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Abstract

Roadside LiDAR sensors are critical components in automated driving systems and mobile mapping systems. These sensors, typ-
ically deployed along roadsides to provide continuous data for perception tasks, require precise calibration to ensure the safety
and performance of intelligent connected vehicles. However, large-scale deployment presents new challenges, including low sensor
overlap and variability in sensor types, complicating the calibration process. To address these challenges, this study introduces Map-
Calib, an innovative method for the automatic calibration of roadside LiDAR systems using High-Definition (HD) map. MapCalib
improves calibration efficiency by eliminating the need for specific calibration targets, which simplifies the process and increases
safety when managing large-scale roadside LiDAR installations. The method begins with the development of a virtual map pro-
jector, which establishes a mapping from the HD map to the LiDAR data, minimizing representation disparities. Next, a Semantic
Universal Spatial Context (SUSC) descriptor is proposed to efficiently localize the LiDAR sensor positions within the HD map. Fi-
nally, through feature retrieval and iterative optimization, the method calibrates sensor parameters, such as orientation and position.
The proposed calibration framework is validated through simulated, public, and self-collected datasets, demonstrating its ability to
automatically calibrate multiple LiDAR sensors with high accuracy. Compared to existing calibration methods, MapCalib achieves
a notable improvement of 39.9% in Relative Rotation Error (RRE) and 39.3% in Relative Translation Error (RTE).

1. Introduction

With the advancement of 5G technology (Hakak et al., 2023)
and high-definition (HD) map (Liu et al., 2020), vehicle-road
cooperative systems have become the predominant approach
in modern autonomous driving systems. By integrating multi-
perspective observations from vehicle and roadside sensors, this
collaborative perception approach addresses challenges such as
limited sensor ranges and blind spots caused by environmental
occlusions (Kulawiak, 2024). However, the use of different
coordinate reference systems by vehicle and roadside sensors
presents substantial challenges for effective collaboration across
various observation nodes (Kim et al., 2014). Addressing these
challenges requires joint calibration of sensors based on a uni-
fied coordinate reference system, which is crucial for effective
multi-source data integration in vehicle-road collaborative sens-
ing.

Among various roadside sensing modalities, Light Detection
and Ranging (LiDAR) has emerged as a pivotal component due
to its high-resolution 3D measurement capabilities, playing cru-
cial roles in critical applications ranging from autonomous driv-
ing (Li and Ibanez-Guzman, 2020) to simultaneous localization
and mapping (SLAM) (Khan et al., 2021). To acquire an accur-
ate georeferenced roadside LiDAR point cloud, it is essential to
precisely estimate the parameters of the roadside LiDAR. Vari-
ous LiDAR calibration methods have been developed over the
past few decades. Traditional calibration methods typically rely
on specific targets such as Apriltags (Xie et al., 2018), checker-
board (Lee et al., 2020) and spheres (Zhang et al., 2024). How-
ever, these methods necessitate road closures during the cal-

ibration process to ensure operator safety. Additionally, the ex-
tensive and costly manual operations render them inefficient for
large-scale deployment. Consequently, achieving large-scale
automated calibration for roadside LiDAR has become a press-
ing challenge. With advancements in sensor perception capab-
ilities, target-free calibration in outdoor scenarios has progress-
ively become the mainstream approach (Zhang et al., 2022;
Herau et al., 2024). These methods generally require a signific-
ant overlap between sensors and assume identical sensor types,
solving the calibration problem by matching features widely
found in natural environments, such as linear features (Zhou
et al., 2018), planar features (Jiao et al., 2019), and semantic
edge features (Liao et al., 2023). However, large-scale roadside
LiDAR calibration is challenging due to the wide distribution,
fixed positioning, and narrow field of view of roadside LiDAR,
resulting in low overlap and variations between LiDAR types.

To address these challenges, we propose an innovative road-
side LiDAR calibration framework using HD map. HD map
not only provides detailed, full-coverage observational data of
roads but also offers precise georeferencing, making them an
ideal medium for bridging gaps between sensor data. By in-
corporating HD map as auxiliary data, our approach effectively
compensates for spatial gaps, physical discrepancies, and vari-
ations in sensor viewpoints. This integration enhances the ro-
bustness of calibration across diverse roadside LiDAR systems,
bridging the gaps between different sensors, and ensuring con-
sistent performance in large-scale deployment scenarios.

