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Abstract 
 
The Kolmogorov-Arnold Network (KAN) is a computational framework rooted in the Kolmogorov-Arnold representation theorem, 
which states that any continuous function of multiple variables can be expressed as a superposition of univariate functions. KAN 
leverages this theoretical foundation to decompose complex functions into simpler and lower-dimensional ones. Function 
decomposition makes KAN particularly suitable for challenging tasks in image classification, where separating data into distinct 
categories often requires approximating intricate and multi-dimensional boundaries. In practice, KAN, relying on function 
decomposition, offers an alternative to multilayer perceptron (MLP) architectures. By efficiently encoding nonlinear relationships 
among features, KAN demonstrates potential in multilayered data analysis tasks such as multi and hyper-spectral remotely sensed 
image classification. As a result, KAN finds significant applications in remote sensing image processing, particularly in Land Cover 
and Land Use (LCLU) mapping using Very High-Resolution (VHR) satellite imageries. Due to their fine detail, VHR images provide 
an exceptional basis for accurately distinguishing between various land cover types. When multispectral data is incorporated, KAN 
excels by leveraging its ability to model nonlinear relationships, allowing for highly accurate classifications. KAN's performance is 
validated using ground-truth data collected from field surveys or random reference points visually picked from images. Additionally, 
KAN is benchmarked against other methods like traditional Shallow Neural Networks (SNNs). Obtained KAN classification accuracy 
and computational efficiency are evaluated compared to SNN, highlighting its strengths in modelling complexity with optimized key 
model parameters. A Python-based implementation of KAN is developed for flexible integration into existing geospatial analysis 
workflows and highlighting its compatibility with cloud computing environments such as Google Colab. This integration enhances 
scalability, makes it practical for processing large-scale satellite datasets efficiently, and facilitates high-resolution mapping and 
reproducibility in environmental monitoring and urban applications. The reliability of KAN and the potential classification accuracy 
of different model architectures were verified. The KAN model with a 10-neuron mid-layer achieved an overall accuracy of 88.89%, 
outperforming the SNN results with a maximum accuracy of 87.84 for a model with 20 & 20-neuron hidden layers. 
 

1. Introduction 

Urban Land Cover and Land Use (LCLU) classification plays a 
crucial role in remote sensing applications, including 
environmental monitoring, urban planning, and disaster 
management. The increasing availability of Very High-
Resolution (VHR) multispectral satellite imagery has 
significantly enhanced the ability to analyse and classify urban 
environments at a fine spatial scale. However, extracting 
meaningful information from such high-dimensional data 
remains challenging due to the complexity of urban landscapes, 
spectral variability, and computational constraints (Li, Chen et al. 
2024). Traditional machine learning approaches, such as Shallow 
Neural Networks (SNNs) and Convolutional Neural Networks 
(CNNs), have been widely used for remote sensing classification 
tasks (Fawzy, Dowajy et al. 2024). While these models 
demonstrate strong classification capabilities, they often require 
extensive training data, exhibit high computational complexity, 
and may suffer from overfitting. Furthermore, deep neural 
networks lack interpretability, making it difficult to understand 
how classification decisions are made (Fawzy and Barsi 2024). 
The traditional shallow and deep neural network challenges 
highlight the need for alternative computational frameworks that 
can efficiently model nonlinear spectral relationships while 
maintaining interpretability and computational efficiency.  

Kolmogorov-Arnold Networks (KANs) offer a promising 
alternative to conventional neural network architectures. Based 
on the Kolmogorov-Arnold representation theorem, KAN 
decomposes complex multivariate functions into a series of 
simpler univariate ones. This unique characteristic allows KAN 
to approximate high-dimensional functions with fewer 
parameters, improving generalization and reducing 
computational cost. Unlike traditional multilayer perceptrons 
(MLPs), which rely on fixed activation functions, KAN 
dynamically learns the required functions, providing greater 
flexibility in modelling spectral variations in multispectral 
imagery (Liu, Wang et al. 2024). 
The main objective of this approach is to investigate the 
effectiveness of Kolmogorov-Arnold Networks for classifying 
urban land cover features based on VHR multispectral satellite 
images. A KAN-based classification framework is developed and 
evaluated against a traditional SNN to determine its advantages 
and limitations. The study also investigates how key model 
parameters influence classification performance, including the 
number of mid-layers and neurons, grid size, and spline order. 
The classification results are validated using ground-truth data 
and statistical accuracy analyses to assess the model’s reliability 
and practical effectiveness. 
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2. KAN Theoretical Foundation 

