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Abstract

LiDAR point cloud data of trees is often affected by wind-induced movements. This leads to misalignments between overlapping
point clouds and distortions in the merged representation. Understanding these wind effects is crucial since they affect downstream
tasks like tree parameter quantification and leaf-wood separation. In this study, we investigate the impact of wind during multi-
station Terrestrial Laser Scanning (TLS) acquisition on tree structure and leaf-wood classification by simulating TLS acquisitions
of trees in both static and windy conditions using the LiDAR simulator HELIOS++. To assess wind effects, we compare the
geometric features of leaf and wood points in each scenario and validate our simulations with real tree point clouds acquired in
windy conditions. Finally, we train a Random Forest classifier for leaf-wood segmentation on both static and dynamic data and
evaluate their performance on both datasets. Our results highlight that two of the nine geometric features are statistically significant
in differentiating leaf and wood in windy conditions, compared to six features in static conditions. When trained with static data,
leaf-wood classification results drop by ca. 10% intersection over union and decrease by ca. 4% overall accuracy from static to
dynamic conditions. Further, we demonstrate that increasing the number of scan positions (i.e. from using one to merging 6 point
clouds per tree) reduces classification success by ca. 25% in static conditions and ca. 35% in windy conditions. Our findings
emphasize the need to account for wind effects in leaf-wood classification. We show that training on dynamic data can slightly
improve classification of dynamic data (ca. 2%) compared to training on static data.

1. Introduction
Light Detection And Ranging (LiDAR) technology has
become an invaluable tool in forestry research, providing
insights into leaf area quantification, biomass estimation, and
the detailed analysis of branch structures using Quantitative
Structure Models (QSM) (Yun et al., 2016; Lau et al., 2018).
However, for these applications, tree point clouds must
accurately represent their real-world counterparts. The main
assumption for most analyses is that tree point clouds represent
static trees, whereas in reality, trees can move during LiDAR
acquisition, affecting point cloud quality and downstream
tasks. A primary challenge is the distortion and multiple
representations of moving parts introduced by wind during
data acquisition, which disrupts the reliable characterization of
trees (Côté et al., 2011).

Wind effects are especially problematic for the segmentation
of leaf and wood points, as the affected point cloud
representation makes the separation of these components more
difficult. Prior studies (Yun et al., 2016; Yrttimaa et al., 2023;
Wilkes et al., 2017) have noted that even moderate winds
reduce point cloud quality, hampering leaf-wood classification
and branch segmentation. To mitigate this, researchers have
typically acquired data in conditions without wind, where
conventional denoising can help to remove artifacts from tree
movement. Wind speeds as low as 5m/s, however, still
diminish the accuracy of canopy representation, reducing
estimates of canopy openness (Seidel et al., 2012).

Addressing these challenges requires a deeper understanding of
how wind influences tree point clouds and the accuracy of leaf-
wood classification. To our knowledge, there are no dedicated
real-world datasets of trees in windy conditions with leaf and
wood points accurately segmented. Manual labeling of such

point clouds is even more labor-intensive and time-consuming
than the ones captured in optimal windless conditions because
the representation of the structure of the trees can sometimes
be ambiguous. This limits the quantity of data available for
studies focusing on leaf-wood segmentation, in particular for
data-hungry deep learning approaches.

To enhance the leaf-wood classification results in static
conditions, several studies use synthetic data, generating
segmented point clouds through Virtual Laser Scanning (VLS)
techniques (Moorthy et al., 2019; Li et al., 2024; Esmorı́s et
al., 2024). VLS enables the simulation of various acquisition
scenarios, resulting in synthetic datasets. Each point in the
synthetic point cloud carries reference information, including
instance and semantic labels, transferred from the input scenes.
The reference labels provided by this simulated data can then
be used for the training of supervised classification tasks. In
this study, we couple VLS with dynamic, animated scenes to
generate fully labeled datasets for leaf-wood classification for
scenarios affected by wind.

We leverage VLS tree point clouds to specifically examine the
impact of wind during multi-station Terrestrial Laser
Scanning (TLS) acquisition on tree representations. We
investigate how wind alters the Geometric Features (GF) of
tree point clouds by comparing point clouds acquired in static
and windy conditions. Further, we explore how these
variations propagate into the separability of leaf and wood in
supervised classification. We investigate the effect of wind
during TLS acquisition on the relationship between the
number of scans capturing a certain tree part and the leaf-wood
classification success. This is based on the assumption that an
increase in the quantity of points from different scans within a
voxel leads to a greater impact of scan mismatch due to wind.
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Additionally, we propose an alternative approach for semantic
segmentation of leaf and wood to achieve improved results in
case of wind-affected datasets.