In this paper, we introduce MapCalib, a novel automatic calib-
ration method for roadside LiDAR using HD map. To address
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representation discrepancies between LiDAR and HD map, we
propose a virtual map projector that performs virtual mapping
from the HD map to roadside LiDAR, effectively reducing data
discrepancies. Additionally, the diversity in the types, num-
bers, fixed positions, and viewing angles of roadside LiDAR
systems introduces challenges for large-scale calibration. To
address this, we present a Semantic Universal Spatial Context
(SUSC) descriptor, tailored to various LiDAR types, which ac-
counts for installation methods and physical mechanisms, en-
suring consistent data representation. Finally, through feature
retrieval and iterative optimization, the extrinsic parameters of
the roadside LiDAR are refined to ensure precise calibration.

2. Related Work

2.1 Roadside Sensor Calibration

Calibration aims to find the transformation between two sensor
data, including relative rotation, and translation. This process is
typically classified into two categories: target-based and target-
less methods. Target-based calibration relies on specially de-
signed targets that sensors can precisely track, offering a refer-
ence for calibration. In contrast, target-less methods derive cal-
ibration parameters directly from environmental data without
the need for a physical target.

Target-based calibration methods are typically inefficient and
may pose safety risks. As a result, target-less calibration meth-
ods have become the primary focus of current research. For
instance, Zhang et al. (2020) accomplished calibration by util-
izing retro-reflective materials and employing point cloud regis-
tration. VI-eye (He et al., 2021) is a real-time system for regis-
tering vehicle infrastructure point clouds, achieving centimeter-
level accuracy through detecting a set of key semantic objects.
TrajMatch (Ren et al., 2023) is an automatic roadside LiDAR
calibration system that calibrates sensors based on detection
and tracking task results. These calibration methods typically
focus on the relative relationship between sensors, overlook-
ing the connection to the absolute coordinate system. This lim-
itation hinders the ability to achieve sensor calibration across
different scenes. To address this issue, Zhang et al. (2022)
proposed a roadside millimeter-wave radar calibration method
that leverages real-time traffic data and HD map. This method
clusters vehicle trajectories, fits lane centerlines using polyno-
mials, performs uniform sampling, and solves calibration para-
meters via nonlinear optimization, enabling accurate calibration
without road closures. However, this method relies on manu-
ally defined regions of interest, limiting its level of automation.
Zhao et al. (2024) employed positioning and perception data
from autonomous vehicles to calibrate roadside sensors. How-
ever, the proposed calibration framework depends on obtaining
object-level trajectory data, limiting its applicability for calib-
rating raw perception data.

To address these issues, we propose MapCalib, a novel road-
side LiDAR calibration method that leverages HD map as aux-
iliary input, enabling large-scale automatic calibration of road-
side LiDAR systems using only raw data.

2.2 HD Map

HD map is crucial for highly automated driving systems (Xiao
et al., 2024). This map provides comprehensive data about the
vehicle’s environment, mitigating sensor limitations by com-
pensating for occluded areas or regions beyond the sensor’s

range. Moreover, in cases of sensor uncertainty, the HD map
serves as a reliable reference, enabling accurate interpretation
and decision-making across a wide range of driving scenarios.

Typically, HD map consists of road networks, lane information,
localization features, and traffic infrastructure data. The road
network primarily includes geometric and attribute-based in-
formation, such as road type, classification, and width. Lane in-
formation focuses on lane markings, offering detailed specifica-
tions on direction, number, and speed limits in each lane. Local-
ization features consist of reference points used by autonomous
vehicles for localization, specifying their location, type, tex-
ture, and shape. The signal layer incorporates geometric and
semantic data regarding traffic signs, lights, and road markings,
detailing their type, height, and other attributes. The road net-
work in HD map aids autonomous vehicles with global navig-
ation and path planning, while lane information enables fine-
grained, lane-level path planning in automated driving. Loc-
alization features and signal data contribute to environmental
perception and precise localization for autonomous vehicles.