The Kolmogorov-Arnold representation theorem states that any 
multivariate continuous function f, defined on a bounded domain, 
can be expressed as a finite composition of continuous univariate 
functions and additions. Specifically, for a smooth function: 
𝑓𝑓: [0, 1]n → ℝ        (1) 
there exists a representation of the form: 
𝑓𝑓(x) = 𝑓𝑓(x1,⋯ , xn) = ∑ Φq�∑ ϕq,p�xp�n

p=1 �2n+1
q=1    (2) 

where ϕq,p: [0, 1] → ℝ and Φq: ℝ → ℝ are continuous functions. 
This decomposition demonstrates that any multivariate function 
can be constructed using a sum of simpler univariate functions, 
highlighting an essential property of functional representations. 
In matrix notation, this theorem can be rewritten as: 
𝑓𝑓(x) = Φout ∘ Φin ∘ x      (3) 
Where: 

Φin = �
ϕ1,1(∙) ⋯ ϕ1,n(∙)
⋮ ⋱ ⋮

ϕ2n+1,1(∙) ⋯ ϕ2n+1,n(∙)
�     (4) 

Φout = [Φ1(∙) ⋯ Φ2n+1(∙)]     (5) 
This formulation illustrates how a complex function can be 
expressed through layers of simple univariate transformations, 
forming the conceptual basis for KANs. 
Inspired by this theoretical foundation, Kolmogorov-Arnold 
Networks define a layer where each edge in the network learns a 
univariate function in the form of an activation function. 
A full KAN model consists of multiple layers (L); for an input 
vector x0 ∈ ℝn0, the network applies successive transformations 
such that: 
 

xL = KAN(x0) = ΦL−1 ∘ ΦL−2 ∘ ⋯∘ Φ0 ∘ x0    (6) 
In practice, the univariate functions ϕ(x) are parameterized as a 
combination of a smooth activation function (silu) and a B-spline 
function (spline): 
silu(x) = x

1+e−x
        (7) 

spline(x) = ∑ ci ∙ Bi(x)i       (8) 
B-spline basis functions are piecewise polynomial functions. B-
splines are numerically stable, offer local support, and allow 
flexible function approximation, making them well-suited for 
constructing the functions for layer l at order k ϕl,k and Φl. 
Subsequently, a linear combination of the hidden activations is 
formed for each class and a SoftMax function is then applied to 
the logits for obtaining the class probabilities (Jamali, Roy et al. 
2024). This design allows KANs to capture complex 
transformations more efficiently than traditional multilayer 
perceptrons (MLPs), leveraging the power of the Kolmogorov-
Arnold decomposition to improve function approximation 
capabilities (Igali and Shamoi 2024). 
 

3. Methodology 

To meet the research objectives, the presented methodology is 
applied, and the outcomes are reviewed (Figure 1). The input 
VHR multispectral image is processed to provide feature vectors 
with predefined labels. Extracted features are used to train and 
test the KAN model across varying parameters. The proper 
trained model, based on the optimal parameters, is selected to 
classify the full image into the target classes, and the resulting 
outcomes are assessed considering the overall, user’s and 
producer’s accuracy. The obtained findings are compared to 
shallow neural network results for validation and ensuring the 
model stability. 

 
Figure 1. Procedures of the presented methodology. 

 
4. Experimental Works 

KAN is a promising solution for multispectral image 
classification tasks involve image semantic segmentation into 
discrete classes based on relevant features, which often involve 
complicated and multi-dimensional limitations. Consequently, 
KANs offer a wide range of applications in image processing 
tasks, particularly for mapping urban land cover and land use 
using Very High-Resolution satellite images (Ma, Wang et al. 
2025). 