Two research questions are addressed:

1. How does wind during multi-station TLS data acquisition
change the GF of tree point clouds?

2. How are leaf-wood classification results affected by these
changes?

We use VLS to assess the impact of wind on the point cloud
representation of trees by computing pointwise GF based on
the local neighborhoods (Weinmann et al., 2017). These GF
are commonly used as handcrafted features in many
applications such as leaf-wood classification, highlighting the
broad relevance of this study (Moorthy et al., 2019; Vicari et
al., 2019; Ma et al., 2016). Further, real point cloud data of
trees is used to demonstrate the representativeness of the
simulated dynamic point clouds.

2. Dataset

We create five distinct datasets for our analysis, comprising
one real-world point cloud and four virtual point clouds. These
datasets are used to quantify the difference in GF and to train
GF-based Random Forest (RF) models for pointwise
leaf-wood classification (Table 1). The SimPlotStatic and
SimPlotDyn datasets have 437 565 and 441 377 points,
respectively. For both datasets, the ratio of wood (40.1%) to
leaf points (59.9%) is approximately 2 : 3. For the studied
branches of RealDyn, SimSingleStatic and SimSingleDyn, each
wood-leaf ratio is ca. 1 : 5.

Table 1. Description of data sets used to compute GF and train
the RF model

Dataset
name Point cloud source Max no. of

scan pos.
SimSingleStatic Simulated point cloud of a

single tree - same static 3D
mesh for all scan positions

8

SimSingleDyn Simulated point cloud of a
single dynamic tree - different
3D mesh for each scan position

8

SimPlotStatic Simulated point cloud of
multiple tree models - same
static 3D mesh for all scan
positions

9

SimPlotDyn Simulated point cloud of
multiple dynamic tree models
- different 3D mesh for each
scan position

9

RealDyn Point cloud from a real tree
scanned in windy conditions

10

2.1 Virtual tree models

In order to generate a virtual point cloud, we create a 3D scene
with mesh objects. These objects are used as input for the
LiDAR simulator. We create five different quaking aspens
(Populus tremuloides) tree objects with the Sapling Tree Gen
Blender add-on (Blender Online Community, 2013), which is
based on the work of Weber and Penn (1995). Then, we apply
lateral wind motions to each tree, with the objective of
emulating the movement of trees in strong winds without

causing excessive bending (Figure 1b, windstrength = 1.25
[unitless] in the Sapling Tree Gen Blender add-on). Next, we
loop the animation using 10 frames which are automatically
taken at equal intervals of 1 second. We export each frame
with a Blender add-on (dyn b2h) made for exporting dynamic
scenes from Blender to HELIOS++ (Weiser, 2023). Figure 1
shows the exported static and dynamic representation of a tree
object. The meshes of the leaf and the wood structure contain
the semantic information allowing the LiDAR simulator to
create perfectly annotated point clouds.

(a) Static tree (b) Swaying tree - 5 representation
merged for visualization

Figure 1. A model of the synthetic tree objects we used for
LiDAR simulation colored by leaf (green) and wood (brown).
The static tree only contains one object exported from Blender
whereas the dynamic one contains five out of ten to show the

movement of the tree.

2.2 Virtual laser scanning of static scenes

To provide a precise and automated approach for the
VLS-based generation of labeled datasets, we assign a
different material property for leaf and wood meshes. Thus,
each point is precisely segmented as part of a leaf or wood
component, thereby enabling an accurate investigation of wind
effects on leaf and wood. We generate the virtual point clouds
using the open-source LiDAR simulator HELIOS++
(Winiwarter et al., 2022), requiring objects, a scene in which
the objects are positioned, and a survey file indicating the scan
settings. For our surveys, we use a RIEGL VZ-400 on a 1.5m
tripod with low resolutions of 0.1 ° vertically and 0.25 °
horizontally, and beam divergence of 0.3mrad. We decided to
scan with low resolutions and add more scan positions, as we
study the effect of wind on the number of scans per voxel for
the classification success.