Building upon the work of Wong et al. (2021), Srinara et al.
(2022), and Chiang et al. (2023) in integrating point cloud maps
with LiDAR-IMU calibration, this study investigates the pro-
cessing and analysis of point cloud data, which plays a critical
role in the HD map. By aligning sensor data with the HD map,
precise sensor calibration is attained.

3. Methodology

The proposed MapCalib framework is designed to take full ad-
vantage of the data characteristics of roadside LiDAR and the
absolute pose reference provided by HD map, addressing the
challenge of large-scale automatic roadside LiDAR calibration.
The workflow of this method is depicted in Figure 1. Initially,
a virtual map projector is designed to facilitate virtual map-
ping from the HD map to the roadside LiDAR by incorpor-
ating the road’s geometric layout and spatial characteristics.
Subsequently, a Semantic Universal Spatial Context (SUSC)
descriptor is developed. Ultimately, through feature retrieval
and iterative optimization, the extrinsic parameters of the road-
side LiDAR are refined to achieve accurate calibration.

3.1 Virtual Map Projector

The HD map for autonomous driving represents a novel integ-
ration of map science and innovations within the automotive in-
dustry, attracting significant attention across academic research,
government regulation, and industrial applications (Guo et al.,
2024). However, significant differences in density and cover-
age often exist between existing HD map and roadside LiDAR,
complicating the direct unification of their coordinate systems.
To address this, a virtual map projector is proposed to process
the HD map, achieving virtual mapping that registers with road-
side LiDAR.

Virtual Viewpoint Generation: To construct the virtual map
projector, it is essential to determine the pose of each virtual
viewpoint in the HD map, which is critical for ensuring the ac-
curacy and robustness of the projector. This study proposes a
road boundary-based search strategy, aligned with the practical
deployment of roadside LiDAR. First, road boundary informa-
tion is extracted from the HD map, with each boundary repres-
ented by a series of continuous vectors, as shown in Equation
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Figure 1. Architecture overview. The proposed MapCalib comprises three main components: 1) Virtual Map Projector, 2) Generation
of Semantic Universal Spatial Context (SUSC) Descriptor, and 3) Finally Calibration. The Virtual Map Projector constructs a virtual
mapping from HD map to roadside LiDAR, while the SUSC Descriptor is designed to locate the LiDAR position within the HD map.
Finally, the feature retrieval and iterative optimization are used to achieve precise calibration of the roadside LiDAR.

(1) {
Ri = {Vi,j}ni−1

j=1

Vi,j = Pi,j+1 − Pi,j
(1)

where Ri denotes the ith road, Vi,j denotes the jth vector com-
posing the ith road, ni denotes the number of coordinate points
on the ith road, and Pi,j denotes the jth coordinate point on the
ith road.

To generate the virtual viewpoints, linear interpolation is used
between the start and end points of each vector. These virtual
viewpoints are distributed at regular intervals along the road
boundary, as described in Equation (3), ensuring that the view-
points are spaced to cover the desired resolution.

m =

⌈
P end
i,j − P start

i,j

interpert
,

⌉
(2)

Pi(k, j) =

(
1− k

m− 1

)
P start
i,j

+
k

m− 1
P end
i,j , k = 0, 1, 2, . . . ,m− 1

(3)

where Pi(k) denotes the k-th virtual viewpoint generated on the
i-th road. m denotes the number of virtual viewpoint desired to
be generated. P start

i,j denotes the start point of the j-th vector in
the i-th road, and P end

i,j denotes the end point of the j-th vector
in the i-th road. interpert denotes the interpolation interval.
Note that the Z-axis is uniformly set to the same height because
the roadside LiDAR installation height is relatively fixed. For
the attitude information, considering the rotational invariance
of the feature descriptors, we set the yaw angle, roll angle and
pitch angle to zero.

Roadside LiDAR Data Analysis: After obtaining the posi-
tion, in order to simulate the real scanning as accurately as pos-
sible, the parameters are obtained by parsing the actual roadside

LiDAR data. The roadside LiDAR data are first represented as
PL = PL1, PL2, · · ·PLn, with each point PLi(P

x
Li, P

y
Li, P

z
Li),

for which the distance Di, horizontal angle Hi, and vertical
angle Vi are calculated, as shown in Equation (4)

Di = ||PLi||

Vi = arctan(
P z
Li√

P x
Li

2 + P y
Li

2
)

Hi = arctan(
P x
Li

P y
Li

)

(4)

This formulation allows us to generate parameters that reflect
the actual roadside LiDAR deployment. Two types of LiDAR
systems are considered: mechanical LiDAR and semi-solid-
state LiDAR.