4.1 Study Area and Data Used 

Budapest City, the capital of Hungary, is one of Central Europe's 
historical cities, featuring numerous urban land cover classes 
such as buildings, roads, vegetation, and water. The spectral 
characteristics of the urban scenes vary due to the diverse 
building patterns and materials, the different roof coverings, and 
the various road and sidewalk pavement materials. The study area 
is located between latitude 47°32'18.0" & 47°32'54.4"N and 
longitude 19°02'25.0"E & 19°02'58.0"E, comprises several 
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building structures, main and secondary roads, a branch of the 
Danube River, and vegetation areas spread within the entire 
region (Figure 2).  
VHR satellite imageries provide an excellent base for accurately 
classifying different land cover classes. The used satellite image 
is acquired by ESA and European Space Imaging through the 
‘WorldView-2 European Cities’ project to collect a dataset 
covering Europe's most densely populated areas between July 
2010 and July 2015 (ESA 2025-a). The Worldview-2 satellite, 
equipped with multispectral sensors, collects data in the coastal 
blue, blue, green, yellow, red, red-edge, near infrared-1, and near 
infrared-2 bands included in the employed approach (ESA 2025-
b). The spatial resolution is 0.5 m for the panchromatic and 2.00 
m for the multispectral bands, therefore the pan-sharpening 
approach is applied to fuse the panchromatic and multispectral 
bands, enhancing the raw image for more efficient image analysis 
tasks. The Principal Component Analysis (PCA) technique is 
implemented to satellite images where all input bands are pan-
sharpened to fit the feature extraction process (Pohl and Van 
Genderen 2016, Fawzy 2020). The Geodetic Coordinates 
Reference System (CRS) is World Geodetic System (WGS84) 
and the projection is Universal Transverse Mercator (UTM) zone 
34, EPSG:32634. 

  
Figure 2. VHR image and study area location, Budapest. 

 
4.2 Feature Vector Extraction 

Neural network learning requires significant volumes of features 
and carefully picked labelled data (Sainos-Vizuett and Lopez-
Nava 2021). Handcrafted feature vectors with related labels are 
extracted from the multispectral image considering pixel-by-
pixel spectral value of each band to train and test the 
classification models. The resulting array includes a set of 
columns containing the image features and labels, while rows 
representing pixel values of the flattened image. 
 
4.3 KAN Model 

The KAN model relies on numerous parameters including 
number of mid-layers and neurons, the grid size, and the spline 
order. Several aspects must be carefully balanced in the practical 
parameterization of the model. The theoretical framework 
suggests using 2n+1 neurons in the hidden layer (for example, 17 
neurons for n = 8 inputs). However, in practice, altering the 
number of hidden neurons has significant effects on the model 
performance. Using fewer neurons may lead to insufficient 
capacity and underfitting, while an excessive number of neurons 
can result in overparameterization, causing the model to fit the 
noise in the training data (overfitting) and adversely affecting 

generalization. Moreover, increasing the number of neurons in 
the hidden layer can introduce optimization challenges such as 
gradient explosion or vanishing gradients (Altarabichi 2024, 
Firsov, Myasnikov et al. 2024). Although the original 
Kolmogorov-Arnold formulation employs a single hidden layer, 
incorporating additional layers can facilitate the learning of 
hierarchical features; however, deeper networks entail more 
parameters, further complicate the optimization process, require 
more hardware resources, and consume extra computational 
power. Alternative optimizers like SGD with momentum or 
RMSprop are available with KAN, meanwhile they generally 
require more careful hyperparameter tuning. The Adam 
optimizer is often considered as one of the best choices for 
training KANs due to its adaptive learning rates and robustness 
to gradient scaling issues, which results in faster and more stable 
convergence. Even when training on large datasets, comprising 
tens of thousands of examples, regularization techniques such as 
L2 weight decay and dropout remain essential to promote 
generalization and mitigate overfitting. In the context of B-
splines, the parameter k determines the order of the polynomial 
and, therefore, the smoothness of the spline; higher values of k 
yield smoother approximations but lead to higher computational 
costs, whereas lower values provide faster but less smooth 
approximations (Suman, Pacharaney et al. 2024). Although the 
Kolmogorov-Arnold Network's training process does not include 
an intrinsic validation step, KAN models can use validation 
technique as demonstrated in deep learning applications. 
Validation is necessary for early stopping, which tracks the 
model's performance during training using the validation dataset. 
Consequently, training process is stopped if the model's 
performance on the validation set starts to decrease while it keeps 
getting better on the training set to prevent the model from 
overfitting to the training data (Somvanshi, Javed et al. 2024). 
 