2.2.1 Single tree In order to better understand the effects
of wind during acquisition on the GF of tree point clouds, we
perform a branch-to-branch investigation between the static
and the dynamic point clouds using one of the five tree models.
We assign an ID to five branches at different heights in the tree
object to have them already segmented in the output simulated
point cloud. The static single tree acquisition is made with
eight scan positions in an octagonal configuration circling the
same tree object. Point clouds generated from TLS tend to
exhibit a lower density of points at the upper part of the
canopy. This reduction in point density is primarily due to
occlusion effects, where the branches obstruct the laser beam,
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preventing it from reaching the upper canopy layers effectively
(Weiser et al., 2021; Wilkes et al., 2017). Therefore, the
distance between the scanner and the tree is established at
18m, thereby ensuring effective scanning of the top of the
crown. The point cloud is then simulated by using the same
tree object for each scan.

2.2.2 Group of trees To investigate how wind in trees
affects the leaf-wood classification, we create four small plots
containing four or five randomly selected different models of
quaking aspens (Section 2.1), making a total of 18 trees.
Scanning a cluster of trees from eight positions has been
proven successful to capture it from all sides (Seidel et al.,
2012). Therefore, we scan in a 3 × 3 grid pattern and place in
addition a ninth scanner in the middle of the plot. The distance
between the scanners along the grid axis is 12m. Then, we
randomly placed the quaking aspen objects in the plots by
scaling them with a ratio from 0.7 to 1.3 and rotating them
between 0 ° and 360 ° along the z-axis.

2.3 Virtual laser scanning of dynamic scenes

For the purpose of comparing point clouds acquired in static
and windy conditions, the aforementioned static scenes are
created using a VLS principle of dynamic scenes (Weiser and
Höfle, 2024), which is possible with HELIOS++ and the
dyn b2h Blender add-on (Winiwarter et al., 2022; Weiser,
2023). The dynamic representation is acquired by scanning
different tree frames from each TLS position, described in
Section 2.2. Figure 2 shows the acquired static and dynamic
point clouds of the single tree acquisition and indicates the
identified branches used for further detailed analysis of GF.
The same steps are performed to simulate the dynamic version
of the plots.

Figure 2. Point cloud representation of the tree in static and
windy conditions. The four branches (1-4) and top of the tree (5)
are colored in blue, cyan, green, yellow and purple, respectively

from bottom to top.

2.4 Real point cloud

The real dataset is a Tilia cordata real-world tree point cloud
captured in windy conditions in Sandhausen, Germany, with a
RIEGL VZ-600i. For the simulated and real point clouds to
have an equally low resolution, the real point cloud is
downsampled using the timestamp of the points. We use the
data of the real tree to corroborate the findings of our
experiments conducted on the VLS data. The tree is extracted

from a larger point cloud and is scanned from a total of nine
positions. We identify three branches A, B and C at
respectively 2m, 4m and 6m of height. For each of them, we
manually segment the leaf and wood points. Figure 3 shows
the tree and the branches alongside their label.

Figure 3. Real-world tree point cloud acquired in windy
conditions in Sandhausen, Germany. The three branches of

interest are identified as A, B, and C.

3. Methods

The methods employed to address the research questions is
summarized in Figure 4 where the portions A and B outlined
by the light blue dashed rectangles correspond to Section 3.1
and 3.2, respectively.

3.1 Comparison of the geometric features

To investigate the point distributions in local neighborhoods,
we describe the point cloud with representative and significant
GF. Moorthy et al. (2019) investigates feature relevance by
analyzing leaf-wood classification results from four RF
models. It was found that the model from Vicari et al. (2019)
delivers the best accuracy and F1 scores. Therefore, we use the
GF from Vicari et al. (2019), which are the three salient
features, linearity, eigenentropy and planarity, and we add the
three zenith angles of each eigenvector because they vary
among trunk, branch, and leaf points in their local
neighborhood (Moorthy et al., 2019). In Kumar et al. (2019) it
is shown that multiple radii improve the result of the
classification compared to considering only a single search
radius. As described in Moorthy et al. (2019), opting for the
five radii of 0.10m, 0.25m, 0.50m, 0.75m and 1.00m is
optimal. Indeed, in sparse areas of the point cloud, a search
radius less than 0.10m is not grouping a sufficient amount of
point to compute GF. For each dataset, we computed 9 GF
from 5 different search radii, for a total of 45 GF using the
Jakteristics Python package (Caron, 2020). Table 2 presents
the GF alongside their respective description.