• Mechanical LiDAR: This type operates by rotating the
optical structure with a motor for full 360-degree scan-
ning. Key parameters include the number of LiDAR lines,
the measurement range, vertical field of view, and angu-
lar resolution. We simulate the number of vertical angles
based on the real scanning data, use the farthest distance as
the measurement range, and derive the angular resolution
and vertical field of view from the data.

• Semi-solid LiDAR: This type alters the laser direction
using moving mirrors. It employs vibrating mirrors and
prism technology, facilitating dynamic adjustment of the
region of interest (ROI). For semi-solid-state LiDAR, the
ROI and non-ROI areas are identified based on vertical an-
gular gaps, with distinct angular resolutions assigned ac-
cordingly.

Virtual Mapping Generation: Once the position and paramet-
ers are determined, the virtual map projector is generated within
the HD map. Initially, the HD map is cropped based on the po-
sition and measurement range. Subsequently, all LiDAR scan
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lines are generated using horizontal and vertical angles. Points
within the cropped map are evaluated to determine whether they
lie on a scan line, with only those on the lines being retained.
For each scan line, the point nearest to the virtual viewpoint is
retained, resulting in the final virtual mapping.

3.2 Generation of SUSC Descriptor

Existing point cloud feature descriptors usually use point height
or point density information as features, the essence of which is
to take advantage of the particular properties of different objects
in the scene. However, there are a wide variety of roadside LiD-
ARs, and low-level height and point density information is not
sufficient to fully reflect the common features of multiple LiD-
ARs. Recent studies have demonstrated the importance of se-
mantic information in point cloud descriptions (Li et al., 2021).
Therefore, this paper introduces semantic information and pro-
poses a semantic unified feature descriptor (SUSC), as shown
in Figure 2.

i

j

i

j

i

j

(c) (d)

i j

(a) (b)

Figure 2. Semantic Universal Spatial Context descriptor creation.
(a) and (b) represent the semantic segmentation results of two dif-
ferent LiDARs with different field-of-view angles. We divide the
space around the vehicle into discrete regions on the x-y plane.
The green area is a sector, and the yellow area is a ring. Their
overlapping area is a bin. (c) and (d) represent the generated
SUSC descriptors, where rows and columns represent the indices
of the ring (i) and sector (j). Due to the different field-of-view
angles of the two LiDARs, the number of columns in the gener-
ated descriptor is also different.

Specifically, in order to construct the SUSC descriptor, we choose
RangeNet++, a CNN-based point cloud segmentation algorithm,
for semantic segmentation processing of roadside LiDAR point
clouds and their virtual mapping data from HD map. In our ex-
periments, we used the pre-trained weights of RangeNet++ on
the publicly available dataset SemanticKITTI for inference. To
further improve the robustness of the feature descriptors, we fil-
ter the segmented point cloud to remove dynamic targets based
on semantic labels and retain only static semantic objects. This
step ensures that the descriptors are not interfered with dynamic
objects in the scene, thus reflecting more accurately the key
static structures in the scene. In addition, the filtering of static
objects helps to improve the stability of features across different
times and sensors.

Then, we divided the point cloud into bins at regular intervals
along the azimuth and radial directions, followed by further seg-

mentation along the vertical angle. After completing the divi-
sion, Nr×Nh×Nv bins can be obtained, where Nr , Nh, and Nv

denote the number of bins along the radial, horizontal, and ver-
tical angles, respectively. Notably, in order to improve the ad-
aptability of the SUSC descriptor to different roadside LiDAR
data, we design a flexible division mechanism that can dynam-
ically adjust the corresponding division intervals according to
the field-of-view angles and resolutions of different LiDARs,
thus ensuring that the descriptor can effectively capture features
in LiDAR systems with varied characteristics. As shown in (a)
and (b) in Figure 2, the point cloud data in (a) has only 120-
degree field-of-view angle, and thus is divided only within that
sector, while the point cloud data in (b) represents 360-degree
circumferential view data, and thus divides the space for the
entire circular area.