4.4 Optimal KAN Model Structure 

Identifying the ideal parameters is the most challenging aspect of 
using KAN since training accuracy varies dramatically based on 
the number of mid-layers, neurons, grid size, and spline order. 
The model parameters are adjustable considering the desired 
classification accuracy level, the targeted application, 
the computational resources, and the available computing time 
(Dong, Zheng et al. 2024, Ta, Thai et al. 2025). Multiple trials 
were conducted to verify the adopted model parameters for 
finding the optimal balance between training and testing accuracy 
and time consumption considering available resources. In total, 
150 training processes have been applied to adjust the model 
parameters using one or two mid-layers with neuron numbers N1 
and N2 = 10, 20, 30, 40, 50, grid sizes G = 1, 3, 5, and spline 
order values k = 1, 2 (Figure 3). 

 
Figure 3. An example of the applied KAN model architecture. 
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For the prediction phase and image classification, 24 pre-trained 
models are selected to showcase the KAN performance. The 
model structures are selected with one or two mid-layers of 10 
and 20 neurons, considering the 2n+1 rule, G values of 1, 3, 5 and 
k values of 1, 2 (Table 1). 
 

M
od

el
 Model Parameters Accuracies (%) 

N1 N2 G k Train Test Classification 

1 10 - 1 1 89.9 89.7 83.33 
2 10 - 1 2 92.9 92.7 81.13 
3 10 - 3 1 96.9 96.9 87.32 
4 10 - 3 2 96.2 96.1 85.85 
5 10 - 5 1 96.8 96.8 88.89 
6 10 - 5 2 97.3 97.3 85.74 
7 20 - 1 1 80.4 80.0 40.04 
8 20 - 1 2 88.8 88.6 50.42 
9 20 - 3 1 96.7 96.5 86.06 
10 20 - 3 2 95.8 95.7 76.62 
11 20 - 5 1 96.7 96.6 77.99 
12 20 - 5 2 94.6 94.5 84.07 
13 10 10 1 1 50.8 50.5 77.46 
14 10 10 1 2 60.8 60.7 77.36 
15 10 10 3 1 92.6 92.4 86.69 
16 10 10 3 2 94.6 94.5 81.55 
17 10 10 5 1 92.7 92.5 84.07 
18 10 10 5 2 90 89.6 76.83 
19 20 20 1 1 63.3 63.3 55.14 
20 20 20 1 2 52.1 51.9 53.98 
21 20 20 3 1 94.6 94.5 73.79 
22 20 20 3 2 95.7 95.4 80.40 
23 20 20 5 1 91.6 91.7 86.27 
24 20 20 5 2 94.9 94.6 86.27 

Table 1. KAN model parameters and accuracies. 
 
4.5 KAN Model Prediction 

Based on the pre-defined features and the target classes, the 
trained models were applied to classify the entire scene. The 
resulting classified images (Figure 4) were visually evaluated to 
explore the effectiveness of the KAN models for image 
classification across different classes.   
For most models, training and test accuracy are similar (e.g., 
Model 6 with 97.3/ 97.3 %), suggesting that the test set is drawn 
from a distribution similar to the training set, and overfitting 
within that split is limited. However, the classification accuracy 
(e.g., 85.74 %) can diverge substantially from the test accuracy, 