To investigate the influence of wind during TLS surveys on the
local point distribution of the acquired point cloud, we
compare the separability of leaf points to wood points between
the branches of interest of SimSingleStatic and SimSingleDyn
datasets. We also compare SimSingleDyn with RealDyn to
investigate the realism of the synthetic dynamic point cloud.
The quantitative comparisons are conducted through two
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Figure 4. Workflow of this study where dashed rectangles A and B correspond to Sections 3.1 and 3.2. In A, tree objects are created in
Blender, scanners are positioned, and HELIOS++ simulation generates datasets (yellow), which are then used to compute geometric

features. In B, new plots and tree objects are created based on A. The simulation with HELIOS++ generates the plots on which
geometric features are computed. Two RF models are trained and tested on each plot from which we compare the results.

Table 2. Selected 9 geometric features used to characterize tree
point clouds with radii of 0.10, 0.25, 0.50, 0.75 and 1.00m. The

three eigenvalues λ0,1,2 and the zenith angles of the three
eigenvectors V⃗0Z ,1Z ,2Z are sorted from largest to smallest.

Geometric Feature (no.) Description

Salient features (1,2,3) λ2, λ0 − λ1,
λ1 − λ2

Linearity (4) (λ0 − λ1)/λ0

Eigenentropy (5) −
∑2

n=0 λi · log(λi)

Planarity (6) (λ1 − λ2)/λ1

Zenith angles (7,8,9) V⃗0Z , V⃗1Z , V⃗2Z

non-parametric statistical tests, namely the Mann-Whitney
U (MWU) and the Fligner-Killeen (FK) tests (Mann and
Whitney, 1947; Wilcoxon, 1945; Fligner and Killeen, 1976).
The tests were selected due to their suitability for independent
samples and their robustness to non-normal distributions and
presence of outliers, which is the case for our datasets. We
chose a conventional significance level of p < 0.05 to enable
the rejection of the null hypothesis that there will be no
statistically significant differences in the separability of leaf
and wood in our distributions. MWU compares the
distributions of two independent samples to assess whether
their medians differ. The FK test evaluates the homogeneity of
the variances, i.e. whether the spread of the groups are equal.

We use the MWU test to find which of the GF are the most
interesting based on their separability differences and

similarities between static and dynamic conditions. We start by
computing the GF for SimSingleStatic and SimSingleDyn
datasets. Then, the five branches of interest (cf. Figure 2) are
extracted and merged into two distinct static and dynamic
point clouds, comprising the full set of branches. We then
conduct MWU tests on the merged point clouds to compare the
overall tendency of the branches in static and dynamic
conditions. From all computed features, we select the
eigenentropy and V⃗2Z to be able to show more in-depth results
on wind-induced effects.

3.2 Leaf-wood classification

The training and testing of the RF models are performed using
the VirtuaLearn3D (VL3D) open-source software (Esmorı́s et
al., 2023). The tuning parameters are set to the default values
of VL3D and the GF are computed beforehand and specified in
input. Further, we balance the classes by class weighting.

A comparative analysis is conducted to evaluate the
performance of two RF models, one trained on static data
(static model) and the other on dynamic data (dynamic model).
The datasets employed for the training and testing of the
models are SimPlotStatic and SimPlotDyn. Three out of four
VLS point clouds of small forest plots (Section 2.2) are used
for training and one for testing. To investigate the impact of
wind during LiDAR acquisition on the classification of leaf
and wood, both models are tested with the two aforementioned
datasets. The performances of the models are evaluated using
the following metrics: Overall Accuracy (OA), Precision,
Recall, F1-score, Matthews Correlation Coefficient (MCC),
Kappa and Intersection over Union (IoU).
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We also analyze the impact of wind by relating the success and
ambiguity of leaf-wood classification to the scanner source
count per voxel, using the open-source software VAPC
(Tabernig et al., 2024). We assume that the density of points is
high enough to compute the GF of each point, even in the
voxels with only one scanner source. Next, we investigate the
results of the static model tested on the SimPlotStatic dataset
and the dynamic model tested on the SimPlotDyn dataset. The
output point clouds from the RF models are first voxelized
using edge lengths of 10, 25 and 50 cm. For each voxel, we
compute the means of the success rate and class ambiguity.
The scanner source count is calculated by retrieving the
number of scanners contributing for at least 10% of the points
within the voxel. The threshold helps to avoid inflated source
counts and get rid of outliers.