After dividing all the points in the point cloud into bins, each
bin is assigned a value based on the number of points in each se-
mantic category and the elevation distribution within it. We first
use the point density of each semantic category as the basis for
environmental description and manually assign different weights
to each category for normalization, emphasizing its importance.
Additionally, elevation-based weighting is applied to enhance
features nearer to the roadside LiDAR. The bin encoding func-
tion is given in Equation (5)

Φ(Pi,j,k) =

Nlabel∑
l=1

ωlN(Pi,j,k, l)×
2k−1∑Nv

k=1 2
k−1

(5)

where Pi,j,k denotes the set of points belonging to the Bi,j,k(i ∈
[Nr], j ∈ [Nh], k ∈ [Nv]), and Bi,j,k denotes the k-th bin in
the i-th ring and j-th sector. N(Pi,j,k, l) denotes the number of
points with semantic category l in the set of Pi,j,k. Nlabel de-
notes the number of semantic categories. ωl denotes manually
set weights for different semantic categories. After calculating
each bin, we can represent the entire point cloud with a matrix
of Nr ×Nh.

This coding function was selected because the use of elevation-
weighted information yields a more accurate representation of
the surrounding environment than relying solely on maximum
height. Furthermore, due to the elevated mounting position of
roadside LiDAR, data from higher elevations are more reliable
and crucial in outdoor environments, whereas ground-level in-
formation tends to be redundant. Additionally, vehicles moving
at lower heights may introduce noise, negatively impacting the
results.

3.3 Feature Retrieval

After obtaining the SUSC descriptor for the roadside LiDAR
point cloud and its corresponding virtual mapping, the distance
between the LiDAR point cloud and each frame of the virtual
mapping is calculated first. Considering that the virtual map-
ping field of view, constructed through the virtual reprojection
model, is set to 360 degrees, while real roadside LiDAR, di-
verse in type, covers multiple scenarios—most of which have a
field of view smaller than 360 degrees—the dimensions of the
feature descriptors between the two differ. To standardize the
level of detail across all feature descriptors, each column of the
SUSC descriptor is treated as a discrete distribution. The dis-
tance between corresponding columns is then computed, with
the virtual mapping shifted continuously to the right. Cosine
similarity is employed for this calculation. The minimum dis-
tance is selected as the final result, and the yaw angle is de-
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termined by multiplying the number of shifts by the horizontal
angular gap, as shown in Equation (6)

dis =
NM

h

min
i=1

1

NL
h

NL
h∑

j=1

(
FM
g(i,j) · FL

j

||FM
g(i,j)|| · ||FL

j ||

)
g(i, j) = (j + i)%NM

h

yaw =
i · 360
NM

h

(6)

where NL
h and NM

h denote the number of columns of the point
cloud’s and virtual mapping’s SUSC descriptor, respectively.
dis denotes the final distance between the point cloud and vir-
tual mapping. g(i, j) denotes the index of column j after mov-
ing column i to the right, and yaw denotes the initial yaw angle.

After calculating the distance between the roadside LiDAR and
the virtual mapping, a direct strategy is employed, based on a
simple comparison of the distance differences derived from the
minimum distance. Although straightforward, this method is
susceptible to noise and local anomalies, potentially comprom-
ising its robustness. To enhance matching accuracy and stabil-
ity, the similarity between virtual mappings is also considered,
and the optimal virtual mapping result is computed based on the
distance matrix.

Specifically, the geometric distance between each frame of the
virtual mapping and the real LiDAR is first computed using
multiple distance metrics. Subsequently, based on these dis-
tance values, all virtual mappings are ranked, and the top K
candidate positions are selected, ensuring that those closest to
the real LiDAR point cloud are retained. To further improve
matching robustness, clustering analysis is applied. These can-
didate mappings are grouped into clusters based on their Eu-
clidean distances, ensuring that mappings with high similar-
ity are grouped together, thereby preventing instability in the
matching results caused by a single anomalous candidate map-
ping. Each cluster represents a group of virtual mappings ex-
hibiting similar geometric features.