implying that the final large-scale feature of the classified image 
differs enough in its distribution to expose gaps in generalization. 
Some models show large drops (e.g., Model 7 with 80.4/ 80.0 
& 40.04 %), indicating significant mismatch or overfitting, what 
worked on the training/ test split does not carry over well to the 
broader imagery. Meanwhile, in a few cases (e.g., Model 13), 
classification accuracy (77.46 %) exceeds the training/ test 
accuracy (50.8/ 50.5 %), suggesting that the training set may have 
been less representative of the complete set of labelled points, or 
the larger dataset happens to align better with the learned decision 
boundaries.  
Models 1 – 12 are single-mid-layer KANs; among these, 
increasing neuron numbers from 10 to 20 does not improve 
training/ test scores (e.g., Model 3 vs. Model 9), so adding more 
neurons alone does not guarantee higher classification accuracy 
on the full dataset. Model 5 (N1=10, G=5, k=1) notably reaches 
the highest classification overall accuracies (88.89 %), 
outperforming networks with more neurons. Models 13 – 24 
employ double mid-layer KANs; in principle, this higher 
capacity can learn more nuanced patterns. For example, 
Model 15 (N1=10, N2=10, G=3, k=1) and Model 23 (N1=20, 
N2=20, G=5, k=1) achieve classification accuracies above 86 %. 
Still, the top two‐layer results (e.g., Model 15 at 86.69 %) do not 
surpass the best single‐layer model (Model 5 at 88.89 %), 
implying that the additional layer may lead to diminishing returns 
or even instability unless carefully tuned and backed by sufficient 
training data. 
Size of grid G = 1 with more than one mid-layer causes large 
misclassifications where some classes were totally missed. 
Meanwhile, models with G = 3 or 5 generally show higher train/ 
test accuracies than those with G = 1. For instance, compare 
Model 1 (G = 1) vs. Model 3 (G = 3) or Model 5 (G = 5): in each 
case, increasing G tends to raise both training and test scores. 
In single‐layer networks (Models 1 – 6), going from G = 3 to G 
= 5 can improve classification accuracy (e.g., Model 3 at 87.32 % 
vs. Model 5 at 88.89 %). However, unfortunately, if other 
parameters are misaligned, higher G can yield unpredictable 
drops (e.g., Model 10 with 95.7 % test, but 76.62 % 
classification). A lower spline order (k = 1) typically generates 
smoother boundaries, sometimes leading to fewer scattered 
misclassifications. For instance, Model 5 (k = 1) achieves 
88.89 % classification, notably higher than Model 6 (k = 2) at 
85.74 %. In some configurations (N = 20 and G = 5), a higher k 
can be beneficial or at least not harmful (compare Models 23 
and 24, both at 86.27 % classification). Hence, the impact of k is 
strongly tied to G and N; no universal advantage was found to 
always choosing k = 1 or k = 2. The best single-layer performance 
is seen in Model 5 (N1 = 10, G = 5, k = 1) and the best two-layer 
model is Model 15 (N1 = 10, N2 = 10, G = 3, k = 1), reaching 
86.69 %. A balanced tuning of G, k, and N is critical. Higher G 
(3, 5) often enhances classification accuracy by allowing finer 
spectral discrimination, but this benefit depends on matching the 
network complexity (through N and k) to the training data. The 
key is to balance capacity and generalization so that the 
network’s predictive ability on unseen, real-world examples 
remain robust.
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Figure 4. Classification outcomes using different KAN models. 

 
4.6 SNN Model 

The shallow neural network parameters should be 
carefully adjusted to maximize classification findings (Lei, Liu 
et al. 2020). The SNN model focuses on optimizing input 
features, number of layers and neurons, and processing time of 
the network considering the required classification level for a 
particular application (Fawzy, Szabó et al. 2023). To achieve 
rigorous outcomes using a SNN, a model with an identical 
architecture was designed, and applied using the same dataset. 
For comparison purposes, the SNN model architecture was 
aligned with the structure of the KAN model that yielded the 
optimal training, testing and classification accuracy. Four SNN 
models with one or two mid-layers of 10, 20 neurons were 

trained, tested, and validated for image classification (Table 2), 
and their outcomes have been presented (Figure 5). 
 

M
od

el
 Model 

Parameters Accuracies (%) 

N1 N2 Train Test Validation Classification 
1 10 - 97.7 97.6 97.7 87.32 
2 20 - 97.7 97.5 97.7 87.84 
3 10 10 97.9 97.9 97.8 87.21 
4 20 20 98.3 98.0 98.2 87.84 

Table 2. SNN model parameters and accuracies. 
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Figure 5. Classification outcomes using different SNN models. 

 
The qualitative evaluations revealed that KAN achieve promising 
image classification results that are consistent with SNN 
outcomes; meanwhile, a quantitative assessment is required for a 
better comprehension of the findings when compared to real-
world observations. 