4. Results

First, we present the GF calculated for the five tree branches in
static and windy conditions, followed by the leaf-wood
classification results on the forest plots.

4.1 Geometric features

Three GF separate leaf and wood in both conditions at each
radius (λ2, eigenentropy and λ0 − λ1) (Table 3). For V⃗2Z , the
small and large search radii significantly differentiate leaf and
wood in dynamic and static conditions, respectively. The
separability differences on each branch is investigated using
the eigenentropy and the V⃗2Z . We selected the eigenentropy as
it is significantly separating the leaf from the wood for both
static and dynamic conditions. In that case, we can observe if
and how the leaf and wood distributions are different in the
static and the dynamic conditions. The second GF (V⃗2Z ) is
selected for comparison of the difference for each branch in
both conditions. This selection is made on the basis of its
effectiveness to separate leaf and wood in both conditions at
50 cm, when the five branches are merged into a single point
cloud.

Table 3. Comparative results of MWU tests for static and
dynamic conditions across all GF and radii. Each cell indicates
the significance outcome based on p-values: static and dynamic
conditions are both significant (SD), are both non-significant (–),
only static is significant (S), or only dynamic is significant (D).

Radius GF
(cm) λ2 V⃗0Z V⃗1Z V⃗2Z eigenentropy linearity λ0 − λ1 λ1 − λ2 planarity

10 SD SD - D SD S SD S SD
25 SD SD S D SD SD SD SD SD
50 SD S S SD SD SD SD SD S
75 SD SD SD S SD SD SD SD S

100 SD SD SD S SD SD SD S SD

For each branch of each dataset, the MWU and FK tests of the
eigenentropy with a 0.25m radius have p-values of 0.00. This
indicates that the distributions of the leaf and wood points are
statistically different. The violin plots in Figure 5 show the
distribution of the normalized eigenentropy (radius = 0.25m)
separated by leaf and wood points for each branch. Comparing
the distributions of the synthetic data, branches 1 and 2 are
more separable and different in static than in dynamic
condition. The separability of branch 3 seems similar, whereas
4 and 5 are more separable in dynamic than in static
conditions. In dynamic conditions the top branches
demonstrate increased separability, while in static conditions,
the reverse is observed. These results are discussed in
Section 5.1. Also, the distributions of the RealDyn dataset are
less smooth, especially for the leaf points. This could be

Figure 5. Normalized eigenentropy computed with a 25 cm
radius for each branch of the static and dynamic point clouds.

The median and quartiles are represented as a central dashed line
and dotted lines, respectively.

related to the higher complexity of the real point clouds
structure compared to the simulated ones.

In the simulated point clouds, the median eigenentropy appears
to better differentiate the leaf points from the wood points in
the dynamic point cloud. This may be due to the scanner not
capturing the small branches with higher branching order in
the upper part of the tree. As a result, the main part of the two
branches is well represented. Thus, the eigenvalues follow the
pattern 0 ≈ λ1 ≈ λ2 < λ0, indicating that most of the
variations of the points are linear, resulting in a lower
eigenentropy. Compared to the wood points in the windy
condition, the eigenentropy is higher because of the blurriness
of the point cloud. The eigenvalues rather follow the pattern
0 ≈ λ2 < λ0 ≈ λ1, meaning the movements caused by the
wind introduce more variability, increasing the spatial disorder,
and hence the eigenentropy of the wood points. In the
real-world point clouds of the branches A, B and C, regions
where the point clouds are duplicated and shifted have a higher
eigenentropy. These regions are indicated with white
rectangles in Figure 6.

Figure 7 shows the point clouds of the synthetic branches 1
and 2 in static and dynamic conditions. The black circles
approximately midway along the branch indicate that the
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Figure 6. Real branches A, B and C colored by eigenentropy
(25 cm search radius).

Figure 7. Simulated branches 1 and 2 in static and dynamic
scenarios, colored by eigenentropy (25 cm search radius).

dynamic point clouds have a lower eigenentropy than the
corresponding static point clouds. This is due to the different
curvatures of the branch in each scan. The merged point cloud
does not adequately represent the branch object, as the edges
and local variations become more diffuse and the randomness
of the point cloud increases. This results in a lower
eigenentropy. A similar observation can be made for the trunk
indicated by the black rectangles in Figure 7. Due to the trunk
being more blurred as it moved between scans, the
eigenentropy in the dynamic point cloud decreases.