Finally, the representativeness of each cluster is assessed by
counting the number of elements within it. Within each cluster,
the similarity between each element is computed to ensure con-
sistency in the geometric features of the mappings. Addition-
ally, to comprehensively evaluate the reliability of each cluster,
the similarity between the real LiDAR point cloud and each
element is considered. Using these similarity values, a com-
prehensive distance matrix is constructed, capturing the overall
confidence level of each cluster, as shown in Equation (7)

DM =


disL1 disL2 · · · disLK

dis11 dis12 · · · dis1K
dis21 dis22 · · · dis2K

...
...

. . .
...

disK1 disK2 · · · disKK

 (7)

where disLi denotes the distance between the LiDAR point
cloud and the i-th virtual mapping, and disij denotes the dis-
tance between the i-th virtual mapping and the j-th virtual map-
ping. Based on this distance matrix, we calculate the distance
between each row and the first row in the matrix, and take the
virtual viewpoint position closest to the LiDAR point cloud as
the final localization result.

3.4 Transformation Parameter Calculation

Once the correspondence between the Roadside LiDAR point
cloud and virtual mapping is determined through feature re-
trieval, the transformation parameters can be estimated. First,
we apply an initial transformation to the LiDAR point cloud
based on the X,Y coordinates from the virtual mapping and
the yaw angle obtained from feature retrieval. Next, we em-
ploy the Generalized Iterative Closest Point (GICP) algorithm
to achieve precise registration between the LiDAR point cloud
and the HD map, thereby estimating the extrinsic parameters.

4. Experiments

4.1 Experimental Setup

To comprehensively assess the performance of the proposed
MapCalib framework, we conducted experiments using three
distinct datasets: RLiDAR-sim, which simulates various scen-
arios; WHU-Urban3D Han et al. (2024), an outdoor dataset;
and a Real-World dataset. The calibration effectiveness was
quantitatively evaluated using two key metrics: Relative Rota-
tion Error (RRE) and Relative Translation Error (RTE) Geiger
et al. (2012), as expressed in Equation (8)RRE =

3∑
i=1

|F (R−1
T , RE)(i)|

RTE = ||tT − tE ||

(8)

where RT and RE denote the ground truth rotation matrix and
the estimated rotation matrix, respectively. F denotes the func-
tion to calculate the Euler angle between two rotation matrices.
RRE denotes the relative rotation error. Similarly, tT and tE
denote the ground truth translation vector and the estimated
translation vector, respectively. RTE denotes the relative trans-
lation error.

We compare the proposed method with several different LiDAR
calibration algorithms: (1) ICP (Besl and McKay, 1992), which
estimates the transformation matrix by iteratively minimising
the distance between two point clouds; (2) GICP (Segal et al.,
2009), which is based on a globally optimized version of ICP,
and uses the covariance matrix to compute the objective func-
tion; (3) NDT (Biber and Straßer, 2003), which estimates the
transformation matrix by transforming the point cloud data into
a Gaussian distribution; (4) VI-eye (He et al., 2021), which
achieves real-time registration of two point clouds by detect-
ing a set of key semantic objects and basing it on their intrinsic
shapes; and (5) OpenCalib (Wei et al., 2024), which uses a
neural network to perform a rough calibration and then optim-
ises it using an octree.

For the baseline algorithms, ICP, GICP, and NDT were imple-
mented using the Point Cloud Library (PCL), and given that
their performance is highly dependent on the initial position,
they were tested using the initial position provided by GNSS
signals. VIeye, in contrast, was implemented based on the ref-
erenced paper, with semantic segmentation performed using the
RangeNet++ network for training. OpenCalib was evaluated
using the provided open-source code. The parameters of these
algorithms were carefully tuned to optimize performance on our
dataset.
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Table 1. Quantitative results of calibration on three datasets. The best result is indicated in bold, while the second-best result is
underlined.