5. Results and Discussion 

5.1 Accuracy Assessment 

To assess quantitative findings, a confusion matrix is applied to 
figure out the probability that each pixel in the classified image 
(column values) meets the real-world land cover class (row 
values) through overall accuracy (Eq. 9), user's accuracy (Eq. 
10), and producer's accuracy (Eq.11): 
Overall Accuracy = (TP+TN)/(TP+TN+FP+FN)    (9) 
Producer’s Accuracies = TP/(TP+FN)   (10) 
User’s Accuracies = TP/(TP+FP)   (11) 
True Positive (TP) indicates the number of class pixels that 
precisely meet the real-world ones, False Positive (FP) refers to 
the number of non-class pixels identified as class ones, True 
Negative (TN) represents the number of non-class pixels 
correctly categorized, and False Negative (FN) denotes the 
number of class pixels incorrectly classified as non-class ones 
(Congalton 1991). Confusion matrices are produced for the 
outcomes of KAN and SNN models using 954 reference points 
dispersed randomly across all classes with minimum of 105 
points per class, and accuracies are graphically presented (Figure 
6, 7, 8). Tables 3 and 4 demonstrate the optimum accuracy of the 
KAN and SNN models. 
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Producer’s 
Accuracy 

(%) 

User’s 
Accuracy 

(%) 

Building 420 24 6 0 450 93.33 85.02 
Road 66 182 2 0 250 72.80 88.35 

Vegetation 4 0 145 0 149 97.32 94.77 
Water 4 0 0 101 105 96.19 100.00 

Total column 494 206 153 101 954 - - 
Overall accuracy 88.89% 

Table 3. Confusion matrix of KAN model (N10, G5, k1). 
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Producer’s 
Accuracy 

(%) 

User’s 
Accuracy 

(%) 

Building 429 17 4 0 450 95.33 82.34 
Road 92 156 2 0 250 62.40 89.66 

Vegetation 0 1 148 0 149 99.33 96.10 
Water 0 0 0 105 105 100.00 100.00 

Total column 521 174 154 105 956 - - 
Overall accuracy 87.84% 

Table 4. Confusion matrix of SNN model (N20, 20). 
 

 
Figure 6. Overall accuracy of the KAN and SNN models. 

 

 
Figure 7. User’s accuracy of the KAN and SNN models. 
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Figure 8. Producer’s accuracy of the KAN and SNN models. 

 
6. Discussions 

Analysis of the obtained findings and statistics reveals that 
increasing the number of neurons (e.g., from N10 to N20) 
generally provides the Kolmogorov-Arnold Network with 
greater capacity to learn complex patterns from the input data, 
allowing it to capture finer class boundaries. For example, when 
using a single hidden layer with N10, G3, k1, the model can 
distinguish broad transitions between vegetation and built-up 
areas, but switching to N20, G3, k1 tends to sharpen these 
boundaries and reduce confusion near urban edges. However, 
such heightened capacity also increases the risk of overfitting. In 
two-layer configurations (N10, 10 or N20, 20), the network can 
approximate even more intricate data features yet might 
introduce “salt-and-pepper” noise in otherwise uniform regions 
if the parameters are not carefully calibrated (e.g., N10, G1, K1 
& N10, 10, G1, K1). 
The grid parameter G determines the granularity with which the 
KAN partitions the input space, influencing the level of detail in 
the classification map. At G = 1, the classification often yields 
numerous erroneously scattered water pixels across vegetated or 
urban areas, indicating misclassification caused by the coarse 
graining. Conversely, higher values such as G = 3 or G = 5 
increase the network’s sensitivity to subtle variations. For 
instance, comparing N10 G1 k2 versus N10 G5 k2 typically 
reveals that the G = 5 setting yields crisper boundaries around 
roads and built-up structures. However, it may also exaggerate 
minor spectral differences, creating fragmented patches in 
regions that should ideally remain homogeneous, such as 
continuous vegetation covers. 
The parameter k indicates the polynomial degree of the B-splines 
utilized in the Kolmogorov-Arnold framework. A lower spline 
order (e.g., k = 1) often produces smoother decision surfaces (i.e., 
it means simpler spectral decision boundaries), which can be 
beneficial when focusing on broad land-cover distinctions. For 
example, a configuration of N10 G3 k1 may generate cohesive 
clusters of vegetative areas with fewer small-pixel artifacts. On 
the other hand, higher spline orders (e.g., k = 2 or 3) allow the 
network to fit more complex local curvature, potentially 
distinguishing minor spectral differences in transitional zones, 
such as the interface between water bodies and “shoreline” 
vegetation. Nevertheless, this added flexibility can also induce 
over-segmentation in large, uniform regions if not supported by 
sufficient training data. 
The most accurate and robust classification emerges when neuron 
number N, graining sensitivity G, and spline order k are jointly 
tuned to match the complexity of the imagery. For instance, N20, 
20, G5, k2 might excel in identifying subtle urban features and 
narrow roads while maintaining sharp vegetation boundaries, yet 
it can sometimes produce scattered misclassifications in uniform 