Table 4. MWU test conducted on the V⃗2Z GF (50 cm radius).
p-values in bold (> 0.05) indicate no statistical significance

between leaf-wood points distribution.

Condition Branch Id
1 2 3 4 5

StaticMWU p-value 0.000 0.000 0.019 0.077 0.000
DynMWU p-value 0.895 0.644 0.200 0.078 0.525

Table 4 shows the MWU p-values for the leaf-wood
separability by V⃗2Z computed with a 50 cm radius of the static
and dynamic synthetic branches. In this case, the wind has a

significant influence on the local point distribution of the
branches at mostly each height level within a tree. The
p-values are all notably higher in windy conditions, except for
branch 4, for which is high in both cases. These high p-values
indicate a loss of statistical significance, suggesting that wind
has introduced variability in the local point distributions,
diminishing the ability to separate leaf and wood points
effectively using V⃗2Z as a feature at a branch scale.

4.2 Leaf-wood classification

As described in Section 4.1, the GF are different between the
static and dynamic datasets. This section investigates the
impact of these differences on leaf-wood classification.
Table 5 presents the results of the leaf-wood classifications in
descending order of performance. The static model, trained
and tested on the SimPlotStatic dataset, achieved the highest
scores across all metrics with 89.21% OA. These results
suggest that the static model is effective when evaluated under
similar conditions to its training data. The high MCC and
Kappa values further confirm the reliability and consistency of
the model on static data. However, when tested on the dynamic
data (Table 5, bottom row), which is often the case in real
datasets, the results drop by around 5% in each OA, precision,
recall, and F1−score and by 8% to 11% for the other metrics.
The model trained with dynamic data is therefore better at
generalizing, because when tested on the static data, it gets an
OA 1.72% lower than the results from the static model and the
precision score decreases by less than 1%.

Table 5. Leaf-wood classification results of the RF models both
tested on static and dynamic dataset. Highest values for the same

prediction dataset are in bold.

Datasets Metrics (%)
Training - Prediction OA P R F1 MCC Kappa IoU

Static - Static 89.24 89.81 87.78 88.54 79.55 77.56 77.13
Dynamic - Static 87.52 88.99 85.35 86.47 76.36 74.25 73.12
Dynamic - Dynamic 85.30 86.29 83.14 84.11 72.83 69.36 68.43

Static - Dynamic 84.22 84.76 82.21 83.04 71.25 66.93 66.24

The success of leaf-wood classification varies across different
scanner source counts per 25 cm voxels under static and windy
conditions. A success rate of 0.5 means that half of the points
in the voxel are correctly classified, whereas a class ambiguity
of 0.5 means that the model has a 50% chance of correctly
classifying the points. Figure 8 indicates that if a location is
scanned from more perspectives, the success rate decreases
and the class ambiguity increases. Therefore, the classification
accuracies are lower. Moreover, this effect is amplified under
windy conditions. The black rectangle in Figure 8a may be due
to a portion of points where the GF are not computed because
of too low point density. Voxels with edge lengths of 10 and
50 cm show consistent results with those of 25 cm, which aims
to cover a part of a branch without including other branches.
This shows the robustness of the method.

5. Discussion

5.1 Change in distribution of geometric features

From all the GF in this study, we selected the eigenentropy and
the V⃗2Z features in order to have a detailed look into the point
cloud distribution of the branches. The contrasts between static
and dynamic conditions highlight how environmental factors
like wind affect the distribution of leaf and wood points. Wind
does not significantly reduce the ability of the eigenentropy to
distinguish the classes. V⃗2Z is a significant GF for leaf-wood
classification in static and dynamic conditions when
investigating the full set of five branches. Table 4 shows that
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(a) Success rate

(b) Class ambiguity

Figure 8. Success rate and class ambiguity of a leaf-wood RF
segmentation based on the number of scan source (here

equivalent to different scan positions) in 25 cm voxels under
static and windy conditions. The black rectangle indicates a
portion of points with a null success rate. The median and

quartiles are shown as dashed and dotted lines, respectively.

directly transferring a model trained on static data to dynamic
data is not feasible with V⃗2Z due to a low capacity of
generalization accross the branches. The differences in
separability among the five branches suggest that some are
more affected by wind, possibly due to variations in exposure
and displacement distances (Dittrich et al., 2017).

