and the second and third

rows show the predictions of the classifiers (cf. Table 3).

al., 2022), would be options to tackle such challenges. Finally,
in order to be able to analyse the development of land cover
over time, the method presented in this paper will be embedded
into an approach for the classification of time series of historic
multi-modal data.
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