water surfaces. Conversely, a more moderate setting, such as 
N10, G3, k1, may yield cleaner, less noisy results but might 
overlook subtle transitions. Hence, finding the right balance 
among these parameters is crucial for distinguishing vegetation, 
built-up areas, roads, and water bodies accurately, while 
minimizing speckling and other forms of overfitting. 
 

7. Conclusions and Future Works 

The study investigated the effectiveness of Kolmogorov Arnold 
Networks for very high-resolution satellite image classifying in 
urban land cover and land use mapping. The performance of 
KAN was compared with shallow neural networks to assess the 
classification accuracy, the impact of different network 
parameters, and generalization capabilities.  Results showed that 
network architecture significantly influences classification 
performance. While increasing the number of hidden layers and 
neurons can improve learning capacity, it does not always 
translate into better classification results. The best-performing 
model was a single-layer KAN (Model 5) achieving 88.89% 
overall classification accuracy, outperforming even the best two-
layer KAN models. This suggests that a more complex 
architecture does not necessarily yield better outcomes and may 
even lead to instability if not properly optimized.   
Among the parameters tested, grid size G and spline order k had 
the greatest impact on accuracy. Larger grid sizes (G = 3, G = 5) 
generally improved classification accuracy by capturing finer 
spectral details. However, overly fine partitioning also increased 
sensitivity to spectral noise. The spline order affected decision 
boundaries, with k = 1 producing smoother classifications and k 
= 2 capturing more complex variations but sometimes 
introducing unnecessary segmentation. Overfitting was a notable 
issue in some cases, particularly when models were complex 
relative to the dataset size. Certain models exhibited high 
training/ test accuracy but significantly lower classification 
accuracy, indicating weak generalization. For instance, Model 6 
achieved 97.3% test accuracy but only 85.74% classification 
accuracy, highlighting the risk of tuning models too aggressively 
to training data. Some cases, like Model 7 (80.4% test accuracy 
vs. 40.04% classification accuracy), showed extreme overfitting, 
suggesting that careful balance between model complexity and 
dataset representativeness is required. Balanced tuning of G, N, 
and k is essential. Higher G (3, 5) regularly allows for better 
spectral discrimination, which increases classification accuracy, 
although the effect depends on matching the network complexity 
(by N and k) to the training data. A balance between capacity and 
generalisation is crucial for the network to preserve the strong 
prediction capabilities on unseen, real-world samples. 
The comparison between KAN and SNN models revealed that 
KAN performed slightly better, with its best model reaching 
88.89% classification accuracy, compared to 87.84% for the best 
SNN model. While the difference was modest, KAN 
demonstrated advantages in handling nonlinear relationships 
with fewer parameters, which is particularly useful for high-
dimensional satellite image classification. The obtained 
classification maps showed that KAN produced more precise 
separations between land cover classes, especially in vegetation 
and road classification. However, SNNs performed slightly better 
in distinguishing building classes, indicating that each approach 
has strengths depending on the specific classification task.   
Future work should focus on further optimizing KAN 
architectures by exploring deeper networks and integrating 
validating as well as regularization techniques to improve 
generalization. Combining KAN with CNN-based feature 
extraction could enhance classification performance, particularly 
for distinguishing fine-scale urban features. An expansion to 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-245-2025 | © Author(s) 2025. CC BY 4.0 License.

 
251



 

 

include larger and multi-temporal established databases, such as 
Copernicus Global Land Cover, Global Land Cover and Land 
Use Change, or Corine Land Cover, would help to validate 
KAN's robustness in different real-world scenarios. Additionally, 
leveraging cloud computing environments could improve the 
scalability of KAN for large-scale remote sensing applications.   
KAN has shown strong potential for urban land classification, 
offering a competitive alternative to traditional neural networks. 
However, achieving optimal performance requires careful 
architecture design and parameter tuning to ensure accurate and 
generalizable results. 
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