Method RLiDAR-sim WHU-Urban3D Real-World

RRE◦ RTE(m) RRE◦ RTE(m) RRE◦ RTE(m)

GNSS + ICP 5.28 0.48 2.98 1.03 15.88 2.36
GNSS + GICP 2.37 0.20 2.07 0.35 22.78 0.85
GNSS + NDT 13.14 0.84 7.44 1.83 13.16 4.12

VI-EYE 2.54 0.34 2.08 0.33 6.79 0.75
OpenCalib 10.54 0.62 8.34 0.63 8.62 0.39

Ours 1.11 (+56.3%) 0.127 (+36.8%) 1.59 (+23.2%) 0.277 (+15.3%) 4.08 (+39.9%) 0.241 (+39.3%)

4.2 Datasets

RLiDAR-sim: Due to the lack of publicly available datasets
for roadside LiDAR calibration, RLiDAR-sim was developed
using the ROS-GAZEBO simulation platform. This environ-
ment facilitates the deployment of multiple LiDAR sensors, the
creation of various road and traffic scenarios, and the provi-
sion of accurate ground-truth data, making it ideal for testing
algorithms. The simulation employed different LiDAR config-
urations to mimic real-world conditions, including two 128-line
mechanical LiDAR with a 120-meter detection range: one with
a 360-degree horizontal field of view (FOV) and another with a
120-degree horizontal FOV, both maintaining the same vertical
FOV of -30 to 10 degrees to ensure comprehensive road cov-
erage. The dataset was generated by initially scanning the en-
tire scene with a vehicle-mounted 64-line mechanical LiDAR,
which was then used to create an HD map. ROS was utilized
to collect and synchronize the LiDAR data with the simulation
environment, ensuring accurate sensor data for testing.

WHU-Urban3D: This is a large-scale, multi-source 3D point
cloud dataset, covering over 3.2 × 106 square meters across
Shanghai and Wuhan, was acquired using AS-900HL and HiScan-
Z laser measurement systems. It includes both aerial laser scan-
ning (ALS) and mobile laser scanning (MLS) point clouds, along
with panoramic images and annotations for more than 200 mil-
lion points. For this experiment, we focused on the MLS data,
which were used as HD maps. A virtual reprojection model
was manually created to simulate roadside LiDAR data gener-
ation, using a 128-line mechanical LiDAR sensor with a 200-
meter detection range, a 120-degree horizontal FOV, and a ver-
tical FOV from -30 to 10 degrees, reflecting common roadside
sensor configurations. To enhance the realism of the simula-
tion, Gaussian noise was added to replicate real-world LiDAR
noise characteristics. The sensor’s extrinsic parameters were
manually adjusted, ensuring accurate alignment with the vir-
tual environment for realistic data generation and subsequent
testing.

Real-World Dataset: To evaluate the performance of Map-
Calib in real-world, a dataset was collected in a park in Wuhan,
covering 7 intersections, including straight roads, ”T” inter-
sections, and crossroads. A total of 11 LiDAR sensors were
deployed, capturing around 400 frames per sensor, with each
frame containing approximately 60,000 points. The primary
sensors used were (1) LS-LiDAR-C32, a mechanical LiDAR
with a 150-meter detection range, a 360-degree horizontal FOV
for full surrounding coverage, and a vertical FOV from -16
to 15 degrees, and (2) CH128X1, a semi-solid-state LiDAR

with a 200-meter range, a 120-degree horizontal FOV focus-
ing on the roadside and intersections, and a vertical FOV from
-18 to 7 degrees. The HD map was created through mobile
mapping vehicles equipped with LiDAR, inertial guides, RTK,
and panoramic cameras, with data processed manually. Sensor
positions were determined using a high-precision GNSS-RTK
device.

4.3 Results and Analysis

We first quantitatively compared the calibration performance
of the proposed MapCalib method with several baseline meth-
ods. Table 1 shows the results of the comparison of calibra-
tion errors. As shown, MapCalib achieved relatively accur-
ate calibration, with a translation error under 0.3 m and a ro-
tation error below 5 degrees. Notably, in the simulated en-
vironment and WHU-Urban3D dataset, most calibration meth-
ods performed well due to the relatively simple scenes and low
noise levels. Although MapCalib achieved the best calibra-
tion results, its advantage was marginal. In real-world scen-
arios, however, all baseline methods struggled to achieve accur-
ate calibration, while MapCalib demonstrated a notable advant-
age, successfully aligning data from different LiDAR systems.
MapCalib showed a 25.2% improvement in RRE and a 39.3%
improvement in RTE over the best baseline method.