5.2 Effects of wind on leaf-wood classification

As noted in Section 4.2, the dynamic model generalizes better,
likely because it assigns importance to a broader range of GF,
capturing more point cloud variability than the static model.
Vicari et al. (2019) found that point cloud sparsity is an
obstacle to leaf-wood classification. However, we find that the
number of scanner sources per voxel directly influencing
results, especially for dynamic data. More scanner sources
reduce classification success, highlighting the need to balance
scan count and point cloud density and optimize scan positions
for effective tree representation. One potential improvement
for windy dataset results is to merge the point clouds with
similar geometries and discarding the other point clouds to
improve representation despite occlusion (Schneider et al.,
2019). This approach would benefit cases with many scan
positions that lead to redundancies. In such cases, the
exclusion of a specific scan would not result in the loss of a
significant number of data points.

Future work should explore methods to minimize point cloud
shifts in overlapping TLS acquisitions made in strong winds
(Wang et al., 2022). One approach could be to shift each scan
into a single noiseless merged point cloud by applying local
non-rigid 3D transformations. Deep learning could be
promising for this task, though requiring substantial training

data. For this, the simulated data of dynamic 3D scenes would
represent a valuable approach (Weiser and Höfle, 2024).
Effective leaf-wood classification of swaying trees would
provide crucial information to perform adequate corrections to
windy point clouds. Consequently, the biomass estimation,
leaf area quantification, or QSM analysis could be performed
on wind-affected point clouds after wind corrections.

5.3 Strengths and limitations of synthetic data

The use of synthetic data allows for precise control over
variables, including tree structure, wind intensity and LiDAR
acquisition settings, thereby enabling targeted studies on
specific influences. To test the generalization to real world
data, this study should be extended to larger VLS datasets of
diverse scenarios. These scenarios should cover different tree
species, point cloud resolutions, scanner models and
acquisition settings. While the Sapling Tree Gen Blender
add-on allows to generate diverse tree morphologies,
simulating different sizes, shapes, and branch structures, the
models can be simplistic in their representations (Bornand et
al., 2024). Also, our LiDAR simulations consider tree
movements between scan positions and are based on the
assumption that the movements of trees during a single scan is
negligible. In the future, the movement effects on single scans
(e.g., distortions) should be considered by performing VLS on
fully animated scenes (Weiser and Höfle, 2024).

6. Conclusion

In this study, we investigate the effects of wind during
multi-station TLS acquisitions on local tree point cloud
structure and leaf-wood classification, using simulated datasets
and a real-world tree point cloud. By using LiDAR simulation,
we can fully control the wind influence and the acquisition
settings to have perfect annotation reference. The results of our
study confirm and quantify the significant impact of wind on
how geometric features describe leaf and wood points. Some
of the key features (e.g. second and third salient features,
linearity, planarity and V⃗2Z ) used for leaf-wood classification
in the static condition are no longer able to significantly
distinguish between the leaf and the wood in windy conditions.
Moreover, the capacity of generalization of the random forest
model to point clouds affected by wind is better when trained
on the dynamic dataset rather than the static dataset. We
conclude that labeled point clouds under windy conditions
should be also considered for training of machine learning
methods. Further research on the specific influences of wind
concerning the differences of movements between the lower
and the upper part of the trees, optimization of point cloud
merging before the leaf-wood classification, and wind
corrections will be crucial to improve the accuracy and
reliability of separability assessments.
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Höfle, B., 2021. Opaque voxel-based tree models for virtual
laser scanning in forestry applications. Remote Sensing of
Environment, 265, 112641. doi.org/10.1016/j.rse.2021.112641.

Wilcoxon, F., 1945. Individual comparisons by ranking
methods. Biometrics Bulletin, 1, 80–83.

Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., Gonzalez
de Tanago, J., Bartholomeus, H., Brede, B., Herold, M., 2017.
Data acquisition considerations for Terrestrial Laser Scanning
of forest plots. Remote Sensing of Environment, 196, 140-153.

Winiwarter, L., Esmorı́s Pena, A. M., Weiser, H., Anders,
K., Martı́nez Sánchez, J., Searle, M., Höfle, B., 2022.
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