It is evident that for traditional methods such as ICP, GICP, and
NDT, the initial pose provided by GNSS (with an error typically
around 5 meters) is insufficient for achieving high-precision
calibration of roadside LiDAR. VI-eye enhances robustness by
incorporating semantic information, thereby providing stronger
constraints between different types of LiDAR. However, the
performance of VI-eye is strongly dependent on the accuracy of
the saliency point extractor, which is sensitive to low-density or
high-noise point clouds, thereby limiting its broader applicab-
ility in real-world scenarios. OpenCalib, a calibration method
designed for onboard LiDAR systems, experiences a notable
decline in calibration accuracy when directly applied to road-
side LiDAR.

Subsequently, we analyzed the relationship between compu-
tational efficiency and accuracy for the method proposed in
this paper, as shown in the table 3. As the sampling interval
increases, the localization error shows a progressively rising
trend, whereas computation time exhibits an inverse relation-
ship with the interval. Specifically, as the sampling interval
increases, computation time decreases substantially. Notably,
when the sampling interval reaches approximately 2 meters, a
significant reduction in error is observed up to this point, with
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Table 2. Calibration results for global position

Dataset Rotation(deg) Translation(m)
Pitch Roll Yaw X Y Z

RLiDAR-sim 1 0.89 2.10 2.87 0.04 0.17 0.03
RLiDAR-sim 2 1.24 2.57 3.56 0.10 0.18 0.10

WHU-Urban3D 1 2.11 3.12 5.13 0.20 0.29 0.14
WHU-Urban3D 2 1.86 4.21 4.54 0.29 0.26 0.14

Real-World 1 1.23 2.16 8.63 0.23 0.30 0.11
Real-World 2 1.42 2.64 7.95 0.12 0.38 0.10

further reductions leading to only marginal increases in pro-
cessing time. When the sampling interval is reduced below 2 
meters, the further reduction in error becomes negligible, while 
the increase in processing time becomes more pronounced.

Interval/(m) Times/(s) Error/(m)

0.5 2.53 0.38
1 1.46 0.53
2 0.61 0.77
3 0.54 1.8
4 0.60 4.85
5 0.52 9.72

We further analyzed the relationship between sensors and the
absolute geographic coordinate system. All baseline methods
failed to achieve accurate global pose estimation due to the ab-
sence of an effective connection to the absolute geographic co-
ordinate system. In contrast, the proposed MapCalib method
substantially enhances the sensor’s global georeferencing ac-
curacy. By integrating high-precision mapping data, it enables
reliable localization in complex urban settings and dynamic,
rapidly changing environments. Table 2 shows calibration res-
ults for three datasets.

Finally, multiple LiDARs were calibrated in real environments,
with results at an intersection displayed in Figure 3. The fig-
ure demonstrates that despite the low overlap and the inclusion
of various LiDAR types, these factors nearly rendered baseline
methods ineffective for valid calibration. In contrast, by incor-
porating HD map technology as constraints, MapCalib bridges
data from different sensors. Additionally, the SUSC descriptors
leverage sensor data features effectively, bridging differences
across sensors and showcasing MapCalib’s wide applicability
and clear advantages in real-world applications.

5. Conclusion

This paper proposes a roadside LiDAR automatic calibration
method aided by HD map, aimed at addressing the challenges
of low overlap and viewpoint differences encountered. Spe-
cifically, to address the environmental representation discrepan-
cies caused by viewpoint differences between roadside LiDAR

Figure 3. Calibration results of multiple LiDARs in a real
scenario

and HD map, we first design an innovative virtual map pro-
jector that constructs a virtual mapping of the HD map from the
roadside LiDAR perspective, thereby enhancing data similarity.
Next, considering the installation modes and physical mechan-
isms of roadside LiDAR, we introduce a SUSC descriptor to
ensure compatibility across different types of LiDAR. Finally,
through feature retrieval and iterative optimization, we achieve
high-precision calibration of roadside LiDAR. Extensive exper-
iments across multiple datasets validate the effectiveness of our
method, demonstrating that it can autonomously perform geo-
graphical calibration of roadside LiDARs even in the absence
of prior information.

In the future, we will further explore real-time online calibra-
tion technologies for roadside LiDARs. Additionally, we plan
to investigate the scalability of the method in dynamic sens-
ing applications, promoting the overall advancement of envir-
onmental perception in vehicle-infrastructure cooperation and
autonomous driving technologies.
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